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Abstract
Nonstationary boundary value problems of uncoupled thermoelasticity are considered. A method of boundary integral equations 
in the initial space-time has been developed for solving boundary value problems of thermoelasticity by plane deformation by 
use general functions method (GFM). The generalized solutions of boundary value problems are constructed in the space of 
generalized vector functions. Fundamental Green tensor, stress tensor and their antiderivatives over time are used for construction 
their regular integral representations. By use analogue of Gauss formula for fundamental stress the singular boundary integral 
equations are constructed to determine the unknown boundary functions.

The resulting formulas have important engineering application. They make possible to determine the thermal stressed state of 
the medium by the boundary values of stresses, displacements, temperature and heat flux, without solving singular boundary 
integral equations. Because for real engineering problems these physical characteristics can be experimentally measured at the 
boundary. Moreover, the formulas allow to calculate the influence of each of these characteristics of the process on its stress-
strain state. The last one is very important in designing structures made of thermoelastic materials.
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Introduction
The development of thermoelasticity research is associated with 
the need to develop new mechanical structures, the elements of 
which operate under conditions of uneven and unsteady heating 
(in aviation and rocket technology, in nuclear reactor protection 
systems, in a number of machine-building complexes, industry, 
etc.). This leads to the appearance of temperature gradients in 
the medium and deterioration of the strength properties of ma-
terials. Thermal shock causes some materials to become brittle 
and degrade.

In the works of M.A.Biot [1], for the first time a complete sub-
stantiation of the basic relations and terms was given using the 
thermodynamics of irreversible processes and variational the-
orems were formulated. In which a complete substantiation of 
basic relations and equations of coupled thermoelasticity, based 
on the laws of thermodynamics of irreversible processes, was 
given for the first time. This author also formulated the basic 
variational principles and developed some methods for solving 
the thermoelasticity equations. 

In the ensuing publications of V. Novatskiy [2,3], various meth-
ods of solving the differential equations of thermoelasticity are 
proposed, and the models of coupled and uncoupled thermoelas-
ticity are substantiated. According to methods of complete and 

incomplete separation of variables, he constructed and investi-
gated a number of solutions of these equations and considered 
a whole class of quasi-static and dynamic problems of thermo-
elasticity

In works devoted to dynamic problems of thermoelasticity, the 
thermal shock problems stand out separately. In formulating 
such a problem, it is assumed that at the initial moment the ob-
ject is at rest, and in the subsequent moment there is a sharp 
change in the thermoelastic state due to the action of heat and 
power sources, both external and in the medium itself.

Thus, the problem of the propagation of a thermoelastic wave in 
a half-space due to the instantaneous heating of its boundary for 
the case of small times was first considered by V.I. Danilovskaya 
[4] and solved by the small parameters method. A large review 
of works on thermoelasticity is given by Hetnarski R. in the en-
cyclopedia [5].

In [6,7], the method boundary integral equations (BIE) was de-
veloped to solve boundary value problems (BVPs) of coupled 
and uncoupled thermoelastic elastodynamics. When solving 
these problems, BIE were constructed in the space of Laplace 
transforms in time. One of the main problems of the method 
BIE in the Laplace transform space, which is well known, is 
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the instability of the numerical procedures for inverting trans-
formants of solutions with increasing time, which does not allow 
constructing solutions in calculations at even small times.

In order to avoid these problems, the method BIE in the initial 
space-time is being developed here to solve BVP of thermoelas-
ticity under plane deformation.

Mane relations of thermoelasiticity
An isotropic thermoelastic medium is characterized by a finite 
number of thermodynamic parameters: mass density 𝜌, elastic 
Lamé constants λ, μ, and thermoelastic constants γ, ƞ and k. In 
Cartesian coordinate system, such medium is described by the 
system of equations [2,3,8]: 

Here ui(x,t) are the components of the displacement vector u(x,t)                                                                                                                        
                                   ,           is the relative temperature, Fi are 
the components of the mass force, Q(x,t) is the power of the heat 
source,  N = 1,2,3. The stress tensor    (x,t) is associated with 
displacements by Duhamel-Neumann law:

Everywhere there is the summation throughout the repeated in-
dices within the specified limits of variation. Substituting (2) 
into (1), we obtain a closed system of equations for u(x,t) which 
we write in the form:

where the following differential operators are introduced:
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equation of the wave front F has the form:
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ij  is the main part of the operator Lij                 , containing 

only the highest derivatives of the second order, and Le
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Equation (5) describes the characteristic surface of the classical 
parabolic equation, which has the form  and does not determine 
the wave front in space R N. Equation (6) describes wave fronts   
Ft moving in RN with the speed:

where                       ,                                      is the velocity of 

dilatation waves,                          is the velocity of shear waves. 
Consequently, wave fronts (thermoelastic shock waves) in the 
medium move with the speeds of elastic waves.

In order to continuity conditions of a medium to be preserved 
and u(x,t) to be a solution (1), the following conditions for jumps 
on characteristic surfaces must be satisfied [7]:
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Let us introduce the wave vector                       in RN, which is 
rected towards the propagation of the shock wave. These equal-
ities imply the conditions on jumps at the shock fronts Ft in  RN:

Here n is the wave vector perpendicular to Ft  and has the di-
rection of wave propagation. Equality (9) is the condition for 
conservation the continuity of the medium, (10) coincides with 
the well-known law of conservation of momentum at the fronts 
of shock waves in elastic media [9]. It follows from (9) and (11) 
that the temperature is continuous at the wave fronts, but its gra-
dient suffers a jump proportional to the jump of the normal com-
ponent to the front of the velocity of the medium displacements.

We call classical solution - a solution of Eqs (1), satisfying con-
ditions (9) - (11) on wave fronts.

Statement of boundary value problems of uncoupled 
thermoelasticity 
If to set loads at the boundary of a body or mass forces in the 
body itself, this leads to deformation. At low strain rates in the 
equation for the temperature field (1), the rate of volumetric de-
formation of the medium (η = 0) can be neglected. Then the 
BVP is divided into two tasks: determination of the temperature 
field, after which it becomes possible to determine the field of 
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displacements and stresses in the medium. This model is called 
uncoupled thermoelasticity (thermal stress theory).

Consider the following BVPs for this model. Let a thermoelastic 
medium S  occupies a region bounded by a closed Lyapunov 
surface S with an external normal n(x). The equations of medium 
motion in this model are as follows:
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ijC is the tensor of elastic constants, which for an isotropic medium has the form: 
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ik  is Kroneсker symbol. It is seen from formulas (20) and (21) that the boundary conditions entered in the form of 

densities of simple and double layers on S, as surface forces and heat sources, and the initial conditions as impulse 

conditions acting at the moment t = 0. Note that, when differentiating, we took into account the conditions at the 

fronts (9-11), which nullify simple and double layers at the fronts of shock waves. 

Next, we construct generalized solutions to these BVPs for plane deformation ( 2N ).  
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Here we use differentiation properties of a convolution [12]. A 
variable under the convolution (*) means that it’s incomplete 
convolution, which is taken only for this variable. If there is no 

such symbol, then this is a complete convolution over (x, t). This 
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where dV(x) = dx1 dx2, dS(y) is surface differential.Formula 
(24) allows for the given values of temperature and heat flux at 
the boundary and the initial temperature to determine the tem-
perature field inside the region under the action of various heat 

sources. For x ϵ S, t > 0, the same formula gives a singular BIE 
for determining the unknown temperature or heat flux at the 
boundary:
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Here                       ,

The proof of this formula for the boundary points can be carried 
out in the original space-time. However, it directly follows from 
the BIE for the Laplace transform of temperature [6].

After solving this equation, the unknown boundary functions 

of the BVP are determined on the boundary. After that, using 
formula (24), one can determine the temperature in the entire 
domain        .

Generalized solution of equations for displacements 
and its regularization.
Taking into account (2) Eq (20) can be written in the form:

yxr −= , /jr r y= ∂ ∂

S−

( )1 1

0 0

ˆˆ( , ) ( ) ( ) ( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0 ,

e kl
ij x t i i i ij l k SS

j

i S i S

L u G p x H t C n x u x t x H t
x

u x H x t u x H x t

ρ δ ρ δ

δ δ

− −

− −

∂
∂ ∂ + + + +

∂

′+ + =

(26)

where                     is Lamé operator of motion equations of an 
elastic medium:

To determine the displacements, we use the Green tensor
of these equations:

and radiation conditions:

At plane deformation it is expressed by the formula [10,14]:
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Here we use differentiation properties of a convolution [12]. A variable under the convolution (*) means that it’s 

incomplete convolution, which is taken only for this variable. If there is no such symbol, then this is a complete 

convolution over (x, t). This formula can be represented in the following integral form: 
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where 1 2( ) , ( )dV x dx dx dS y  is surface differential. 

Formula (24) allows for the given values of temperature and heat flux at the boundary and the initial temperature to 

determine the temperature field inside the region under the action of various heat sources. For xS, t>0, the same 

formula gives a singular BIE for determining the unknown temperature or heat flux at the boundary: 
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where ( , )e
ij x tL   is Lamé operator of motion equations of an elastic medium: 
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To determine the displacements, we use the Green tensor k
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It has the following symmetry properties:

Investigation of the asymptotic properties of this tensor showed 
that it has a weak singularity at wave fronts r = ci t , does not 

have singularities for fixed t > 0, r = 0. 

Using the properties of the Green tensor and the differentiation 
properties of the convolution, we represent the generalized solu-
tion (26) in the form of a tensor-functional convolution:
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(30)

Further, it is not possible to write down relation (30) in integral 
form, because the derivatives in the second term are hypersing-
ular at the wave fronts r = ci t .

To regularize formula (30), we introduce the Green tensor an-
tiderivative on t ( ) ( )V U H t xδ= ∗
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The singularities of the tensor              were studied in [14]. It is continuous at wave fronts and has a logarithmic singularity at r = 0.

Using             and the rules for differentiating the convolution, the second term in relation (30) can be represented in a regularized 
form:

),( txV i
j
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(31)
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The singularities of the tensor ),( txV i
j  were studied in [14]. It is continuous at wave fronts and has a logarithmic 

singularity at 0r . 
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j  and the rules for differentiating the convolution, the second term in relation (30) can be represented 
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which can be written in integral form. To do this, let consider the stress tensor and related tensors. 

which can be written in integral form. To do this, let consider the 
stress tensor and related tensors.

Fundamental stress tensors. Regularization
We introduce the following fundamental stress tensors, gener-
ated 

Tensor                        describes stresses on an area with a normal 
n, generated by impulse concen-trated forces at the origin. The 
tensor                    is a solution to the Lamé equations at               
and describes the displacement of the medium under the action 
of a pulsed concentrated source of the multipole type [14,15]. It 
is antisymmetric on x and n:

For integral representation of (34), we introduce the antideriva-
tive on t tensor of fundamental stresses W(x,t,n)

We integrate this tensor at wave fronts and represent it in the 
form:

The dynamic tensor                         has a weak integrable singu-
larity at wave fronts.

The tensor                 is the fundamental Green stress tensor of 
static Lamé equations. It satisfies the homogeneous Lamé equa-
tions at x ≠ 0 and has only one singularity at x = 0:

where Kij are bounded. 

An analogue of the Gauss formula has been proved for it [14,15]:

The integral is singular only for boundary points and taken in the 
sense of the value principal sence.

Regular integral representation of displacements. 
Using the antiderivative fundamental stress tensor (34) and their 
symmetry properties, the solution (32) can be written in integral 
form:
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Here, for            , all integrals are regular with weak singularities 
of kernels at wave fronts. With known field temperature and 
boundary values of displacements and stresses, these formulas 
make it possible to determine displacements at any point of an 
elastic medium for any mass forces, including singular ones, 
which describe the effect of concentrated and impulse power 
sources of various types. In this case, the component wise con-
volution                    should be taken according to the convolution 

rules in the space of generalized functions.

Resolving singular integral equations
To solve BVPs, it is necessary to determine the displacements 
or stresses at S. The following theorem is true.

Theorem. Solutions of 1-4 BVPs satisfy the boundary integral 
equations on S:

x S∉

ˆ*j
i jU F

(36)



      Volume 5 | Issue 1 | 380Adv Theo Comp Phy, 2022 www.opastonline.com

effect of concentrated and impulse power sources of various types. In this case, the component wise convolution 

ˆ*j
i jU F  should be taken according to the convolution rules in the space of generalized functions. 

 

Resolving singular integral equations 

To solve BVPs, it is necessary to determine the displacements or stresses at S. The following theorem is true. 

Theorem. Solutions of 1-4 BVPs satisfy the boundary integral equations on S: 

 (

0

0 0

0

0,5 ( , ) ( , ) ( , ) ( , , ( )) , ) ( )

V.P. ( , ( )) ( , ) ( )

( , , ( )) ( ) ( ) ( , ) ( ) ( )

ˆ( , ) ( ) ( ) *

t
j jd

i i j i j
S

jS
i j

jd j
i k i j

S S

j j
t i j i

S

u x t d U y x p y t W y x n y u y t dS y

T y x n y u y t dS y
S

W y x t n y u y dV y U y x t u y dV y

U y x t u y dV y U F

     





 





      

  

    

   

 

 

 , , 1,2.j i j 

 (38) 

Here the second singular integral is taken in value principle sense ( V.P. ). 

 

Proof 
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we consider the first term on the right for x x : 

 

 

 

lim ( , ( )) ( , ) ( , ) ( , ) ( )

lim ( , ( )) ( , ) ( , ) ( ) ( , )

( , ( )) ( , ) ( , ) ( ) ( , )

V.P. ( , ( )) ( , ) ( ,

jS
i j j j

x x S

jS
i j j i

x x S

jS
i j j i

jS
i j j

T y x n y u y t u x t u x t dS y

T y x n y u y t u x t dS y u x t

T y x n y u y t u x t dS y u x t
S

T y x n y u y t u x













  

 

    

 
      

 

     

    ) ( ) ( , )i
S

t dS y u x t  

 

V.P. ( , ( )) ( , ) ( ) ( , )V.P. ( , ( )) ( ) ( , )

V.P. ( , ( )) ( , ) ( ) 0,5 ( , ) ( , )

V.P. ( , ( )) ( , ) ( ) 0,5 ( , ) .

jS jS
i j j i i

S

jS
i j i i

jS
i j i

T y x n y u y t dS y u x t T y x n y dS y u x t
S

T y x n y u y t dS y u x t u x t
S

T y x n y u y t dS y u x t
S



 



   

  

 

       

     

   

 

The limit of the second integral in (39) in the sum with the second integral in (37) is reduced to the form: 
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Taking into account these relations from formula (37), passing to the limit to the boundary of the domain, we obtain 

the formula of the theorem. 

 

For the solution of the first or second BVP, the formulas of the theorem are resolving singular BIEs for determining 

the displacements. For the third and fourth BVP, the stresses on the boundary are unknown in the formulas of the 

theorem, i.e. we have a BIEs with a weakly singular kernel: 
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where all are known, are calculated by the formulas of the theorem. 

After determining the unknown boundary functions, using formulas (37), you can determine the displacement at any 

point in the region. After determining the displacements and temperatures using the Duhamel-Neumann formulas 

(2), the stresses in the medium are calculated. That solves the BVP. 

 

Conclusion 

The constructed boundary integral equations are no classical type. They are very different from BIEs of BVPs 

problems for elliptic and parabolic equations for which various mathematical methods are well developed. In 

particular, the use of the method of successive approximations is difficult here due to the presence of an unknown 

velocity of displacements (for the 1st and 2nd BVP). However, the use of numerical methods based on the boundary 

element method makes it possible to effectively solve this type of equations. 

 

The resulting formulas (24) and (37) have an important engineering application. They make it possible to determine 

the thermal stressed state of the medium by the boundary values of stresses, displacements, temperature and heat 

flux, without solving singular BIEs. Because for real engineering problems these process characteristics can be 

experimentally measured at the boundary. Moreover, the formulas allow to calculate the influence of each of these 

characteristics of the process on its stress-strain state. The last one is very important in designing structures made of 

thermoelastic materials. 

 

 

 



      Volume 5 | Issue 1 | 381Adv Theo Comp Phy, 2022 www.opastonline.com

{ } 0

0

lim ( ) ( , ( ), ) ( , ( )) ( ) ( )

( ) ( , ( ), ) ( ) ( ) .

j jS
i i j

x x

jd
i j

H t W y x n y t T y x n y u y dS y
S

H t W y x n y t u y dS y
S

∗

∗

→
− − − =∫

= −∫

Taking into account these relations from formula (37), passing to 
the limit to the boundary of the domain, we obtain the formula 
of the theorem.

For the solution of the first or second BVP, the formulas of the 
theorem are resolving singular BIEs for determining the dis-
placements. For the third and fourth BVP, the stresses on the 
boundary are unknown in the formulas of the theorem, i.e. we 
have a BIEs with a weakly singular kernel:

where all are known, are calculated by the formulas of the the-
orem.
After determining the unknown boundary functions, using for-
mulas (37), you can determine the displacement at any point in 
the region. After determining the displacements and tempera-
tures using the Duhamel-Neumann formulas (2), the stresses in 
the medium are calculated. That solves the BVP.

Conclusion
The constructed boundary integral equations are no classical 
type. They are very different from BIEs of BVPs problems for 
elliptic and parabolic equations for which various mathematical 
methods are well developed. In particular, the use of the method 
of successive approximations is difficult here due to the pres-
ence of an unknown velocity of displacements (for the 1st and 
2nd BVP). However, the use of numerical methods based on the 
boundary element method makes it possible to effectively solve 
this type of equations.

The resulting formulas (24) and (37) have an important engineer-
ing application. They make it possible to determine the thermal 
stressed state of the medium by the boundary values of stresses, 
displacements, temperature and heat flux, without solving sin-
gular BIEs. Because for real engineering problems these process 
characteristics can be experimentally measured at the boundary. 
Moreover, the formulas allow to calculate the influence of each 
of these characteristics of the process on its stress-strain state. 
The last one is very important in designing structures made of 
thermoelastic materials.
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