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Introduction
The environmental pollution is a crucial problem of the era, which 
arises from industrial activities, for the sake of industrialization 
chemical, cosmetics, agriculture, mining, textiles, and leather 
introduced a large number of chemical substances into environment 
[1-5]. The quality of the environment has also deteriorated due to 
industrialization, which releases many pollutants into the atmosphere 
[6,7]. Considering the high toxicity of these materials, the removal 
of heavy metals has attracted a significant amount of attention.

Owing to a number of merits like high energy density, long cycle 
life, low maintenance, long shelf life, and low self-discharge Li-ion 
batteries hold prospects for electric vehicles and portable electronics. 
However, improving battery safety is crucial to increase application 
of lithium ion batteries in new energy storage devices [8-11].

Biopolymers have attracted attention since synthetic polymers are 
creating environmental problems. Many research investigations 
have been focussed in replacing long-term degradable polymers 
by such eco-friendly polymers in many end uses like packaging, 
transportation, medicine etc. [12-14]. Mostly, biopolymers are 

biocompatible and biodegradable and decompose without any 
adverse effects on the environment. Tissue engineering (Li 
et al., 2014), drug delivery (Ribeiro et al., 2014), and disease 
diagnosis methods, as subgroups of medicine, are the areas in 
which biopolymers have attracted a tremendous attention [15,16]. 
Poly(E-caprolactone) (PCL), poly(lactic acid) (PLA), poly(lactic-
glycolic acid) (PLGA), and poly(vinyl alcohol), to name just a 
few, are examples of biopolymers[17-23]. Among them, the former 
is interest of the current study due to good solubility, low cost, 
excellent processability, and acceptable viscoelastic properties as 
well as FDA approval holding [24,25].

Porous composite nano fibre membranes
Chemical precipitation, membrane filtration, electrochemical 
methods, ion exchange, adsorption, and so on, are some methods 
considered in heavy metal removal from water [26,27]. The 
adsorption is considered to be the most significant of the different 
methods to remove heavy metal from water, owing to its economy, 
versatility, energy-efficiency, and requirement of no additional 
reagents [28,29]. Electrospun nanofibers have been widely used as 
nanofibrous adsorbents for removal of heavy metals from aqueous 
solutions, due to their large specific surface area, high porosity, 
and small interconnected pores [30-35]. A wide variety of low-cost 
adsorbents such as algae, chitosan, alginate, fungi, tea polyphenols 
(TPs), and lignin were studied to evaluate their potential as viable 
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alternatives to the mostly used expensive adsorbents [36-38]. 
Among these adsorbents, TPs are mainly consisted of epicatechin 
(EC), epicatechin gallate (ECG), epigallocatechin (EGC), and 
epigallocatechin gallate (EGCG), in which the EGCG makes up about 
50–60% of the total TPs and possess various biological activities [39]. 
The multiple pyrogallol and catechol structures of these compounds 
make TPs highly water-soluble and excellent antioxidant properties 
[40]. Up to now, TPs have been used as both reducing and stabilizing 
agents for adsorbing and restoring silver, gold, palladium, and iron 
nanoparticles, due to their strong surface adhesion ability [41-46]. 
In this paper, high-specific surface area poly (lactic acid) (PLA)/TPs 
porous composite nanofiber membranes (CNFMs) were prepared by 
electrospinning and used in the adsorption of silver ions. The surface 
morphology of the electrospun PLA/TPs CNFMs before and after 
adsorption of silver ions were investigated by scanning electron 
microscopy (SEM). The results showed the average diameters of the 
nanofibers increased with the increase in TPs. And the porosity of 
porous CNFMs was higher than that of nonporous CNFMs. And with 
the increase in TPs, the porosity of nonporous CNFMs decreased. 
In addition, the adsorption capacities for silver ions of PLA/TPs 
CNFMs with varying quantities of TPs were confirmed by atomic 
absorption spectrophotometer. And the amounts of silver element 
in the CNFMs after adsorption of silver ions were determined using 
energy dispersive spectrometer test (EDS). Studies have been carried 
out on the influences of porous structure on adsorption properties of 
PLA/TPs CNFMs. The results showed that as TPs increased in these 
CNFMs, the adsorption properties were enhanced. And the porous 
structure of nanofibers could promote the adsorption of silver ions.

PLA/TPs CNFMs with high specific surface area have been designed 
by electro spinning and applied to the adsorption of silver ions. 
The surface morphology and structure, such as nanofiber diameter, 
porous structure, and porosity, of the electrospun PLA/TPs CNFMs 
before and after adsorption of silver ions were investigated by SEM 
and capillary flow porometry. The results showed with the increase 
in TPs the average diameters of the CNFMs increased [47]. The 
porosity of porous CNFMs with 0.032g TPs was higher than that of 
nonporous CNFMs with 0.032g TPs, and the porosity of nonporous 
CNFMs decreased with the increase in TPs contents. In addition, 
the adsorption capacities for silver ions of PLA/TPs CNFMs with 
varying quantities of TPs were confirmed by atomic absorption 
spectrophotometer. The effects of porous structure on adsorption 
properties of PLA/ TPs CNFMs were investigated. EDS has been 
used to determine the amounts of silver element in the porous and 
nonporous CNFMs with 0.032g TPs after adsorption of silver. The 
results showed that with the amount of TPs increased the adsorption 
properties were enhanced due to strong surface adhesion ability 
of TPs. And the porous structure of nanofibers could promote the 
adsorption of silver ions due to larger specific surface area and 
higher porosity of porous CNFMs.

Nano fiber separator membranes for lithium ion batteries
The physical contact of electrodes is impeded by separators thereby 
avoiding short circuiting and simultaneously permitting mobility 
of Li ions between electrodes during the phases of charging and 
decharging. The separators demand certain requisites that include 
specific thickness, suitable pore size, good chemical/thermal 
stability, and high Liþ ion permeability. Microporous polyolefin 
based membranes have been used as separators. However, their 
poor thermal stability and low porosity limit their electrochemical 
performance. At elevated temperatures, separators with low thermal 

stability could cause some safety issues. Designing separator with 
highly porous structure and high thermal stability are crucial for high 
performance lithium ion batteries [48-51]. Electrospun nanofiber 
membranes have been presented and superior electrochemical 
performance was obtained by using highly porous separators. But 
a number of investigations reported petroleum based polymers 
including polyacrylonitrile which is highly expensive and non-
biodegradable and hazardous solvents have to be used during 
processing of these polymers [52]. In this study, polyvinyl alcohol 
(PVA), water soluble, biodegradable, and environmentally friendly 
polymer, was used to prepare highly porous nanofiber based separator 
membranes and solgel techniques was utilized for the first time to 
fabricate high performance PVA separators for Li-ion batteries. 
Incorporation of inorganic particles in separator membranes has 
been presented as an effective way to improve thermal stability 
and electrochemical performance coated SiO2 on both sides of 
polyethylene separator and ionic conductivity was increased up 
to 8.1104 S/cm and better cycling performance was reported [53-
55]. SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated 
poly(ethylene terephthalate) (PET) nonwoven was presented with 
improved ionic conductivity and cycling performance compared 
to bare PET separator [56]. In another study, PVdF/PMMA/SiO2 
separator was studied and the capacity was increased up to 158 
mAh/g as SiO2 was introduced[57]. SiO2 has been coated on both 
sides of separator [58]. Likewise, researchers have reported on 
SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) 
layers-coated polyethylene separators [59]. However, high amount 
of SiO2 loading could cause agglomerations and pulverization, 
leading to slow kinetics. In addition, introducing SiO2 nanoparticles 
in polymer solution could cause agglomerations and bead formation 
resulting in poor cycling performance. In this study, sol gel technique 
was applied to prepare SiO2 containing PVA fibrous separator 
without nanoparticle agglomerations and bead formation, resulting 
in enhanced electrochemical performance. 

Electrospinning of water soluble, biodegradable PVA polymer 
has been used to produce PVA based separator membranes. 
Electrochemical performance was further improved by introducing 
SiO2 via sol gel technique. Highly-porous nanofibrous structure was 
observed and the physical properties including porosity, electrolyte 
uptake were improved by increasing SiO2 content. The cells 
containing SiO2/PVA separator membranes showed good cycling 
and C-rate performance owing to enhanced ionic conductivity and 
interfacial resistance [60]. It is, therefore, demonstrated that SiO2/
PVA separator membranes are promising environmentally friendly 
separator candidate for high-performance Li-ion batteries.

Solent based electrospun biocomposites
Moreover, its lower rate of degradation than PGA or PLA, satisfies 
the needs for fabrication of implants, drug delivery devices, scaffolds, 
and sutures that are supposed to have longer degradability [61]. But, 
the hydrophobic nature of PCL has been the focus of scientists 
to overcome this setback by blending with hydrophilic polymers 
and also incorporation of fillers [62]. Meanwhile, nanofillers from 
natural resources are charming candidates [63]. In the recent years, 
cellulose, particularly in the form of nano-scale filler, has pushed a 
massive part of the scientific activities toward itself [64]. The root of 
such interest has mostly originated from the growing environmental 
concerns. In addition, cellulose resources are the most abundant, 
cheap, and renewable. Biodegradability, biocompatibility, large 
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surface area, high aspect ratio (from 3 to 20nm in diameter and up 
to few micrometres in length), high modulus and strength, and lower 
density compare to inorganic fillers are other distinct characteristics 
of cellulosic nanofillers [65,66]. Generally, there are various shapes 
of such particles which depend on the original source (plant) and 
extraction method of cellulose. Cellulose nanoparticles are classified 
as nano crystalline cellulose (5–70nm in diameter and 100–250nm 
in length) and micro fibrillated cellulose (5–60nm in diameter and 
few micrometres in length) [67]. Rice production, as the main food 
in many countries, results in rice husk waste which accounts for 
20% of raw rice [68]. It was the great motivation for this study 
to choose rice husk as the rich source for cellulose extraction. 
Incorporating fillers into polymer matrices leads to creation of 
polymeric composites. For decades, many attempts have been carried 
out to develop micro- and nano-porous composite structures, due 
to their beneficial properties and this ended to great achievements 
in various applications including filtration, sensor, medicine (e.g. 
tissue engineering), etc. [69]. The electro spinning is a popular and 
flexible method for fabrication of structures with submicron porosity 
in comparison with other porous manufacturing techniques such as 
gas foaming and phase separation [70-77]. The simplicity, low cost of 
equipment, controllable morphology, and scalable one-step approach 
are some rationales to choose this technique for preparing high 
porous electrospun PCL/CMF biocomposites [78]. Some researchers 
have attempted to exploit the benefits of both electrospinning and 
nanoscale cellulose in biopolymers. The reinforcement influence 
of cellulose nanocrystals (CNC) into electrospun PLA scaffolds 
for bone tissue engineering has been studied [79]. In another effort, 
nanofibrous mats of polyethylene oxide/CNC with heterogeneous 
and homogeneous microstructures were fabricated and characterized 
[80]. Recently, three component bio nano composites of PVA/
nHAp reinforced by cellulose nanofibers (CNF) was developed 
by for bone tissue engineering [81,82]. Skin tissue engineering 
application of polylactide–polyglycolide (PLGA) nanofiber 
membranes incorporated by CNC was also investigated [83]. In 
situ generation of CNC in PCL was carried out via post electro 
spinning as they firstly prepared electrospun fibres of cellulose 
acetate (CA) and PCL and subsequently CA was deacetylate to 
CNC by alkaline saponification [84,85]. Further, research workers 
took efforts to introduce CNC, extracted from ramie, into PCL 
(dissolved in dichloromethane) and then the electrospun mats were 
analysed from morphological, thermal, and mechanical aspects. In 
the current work, the authors, for the first time, proceeded with the 
electrospinning of PCL incorporated by CMF and addressed the 
issues associated with the electrospinning process when CMFs were 
included [86]. Furthermore, the work innovates a ternary solvent 
system used as PCL solvent, for the fabrication of electrospun 
PCL/CMF fibres with uniform morphology. Finally, the developed 
nanofibrous biocomposites were characterized morphologically and 
structurally in different ratios of CMF.

A novel ternary solvent system including formic acid, acetic acid, 
and acetone was employed for preparing PCL solution and the 
suspensions were incorporated with 1.5, 3, and 5wt.% of CMF 
content. Using this new PCL solvent system resulted in an optimum 
PCL electrospinning solution compared with double FA/AA system 
causing higher quality and thinner PCL fibres. Addition of CMF 
content increased fiber diameter and broadened fiber diameter 
distribution which attributed to the viscosity increase and CMFs 
agglomeration [87]. Apart from SEM morphological characterization, 

WAXS and DSC measurements were carried out. It was proved that 
the crystallinity of PCL was enhanced by CMF addition, which was 
maximized at 1.5wt.% CMF, and then it was reduced at further CMF 
incorporation. Furthermore, the hydrophilicity and degradation rate 
of fibrous bio nano composites were explored. It was cleared that 
CMF addition reduced hydrophobicity of PCL and also fastened its 
degradation in PBS solution. Regarding the mechanical properties, 
PCL nanofibers containing 1.5wt.% CMF recorded the highest tensile 
modulus and strength which were reduced upon higher loading 
of CMF, while the maximum elongation at break was obtained at 
3wt.% of CMF.

Conclusion
Various techniques such as scanning electron microscopy, energy 
dispersive spectrometer test, universal testing machine, and so 
on have been used to study the morphology and properties of 
the electrospun PLA/TPs CNFMs before and after adsorption of 
silver.Also, atomic absorption spectrophotometer has been used to 
determine the adsorption capacities of PLA/ TPs CNFMs for silver 
ions. The adsorption properties of silver ions by the electrospun 
PLA/TPs CNFMs has been observed to be good as revealed by the 
adsorption tests, and the adsorption of silver ions could be enhanced 
by porous structure. The SiO2 has been incorporated into PVA 
nanofibers by Sol gel method. The PVA separator membranes have 
been observed to have better electrochemical properties with highly 
porous structure. The porosity, liquid electrolyte uptake, and ionic 
conductivity have been more enhanced by incorporation of SiO2, 
which on the other hand reduced interfacial resistance. Furthermore, 
when PVA/SiO2 separator membranes were assembled into lithium/
lithium iron phosphate cells, higher cycling and C-rate performance 
was observed compared to those using commercial microporous 
polyolefin membrane. Adding acetone to FA/AA solvent system led 
to fabrication of uniform electrospun nanofibers with the average 
diameter of 178±38nm. The mean electrospun fibre diameter was 
increased by introduction of CMF, mainly owing to the increase 
in the solution viscosity. Further, wider diameter distribution in 
the presence of CMF has been confirmed by scanning electron 
microscopy (SEM). In order to investigate the super molecular 
structure and thermal behaviour of fibrous bio nano composites 
the electrospun fibres were also analysedby means of wide angle 
X-ray scattering (WAXS) and differential scanning calorimetry 
(DSC). Because of introduction of CMF the characterizations of both 
positively affect the crystallinity of PCL. The maximum crystallinity 
has been observed by the DSC measurements by introduction of 
1.5wt.% CMF. The influence of CMF addition on the hydrophilicity 
of PCL has also been studied by contact angle measurement, where 
a reduced trend in contact angle has been noticedafter loading CMF. 
Also, in vitro degradability of the bionanocomposite nonwoven has 
been investigated in PBS solution. Under the presence of CMF the 
degradation rate has been improved. Further, tensile mechanical 
assessment has been conducted and CMF inclusion had a reinforcing 
impact on electrospun PCL. The maximum modulus and ultimate 
tensile strength (UTS) have been attained at 1.5wt.% CMF addition 
to PCL.
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