
Potentiation of Efficacy of Chimeric Antigen Receptor (CAR) T-cell Therapy in 
Hematological Malignancies using FDA-Approved Small Molecule Sensitizing Agents 

Review Article

1Department of Biological Sciences, College of Natural and Social 
Sciences, California State University, Los Angeles (CSULA), 5151 
State University Drive, Los Angeles, CA 90032. 

2Department of Life Science, Los Angeles City College (LACC), 
855 N. Vermont Ave., Los Angeles, CA, 90029. 

Anthony Morales1, Ali R Jazirehi1, 2*

*Corresponding author
Ali R. Jazirehi, CLS, Ph.D., Department of Biological Sciences, College of 
Natural and Social Sciences, California State University, Los Angeles (CSULA), 
5151 State University Drive, Los Angeles, CA, 90032 and Department of Life 
Science, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, 
CA, 90029. 

Submitted: 20 Jan 2022; Accepted: 24 Jan 2022; Published:  30 Jan 2022

Advances in Hematology and Oncology Research

Adv Hema Onco Res, 2022           Volume 5 | Issue 1 | 84www.opastonline.com

ISSN: 2692-5516

Abstract 
Chimeric antigen receptor CD19 CAR T-cell therapy has received FDA-approval for treatment of B cell malignancies. 
CD19 is an ideal target for B cell malignancies due to its limited expression by B lineage cells. Non-Hodgkin’s Lympho-
ma of B-cell origin (NHL B-cell) accounts for about 4% of all cancers in the United States. Traditionally, combination 
chemotherapy consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) was considered as 
standard treatment option for NHL patients. However, a subset of individuals was inherently resistant to CHOP or 
developed resistance upon continued exposure to chemotherapy. The development of drug-resistance, plus the undesired 
toxic side effects of this regimen, led to the inclusion of anti-CD20 mAb, Rituximab, to chemotherapy protocols of NHL 
patients (R-CHOP). Superior improvement was observed in patients undergoing R-CHOP compared to CHOP. More 
recently, chimeric antigen receptor (CAR) T-Cells redirected against CD19 (CD19 CAR T-cell) has proven to be an ef-
fective immunotherapy against various cancers including NHL. Despite initial success, and like other approaches, NHL 
patients become unresponsive to CD19 CAR T-Cells due to selective outgrowth of NHLs with deregulated expression of 
apoptotic proteins. Histone deacetylase inhibitors (HDACis) and celecoxib have gene regulatory effects and skew the tu-
mor intracellular environment into a proapoptotic milieu. Thus, resistant NHL cells will become sensitized to apoptotic 
death signals delivered by CD19 CAR T-Cells. We propose the inclusion of FDA-approved small molecules as sensitizing 
agents to reduce the apoptosis threshold of resistant NHL and boost CD19 CAR T-cell efficacy.
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Introduction 
Traditional treatment options for patients with Non-Hodgkin’s 
Lymphoma (NHL) includes radiation or combination chemother-
apy using cyclophosphamide, doxorubicin, vincristine, and pred-
nisone (CHOP). However, some patients were inherently resistant 
to CHOP or developed resistance upon continued chemotherapy 
administration. Also, CHOP proved to be very toxic to the pa-
tients. Development of resistance to CHOP, plus the undesired 
toxic side effects of this regimen, led to the inclusion of chimeric 
mouse anti-human CD20 monoclonal antibody (mAb), Rituximab, 
to chemotherapy protocols of NHL patients (R-CHOP). Superior 
improvement was observed in patients undergoing R-CHOP com-
pared to CHOP. Patients undergoing R-CHOP treatment demon-
strated 46% to 50% improvement, however, patients developed 
resistance to this modality, necessitating the need for alternative 
therapeutic approaches [1]. 

Chimeric Antigen Receptors (CARs), redirect patient’s autologous 
lymphocytes to tumor associated antigens (TAA), consist of the Ag 
recognition portion of a mAb fused to an intracellular signaling do-
main able to activate T-Cells, thus, providing non-MHC restricted 
Ag recognition. CARs effectively target and destroy tumors when 
expressed in CD8+ Cytotoxic T Lymphocytes (CTL), Natural Kill-
er (NK) cells, neutrophils, and monocytes [2-4]. CAR constructs 
containing more than one activation moiety enhance T-Cells acti-
vation, being the association of the CD28 co-stimulatory molecule 
to CD3ζ signaling motif the most commonly used, constituting 
the 2nd (CD3ζ and one co-stimulatory moiety) and 3rdgeneration 
(CD3ζ and 2 co-stimulatory moieties) CARs [5,6]. CD19 is an ide-
al target for immunotherapy because it is only expressed in B cell 
lineages, but not on hematopoietic stem cells; is present in most 
of the leukemia and lymphomas. As experienced with Rituximab, 
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humans can survive after ablation of B-lymphocytes with period-
ical infusions of Immunoglobulin (Ig). CD19-specific CARs ef-
fectively target CD19+ hematological malignancies in vitro and in 
vivo. Currently, clinical trials are being conducted with adoptively 
transferred modified mature T-cells, but the effector cells are only 
transiently present, which limit treatment efficacy [3-8]. 

Patients with recurrent B-lineage malignancies have greater than 
50% chance of cure, despite prior intensive therapy. Novel strat-
egies are needed to improve morbidity and mortality of those pa-
tients. Current data support that CD19-specific CAR effectively 
redirects immune effector cells to eradicate B-lineage cancers, but 
persistence of effector cells is a major limitation to clinical appli-
cations allowing malignancy to recur [3-8]. Another major limita-
tion of modern cancer immunotherapeutic approach is the devel-
opment of resistance through inherent or acquired anti-apoptotic 
mechanisms by tumors.

Small Molecule Sensitizing Agents Celecoxib and His-
tone Deacetylase Inhibitors
Regulation of Apoptotic Machinery in Non-Hodgkin’s Lym-
phoma (NHL) by Celecoxib (Cox-2 inhibitor): Role in Tumor 
Immunity. 
Increased expression of cyclooxygenease-2 (Cox-2), a key regula-
tor of inflammation, is often observed in hematological malignan-
cies, which correlates with poor patient prognosis [9]. Data from 
phase II clinical trials show high-dose Cox-2 inhibitor (Celecoxib) 
is well-tolerated in patients with relapsed or refractory aggressive 
NHL with minimal toxicity profile [10]. Celecoxib significantly 
prolongs survival of nude mice harboring intracranial lymphoma 
and is effective against B lymphoma in vivo [11, 12]. Celecoxib 
induces tumor cell death via a Bcl-2-independent, apoptosome-de-
pendent, intrinsic apoptotic pathway involving mitochondria [13]. 
Cox-2 inhibitory function is not required for cytostatic and apop-
totic effects of Celecoxib. In fact, inhibition of cell proliferation 
due to down-regulation of cyclins A and B and loss of cyclin de-
pendent kinase (CDK) activity is reported in in vitro and in vivo 
models of Burkitt’s lymphoma treated with dimethyl-celecoxib 
(DMC), a Celecoxib analog lacking Cox-2 inhibitory function 
[14]. In KSHV and EBV related lymphomas and primary AML 
cells, Celecoxib induces synergistic cytostasis and apoptosis in 
combination with bortezomib, eicosonoid receptor antagonists, 
and doxorubicin, by triggering ER stress, cyclin E and CDK2 
down-regulation, G0/G1 arrest, and survivin down-regulation [15-
17]. In lymphoma, Bcl-xL and Mcl-1, but not Bcl-2, form a high 
affinity complex with Bak, and block apoptosis [18]. Celecoxib, 
via Mcl-1 down-regulation, disrupts this loop and induces apopto-
sis [19]. In Bax deficient lines, loss of Bak confers complete Cele-
coxib-resistance [20]. Celecoxib also blocks AKT/GSK3ꞵ surviv-
al pathway in HTLV-induced leukemia and induce apoptosis via 
intrinsic pathway independent of Bcl-2 and Bcl-xL [21].
   

Regulation of Apoptotic Machinery in Non-Hodgkin’s 
Lymphoma (NHL) by Histone Deacetylase Inhibitor 
(HDACi): Role in Tumor Immunity. 
HDACis remodel chromatin structure, and consequently, activate 
gene expression. However, HDACi influence the behavior and 
survival of tumors by diverse mechanisms, including promot-
ing expression of differentiation- or death-inducing genes while 
down-regulating the expression of prosurvival genes, thus, gener-
ating an intracellular pro-apoptotic milieu [22]. HDACi-induced 
transcriptional activation causes increased surface expression of 
death receptors, MHC molecules, tumor Ags recognized by CTL, 
NK ligands recognized by NKG2A [23-26]. Epigenetic modifiers 
render tumors more recognizable by the immune system; HDACi 
increase anti-tumor activity of ACT, enhance cytotoxic potential 
of CTLs against tumors and combined with IL-2 have synergistic 
tumoricidal activity [27-29]. 

Notably, HDACi selectively target tumors and induce pro-apop-
totic transcriptional responses, thus, could potentially be used as 
immune sensitizers [30,31]. As single agent, HDACi is approved 
in the treatment cutaneous T-cell lymphoma and peripheral T-cell 
lymphoma, has anti-tumor activity in lymphoma via modulation 
of survival/ anti-apoptotic signaling pathways, and reverses malig-
nant phenotype in preclinical models [22,32-37]. Because of the 
pleiotropic effects of HDACis and Celecoxib, their combination 
with other anti-cancer modalities, particularly immunotherapy, 
represents a promising research opportunity. Further insights into 
their mechanism of action will allow optimization of this approach, 
and will expand their future usage in other cancers. The above data 
provide strong rationale for studying the underlying mechanism of 
CD19CAR CTL-resistance in NHL and understanding the mecha-
nism of sensitization by these small molecules with the goal of us-
ing them in conjunction with CD19CAR CTL in future trials. 

Conclusion 
CD19-redirected CAR CTL immune therapy has shown promising 
results in the clinical trials of patients with NHL B-cell tumors. 
The modest to low clinical response rates might be due to attain-
ment of various resistance mechanisms by NHL B-cells following 
initial infusion of CD19 CAR transduced CTLs to avoid apoptotic 
death signals delivered by CD19 CAR CTL. The underlying mo-
lecular mechanism(s) of acquisition of resistance following initial 
treatment, and approaches to bypass resistance remain indefinable. 
We have previously reported these matters [38]. To attain a better 
understanding of potential mechanisms of resistance, and to design 
means to reverse resistance, we established an in vitro model of 
resistance of human NHL B-cells to CD19 CAR transduced prima-
ry human CTLs. We showed that CD19 CAR transduced primary 
human CTLs kill CD19+ human NHLs in a CD19- and caspase-de-
pendent (using pan-caspase inhibitor (zVAD-fmk)) manner. Sig-
nificant reduction in NHL killing by caspase inhibitor is a clear 
indication that CD19 CAR CTLs principally kill CD19+ sensitive 
NHLs by apoptosis.
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Immune effector cells such as CD8+ CTLs and NK cells eradicate 
tumors primarily via apoptosis induction mediated by four major 
pathways: TRAIL, FasL, Granzyme, or TNF. Treatment of NHL 
B-cells with TRAIL antagonistic (blocking) mAb prior to co-in-
cubation with CD19 CAR CTL effector cells significantly reduced 
their rate of killing suggesting that CD19 CAR transduced CTLs 
primarily use TRAIL apoptotic pathway in killing sensitive NHL 
B-cells. We also observed that R-NHL cells developed resistance 
to recombinant human TRAIL (rhTRAIL) further confirming the 
role of TRAIL pathway in CD19 CAR CTL-mediated killing of 
NHL B-cells [38]. Other apoptotic pathways are also possibly op-
erative in CD19 CAR CTLs, however, their contribution warrants 
further investigation. TRAIL or agonistic TRAIL DR4 and DR5 
mAbs are being used clinically; thus, these observations may pro-
vide a rational for their incorporation as adjuvants in CD19 CAR 
CTL-based clinical settings.

Next, we established an in vitro model of CD19 CAR CTL-re-
sistant NHL B-sublines (R-NHL) by serial exposure of sensitive 
parental lines to excessive numbers of CD19 CAR CTLs for an 
extended period. To obtain a homogenous population, we further 
performed limiting dilution analysis [38]. We then characterized 
these resistant sublines: Dual immunostaining showed that surface 
expression of B cell markers (CD19 and CD20) in R-NHL B-cells 
remained at levels comparable to those of their parental counter-
parts. Cytotoxic T-Cells secrete large quantities of type I cytokines 
(e.g., IFN-γ) upon specific recognition of tumor targets. The results 
of recognition assays showed comparable levels of IFN-γ secretion 
by CD19 CAR CTLs upon recognition of both sensitive (parental) 
and R-NHL B-sublines implying that the recognition compartment 
(CD19) on R-NHL B-cells remains unmodified during the pro-
cess of acquisition of resistance. Yet, despite efficient recognition, 
R-NHL sublines developed resistance to CD19 CAR CTLs as well 
as cross-resistance to CD19 CAR Jurkat (sorted to 100% purity), 
activated Jurkat (human T-Cells line), and lymphokine-activated 
killer (LAK) cells. These observations imply that the development 
of resistance is independent of down-regulation or loss of CD19 on 
NHL B-cells and might be due to intrinsic factors such as aberrant 
apoptotic machinery [38]. 

Lastly, we attempted to design an innovative approach to overcome 
acquired resistance of NHL B-cells to CD19 CAR CTLs [38]. We 
speculated that abnormal levels of apoptotic-related proteins might 
be responsible for resistance. Initiation or cessation of extrinsic 
and intrinsic apoptotic signaling pathways depends on the balance 
between the expression of pro- and anti-apoptotic proteins. De-
crease in pro-apoptotic such as Bax, BAD, Bid, Bak and increase 
in anti-apoptotic such as Bcl-xL, Bcl-2, Mcl-1, survivin, and Bfl-1 
protein levels is frequently noticed among various cancers [39,40]. 
For instance, the Bcl-2 inhibitor ABT-737, a small molecule BH3 
mimetic, effectively kills ALL blasts by disrupting the Bcl-2/Bax 
complex [41]. Another BH3 mimetic, Navitoclax, has significant 
success against CLL [42].
 
Our preliminary data implied that R-NHL B-cells have deregulat-

ed apoptotic machinery [38]. Although these results require further 
investigation, they suggest that restoration of expression levels of 
apoptotic regulators to skew towards a proapoptotic intracellular 
milieu can sensitize R-NHL B-cells to CD19 CAR CTLs. Multiple 
strategies are employed to supersede the resistant mechanisms of 
R-NHL B-cells, including the use of FDA-approved drugs with 
known anti-tumor properties including histone deacetylase inhibi-
tors (HDACis) and Celecoxib. Subtoxic and clinically achievable 
concentrations of these drugs have the ability to regulate the ex-
pression pattern of apoptotic genes rendering tumors more sensi-
tive to apoptosis and bypass immune-resistance [19, 43-48]. Thus, 
we examined if Celecoxib and HDACi pretreatment of R-NHL 
B-cells can sensitize them to apoptotic stimuli delivered by CD19 
CAR CTLs. We showed that short-term treatment of R-NHL 
B-cells to clinically achievable and non-toxic doses of HDACis 
(SAHA, LBH589), and Celecoxib mostly reversed their resistance 
to CD19 CAR CTL [38]. These results suggest that chromatin re-
modeling drugs and the anti-inflammatory drug Celecoxib (Cele-
brex) can partially sensitize R-NHL B-cells to CD19 CAR CTL-
and rhTRAIL-mediated apoptosis. These FDA-approved drugs 
can be safely used in clinical settings of NHL therapy. The in vitro 
results presented in this study, while obviously require further pre-
clinical examination, may provide rational biological/ molecular 
basis for incorporation of FDA-approved small molecule immune 
sensitizers in CD19 CAR CTL-based clinical treatment protocols 
of NHL patients [38].
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