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Abstract
A rudimentary autonomously guided robot called a "Line Follower Robot" (LFR) follows a line written on the ground 
to either find a white line on a dark surface or a dark line on a white surface. Working on the LFR is quite interesting. 
We will discover how to construct a black line follower robot in this study utilizing an Arduino Uno and a few readily 
available parts.
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1. Introduction
Mobile robots have drawn the attention of many academics in 
recent years because to their agility, adaptability, and capacity 
to be used in a variety of challenging missions, particularly in 
regards to autonomous navigation in the warehouse or restricted 
region [1–10]. There is a rising demand for complicated 
applications nowadays, when the working environment includes 
humans moving robots, or unexpected impediments [11-
13]. At this point, robots and people are regarded as mobile 
impediments that make up the dynamic environment. Since 
then, the camera application-based "Navigation" approach has 
generated a lot of interest since it overcomes the drawbacks of 
the conventional line-detection method while also enabling path 
optimization [14–19]. Furthermore, because the working space 
is typically a warehouse or small space, the robot's capacity 
to operate must be adaptable and able to follow a predefined 
trajectory while avoiding moving impediments that may occur 
without deviating from a safe planning trajectory [20–23]. Since 
the environment is static and mapped, and obstacle locations 
are assumed to be known in advance, there are currently many 
traditional researches and approaches, such as RRT*, A* 
Visibility Graph, and Fast Marching Tree, that are primarily 
focused on autonomous path planning for mobile robots [24-
27]. In addition used complex algorithms to prevent collisions, 
including Adaptive Genetic, Bacterial Evolutionary Algorithm, 
Predictive Behavior, and Partial Swarm [28-37]. The dynamic 
environment map must be built and updated manually using 

those approaches, which results in low forecast accuracy. The 
obstacle avoidance approach based on fuzzy logic control 
develops specific rules in accordance with the prior information. 
Recently, intelligent control algorithms have also been applied 
to obstacle avoidance. The method to fuzzy logic control has 
strong robustness, real-time performance, and less reliance on 
the environment. However, there is a symmetry phenomenon 
that cannot be explained. The neural network-based obstacle 
avoidance technique creates controllers based on the location 
of obstacles. However, gathering data and teaching the network 
to discover a path take a lot of effort. When an obstacle's 
knowledge is lacking or unknowable, conventional obstacle 
avoidance algorithms are useless. Designing an intelligent 
control requires knowledge or experience [38–39]. Contrary to 
other artificial intelligence algorithms, reinforcement learning 
(RL) is a learning technique that doesn't need any rules [40-
43]. RL is a machine learning technique that modifies the 
environment by using the environment's feedback as an input. 
One of the most widely used RL algorithms is Q-learning. With 
the help of the Q-value function, the environment is examined 
by the algorithm, which focuses on value-based reinforcement 
learning that is updated over time [44-47]. Recently, it has also 
been used to combine intelligent control and Q-learning [48-52]. 
These research, however, are limited to simulations and trials 
using straightforward static objects. Additionally, there isn't a 
clear discussion of how to construct the controller for a robot to 
follow a processed path (virtual). 
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As is well known, Q-learning relies on a trial-and-error learning 
process where the agent experiences several failures before 
finally succeeding. Both money and time are very much in short 
supply. This indicates that the training is challenging to carry 
out in a real environment and is frequently done in simulation. 
From it is clear that robot applications using Q-learning can be 
trained in virtual environments before being applied in the actual 
world [48,52]. The training environment for the RL agent in a 
virtual environment is established in this research to overcome 
these issues. The user can gather numerous responses in diverse 
locations while the virtual environment simulates the actual 
scenario. The contribution of this study is that: 
• Unlike other traditional, artificial and intelligence algorithms, 
the obstacle avoidance methodology for moving obstacle in this 
paper does not use any prior dataset for training or experience 
for design the controller. 
• The training data are transferred to robot and work real time in 
the real application. 
• From the experiment the RL proved to have better performance 
than intelligent control algorithm in terms of total time and 
errors [53].

2. How a Line Follower Robot Works
Line follower robots (LFRs), as previously mentioned, follow 
lines, and in order to do so, they must first be detected by the robot. 
The LFR's line detecting technique must now be implemented, 
which is the question at hand. We all understand that a black 
surface absorbs the most light, resulting in a maximum reflection 
on a white surface and a minimum reflection on a black surface. 
So, in order to find the line, we will exploit this quality of light. 
An IR sensor or an LDR (light-dependent resistor) can be used 
to detect light. We chose the IR sensor for our project because 
of its superior precision. Two IR sensors are placed on the left 
and right sides of the robot, respectively, in order to detect 
the line. The robot is then positioned on the line so that it is 
directly between the two sensors. A transmitter and a receiver 
are the two components that make up infrared sensors. The IR 
receiver is a photodiode, which detects the signal produced by 
the transmitter. The transmitter is just an IR LED that produces 
the signal. When an object is exposed to infrared light from an 
IR sensor, the light reaching the black part of the object absorbs 
it, producing a low output, while the light striking the white part 
of the object reflects back to the transmitter, being picked up 
by the infrared receiver, producing an analog signal. Using the 
aforementioned technique, we move the robot by operating the 
wheels that are connected to the motors, which are managed by a 
microprocessor. Let's call the left motor and right motor the two 
sets of motors that are typically seen in line-following robots. 
Based on the signals from the left and right sensors, respectively, 
both motors rotate. The robot must execute four sets of motions, 
including forward motion, left turn, right turn, and stopping. 

Moving forward: In this scenario, the robot should advance, i.e., 
both motors should rotate so that the robot goes forward, when 
both sensors are on a white surface and the line is between the 
two sensors. Actually, due to the arrangement of the motors in 
our configuration, each should rotate in the opposite direction. 
But for ease of use, we'll refer to the motors as rotating forward.

Turning left: The left sensor in this instance detects the black line 
and sends a signal to the microcontroller since it is on top of the 
dark line whereas the right sensor is on the white portion. The 
robot should turn to the left because the left sensor is sending a 
signal. As a result, the right motor rotates forward while the left 
motor rotates backward. The robot then pivots to the left. 

Turning right: Although this circumstance is identical to the 
left case in that just the right sensor is present, the robot should 
nevertheless turn to the right in this instance. The left motor 
rotates forward to move the robot in the correct direction, while 
the right motor rotates backward to turn the robot in the opposite 
direction. 

Stopping: In this instance, the black line may be simultaneously 
detected by both sensors because they are on top of the line. 
The microcontroller is programmed to think of this as a reason 
to stop. As a result, both motors are turned off, which stops the 
robot from moving [54-69].
 
3. Conclusion
I've evaluated a lot of articles on line-moving robots and obstacle 
detection in this paper. Its basic operation and execution strategy 
are also addressed.  
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