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Abstract
In this research, we design a plasmonic refractive index sensor and examine it numerically, using transparency, refrac-
tive index, sensitivity, FOM fit shape and Q quality factor, to optimize and improve performance quality. We will be. To 
design the structure of this sensor, we use two plasmonic waveguides, a cavity, two rings and two teeth. The resonant 
wavelengths and refractive index of the resonators are investigated and simulated by the finite difference time domain 
(FDTD) method, and we draw the obtained diagrams using MATLAB software. After completing the sensor design, due 
to the fact that the amplifiers are very sensitive to changes in the refractive index, so by changing the refractive index and 
changing the dimensions of the structure, we can weaken or strengthen the passage coefficient in the resonant modes. 
These plasmonic sensors with a simple frame and high optical resolution can be used to measure refractive index in the 
medical, chemical and food industries. 
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1. Introduction 
Surface plasmon polaritons (SPPs) have been studied extensive-
ly recently due to the fact that they confine light at nanoscale 
dimensions [1]. As a result of these unique features, SPPs are 
used in many structures such as filters, optical demultiplexers, 
bio-sensors [2-36], logic gates and etc. The metal–insulator-met-
al (MIM) optical waveguide is used extensively for design of 
many plasmonic devices due to its ability to confine light within 
a small area and its compatibility with electronic platforms [37-
46]. In addition, having a simple design procedure makes it one 
of the most favorable structures. Consequently, a diversity of 
MIM plasmonic devices have been designed and implemented. 
Some of them are optical filters, sensors, coulpers, slow light de-
vices, splitters and all-optical switches. A good refractive index 
sensor needs to have a good sensitivity (S) and a high figure of 
merit (FOM). Increasing the device size usually increases the 
sensitivity, but larger structures have higher full width half max-
imum, which leads to a reduction of FOM. Many criteria can 
be used to implement refractive index sensors, but plasmonic 
sensors are more suitable for integrated circuits due to their very 
small size (nanometers). Recently, various types of plasmonic 
sensors have been designed and manufactured. Among them, 
plasmonic refractive index sensors require high sensitivity and 
resolution. Conventional plasmonic sensors consist of a MIM 
waveguide with a cavity. Such cavities can have a variety of 
geometries such as tooth-shaped, disc-shaped, ring-shaped, and 
so on. In this paper, we propose a MIM plasmonic sensor with 
two rings and a cavity and two teeth. To simulate the sensor, the 

two-dimensional finite difference time domain (FDTD) method 
with a uniform mesh size of 8 nm has been used. The boundary 
condition for all directions is selected as the perfectly matched 
layer (PML). 
 
2. Structural Model and Theory Analysis 
There are many structures for designing optical sensors. These 
optical sensors usually include amplifiers and waveguides. Each 
waveguide with any geometric shape has the ability to transmit 
waves and can limit their energy in one and two dimensions. 
The proposed structure is shown in Fig.1, which includes two 
waveguides and a cavity, and two rings and two teeth. The in-
put wave goes from the left waveguide to the structure and after 
passing through them goes to the output waveguide. The width 
of the two waveguides is w1 = 50 nm. The middle ring is located 
in the middle of two waveguides that have an inner radius of r1 
= 90 nm and an outer radius of R1 = 133 nm, which is located 
at a distance of 19 nm from the two waveguides. The two teeth 
are connected to the middle ring, which has a length of 40 nm 
and a height of 20 nm. A ring is located at the bottom of the right 
waveguide and has an inner radius of r1 = 91 nm and an outer 
radius of R1 = 126 nm. The cavity also has a length of L = 80 nm 
and a height of W2 = 200 nm. The lower ring is attached to the 
waveguide and the cavity and the distance from the cavity to the 
waveguide is 55 nm. Pin and Pout are the monitors for measuring 
the input and output waves, respectively, and the transmission is 
calculated by T = Pout / Pin. 
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Figure 1. Two-dimensional image of a plasmonic sensor 
 
As shown in the 2D image, the green and white areas represent silver and air, respectively. The 
air permittivity is set to ε = 1 and the silver permittivity is used using the greeting model as 
follows: 

ε(ω) = ε∞ −
ωp

2 
ω2  +  iγω          (1) 

Here ɛ∞ gives the medium constant for the infinite frequency, ωp refers to bulk frequency for 
plasma, γ means damping frequency for electron oscillation, and ω shows incident light angular 
frequency. The parameters for silver are ɛ∞ = 1, ωp =1.37 × 1016 Hz, and γ = 3.21 × 1013 Hz. 
Only TM mode is available in the structure. According to Figure 1, the TM wave, which is 
used for SPP excited waves, starts propagating from the left waveguide and propagates in the 
waveguide, and its intensity decreases as it gets closer to the output port. After distributing the 
field at the resonant frequency of the simulated structure, each amplifier reflects a certain 
amount of input wave. 
 
3. Fracture coefficient simulation and measurement methods 
The resonant behavior of the proposed structure is examined numerically and theoretically. In 
the numerical approach, we use the time domain finite difference (FDTD) simulation method 
with perfectly matched layer boundary conditions (PML) because this method effectively 
reduces the numerical reflection. The uniform mesh size is 8 nm. First, to measure the 
performance of the sensor and increase its quality, we must change its refractive index. This is 
done in the wavelength range of 400 to 1500 nm and the refractive index of the middle ring 
will change in steps of 0.01 from 1.15 to 1.2 nm. An electromagnetic field is generated by the 
excitation of a sensing element using light generated by SP that is concentrated on the metal 
surface. The refractive index of the MIM changes when the material under contact contacts the 
sensor. SPs are very sensitive to changes in refractive index in the vicinity of the surface. The 
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Figure 1: Two-Dimensional Image of A Plasmonic Sensor

 As shown in the 2D image, the green and white areas represent 
silver and air, respectively. The air permittivity is set to ε = 1 
and the silver permittivity is used using the greeting model as 
follows:

Here ɛ∞ gives the medium constant for the infinite frequency, ωp 
refers to bulk frequency for plasma, γ means damping frequency 
for electron oscillation, and ω shows incident light angular fre-
quency. The parameters for silver are ɛ∞ = 1, ωp =1.37 × 1016 
Hz, and γ = 3.21 × 1013 Hz. Only TM mode is available in the 
structure. According to Figure 1, the TM wave, which is used for 
SPP excited waves, starts propagating from the left waveguide 
and propagates in the waveguide, and its intensity decreases as 
it gets closer to the output port. After distributing the field at 
the resonant frequency of the simulated structure, each amplifier 
reflects a certain amount of input wave. 
 

3. Fracture Coefficient Simulation and Measurement Methods  
The resonant behavior of the proposed structure is examined nu-
merically and theoretically. In the numerical approach, we use 
the time domain finite difference (FDTD) simulation method 
with perfectly matched layer boundary conditions (PML) be-
cause this method effectively reduces the numerical reflection. 
The uniform mesh size is 8 nm. First, to measure the perfor-
mance of the sensor and increase its quality, we must change its 
refractive index. This is done in the wavelength range of 400 to 
1500 nm and the refractive index of the middle ring will change 
in steps of 0.01 from 1.15 to 1.2 nm. An electromagnetic field 
is generated by the excitation of a sensing element using light 
generated by SP that is concentrated on the metal surface. The 
refractive index of the MIM changes when the material under 
contact contacts the sensor. SPs are very sensitive to changes 
in refractive index in the vicinity of the surface. The reason we 

have only changed the refractive index of one ring and the re-
fractive index of other amplifiers remains the same is to achieve 
a better result and a stronger sensor design. The transmission 
spectrum from the sensor device is shown in Fig.2. 

Figure 2: Transmission Spectra of Plasmonic Refractive Index 
Sensor  

After comparing the wavelengths using the refractive index 
change and plotting the transmission spectrum, we must obtain 
the three criteria of sensitivity S and the shape of the FOM and 
the quality factor Q. With this, we create a technology map to 
define the standard and development process of optical refrac-
tive index sensors. Sensitivity S defines the ratio of the output 
wavelength change of the sensor to the refractive index changes 
and is obtained from the following relation: 

S = Δ λ / Δn (nm / RIU)                                                (2) 

We see the diagram of the plasmonic sensitivity coefficient in 
Fig.3, which according to the figure, has the highest sensitivity 
for the refractive index n = 1.2 (in mode2) which is equal to 
2359 nm / RIU and the lowest value for the refractive index n = 
1.16 (in mode1) Which is equal to 314.1 nm / RIU. 
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reason we have only changed the refractive index of one ring and the refractive index of other 
amplifiers remains the same is to achieve a better result and a stronger sensor design. The 
transmission spectrum from the sensor device is shown in Fig.2. 
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After comparing the wavelengths using the refractive index change and plotting the 
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Figure 3. Plasmonic sensor sensitivity coefficient diagram Resonance wavelength versus refractive 
index analysis 

 
The next item is the figure of merit (FOM), which determines the sensitivity of the SRI to the 
resonance width curve (FWHM) and how accurately the minimum resonance can be measured. 
FOM is calculated as follows: 

(3)               / FWHM  RIFOM = S 
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Figure 3: Plasmonic Sensor Sensitivity Coefficient Diagram 
Resonance Wavelength Versus Refractive Index Analysis 
 
The next item is the figure of merit (FOM), which determines the 
sensitivity of the SRI to the resonance width curve (FWHM) and 
how accurately the minimum resonance can be measured. FOM 
is calculated as follows: 
FOM = SRI / FWHM                             (3)

We see the diagram of the figure of merit (FOM) in Fig.4, which 
according to the figure has the highest value for the refractive 
index n = 1.18 (in mode1) which is equal to 15.03 and the lowest 
value for the refractive index n = 1.12 (in mode1) which is equal 
to With 7.354. 

Figure 4: Plasmonic Sensor FOM diagram. 
 
And the last case is the quality factor Q, which is obtained from 
the following equation: 
 Q = λres / FWHM                  (4)
We see the quality factor Q diagram in Fig.5.

Figure 5: Quality Factor Diagram of Q Plasmonic Sensor. 
 
According to the figure, the highest value of quality factor Q is 
for refractive index n = 1.17 (in mode1) which is equal to 16.56 
and the lowest value for refractive index is n = 1.19 (in mode2) 
which is equal to 7.379. These three factors (S and FOM sensi-
tivity and Q quality factor) and their numerical values showed 
that this sensor has good performance and quality and has a 
higher sensitivity compared to similar articles. 
 
4. Conclusion
In this paper, a very high resolution refractive index optical sen-
sor is presented. It is based on plasmonic conductors of met-
al-metal insulation. The structure is numerically simulated using 
the finite difference time domain method. The proposed structure 
is thought to consist of two plasmonic waveguides, a cavity, two 
rings and two teeth. This sensor provides a sensitivity of 2359 
nm / RIU and a maximum rating of 15.0316 RIU-1 (FOM). Due 
to its high resolution resolution, this sensor can easily change 
0.01% in the analytic refractive index for the index in the range 
of 1.15-1.2. 
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