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Abstract 
The aim of this research was to develop methodology on the development of polyethylene composites. The two pro-
cesses compared where chemical and physical vapor deposition in a chamber. The process parameters where scanning 
speed and vapor pressure. The response was hatch distance and surface height. The results indicated different surface 
morphology of concave and convex patterns. The spacing of Intergranular distance of the polymer was double with 
PVD than with CVD. To give a layer height 30% greater. The reproducibility was high able to develop intricate parts.
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Polyethylene Stability for Structures using Chemical and Physical 
Vapor Deposition Vapor deposition involved transfer of vaporiza-
tion particles of a material into a chamber. This was using a mould 
or a nozzle spray for development of a structure. The material un-
der consideration was polyurethane a composite polymer. These 
are known for low weight to volume ratio, durability and reusabil-
ity properties.

Method
Participants
Polyurethane a multi-cross link irrigation vessel and valve were 
developed using CVD and PVD methods. The CVD used s mould 
because of the deposition of reactants in a sense of a nozzle. The 
PVD used a actuated nozzle computer numerical control (CNC) 
to develop the valve. After the vessel and valve were allowed to 
solidify under atmospheric pressure (10psi). 

Assessments and Measures
To evaluate the performance of the process the hatch distance and 
layer height using.spectroscopes. EFM are a highly precise images 
nanometre in size of parts ranging from millimetres to centimetres. 
A colour meter was used to observe the melt and solidification 
pattern in the chamber.

Chemical Vapour Deposition. This is a reactive process which uses 
catalytic solutes. The chamber has a mould used as a solvent. The 

vapour was transferred using tubes into the chamber. When the 
vapour pressure is changed the net balance caused it to settle in the 
mould. This is a low precision process with noticeable differences. 
The process settings were used to improve the accuracy.

Physical Vapour Deposition. The mould in this process was place 
on its side in the direction of the nozzle. This is a kinetic work 
done unlike CVD which is potential and uses gravity. This was 
typically used for axisymmetric and symmetric intricate shapes. 
The research studied the hatch distance and layer height of the 
valve specimen developed using a colourant for design.

Scanning Speed. This had high accuracy using CNC of 0.4 mi-
crons. This parameter was only used in PVD to deposit the liq-
uid polymer. The speed range was from 0 to 5mm in front of the 
mould. This ensured high equiaxtic solidification of the polyure-
thane composite in the mould. This was highly versatile to ensure 
complex shapes, structures and design were in development.

Chamber Pressure. This was common to both processes. The 
chamber was vented before deposition to a static pressure of 2psi. 
This was used in previous research as optimum. The particles were 
vaporized in a separate container. This was supplied to the cham-
ber by tubes. The chamber pressure improves the solidification 
rate of the polyurethane composite to the mould. Figure 1 showed 
the chamber were the particles are moulded for 3D production 
(www.eos.com)
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Hatch Distance. This was the Intergranular distance between parti-
cles. Each process yield a different hatch distance. Based on the ki-
netic and potential nature of the solidification rate into the mould. 
The structure precipitates in solvent form into solute mixture. This 
can be translucent or opaque dependant on the colourant employ-
ment. The greater the hatch distance the more flexible the structure 
under gradual loads.

Layer height. Each process has a specific gravity. This is the ra-
tio of actual to water of known value. The effect is various layer 
heights precipitated on the mould. This affects the durability as the 
greater the height the more resistant to impact loads.

Results
Each process yielded different hatch distances and layer height. 
Figure 2 a and b showed the structures developed using CVD and 
PVD processes.

Figure 2: CVD and PVD used to develop (a) vessel (5×10×5mm) 
and valve (Radii 2cm)

Surface Morphology
Each process developed different structures. The spectroscope scan 
showed convex structure for CVD and concave for PVD. This was 
to indicate the former was above the surface and the latter below. 

Figure 3. Spectroscopy scans of (a) CVD and (b) PVD samples
(a)

(b)

(a)

(b)
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Hatch Distance and Surface Height
The colour meter indicated a higher vapor and moisture content in 
CVD. The PVD had a higher luminescence and hence solidifica-
tion. The result was a greater hatching distance in CVD and lower 
surface height. The repeatability was higher in PVD over the entire 
surface using natural processes. The CVD had a greater average 
and variance of more than 50% in the graph. Figure 4 showed a 
chart of the spectrum of CVD and PVD sample.

Figure 4: Spectrum colour scans of (a) CVD and (b) PVD samples
Discussion

The spectrum colour meter indicate 20% increase in hatch distance 
and surface height of CVD samples. This produced an even distri-
bution of polyurethane in the mixture as indicated in Figure 2a. The 
colour meter for PVD was different and had 10% hatch distance 
and 75% surface height change to the polymer. This produced a 
denser structure of uneven distribution of particulate matter.

Conclusion
The CVD should be used for fragile parts with low durability. 
The dimensions are much greater than in PVD samples. Therefore 
soil coagulates should not come into contact with CVD polymer. 
Whereas PVD has a more durable surface and can be used in any 
condition of irrigation.
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