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Abstract
In accordance with the Copenhagen interpretation, particles are created by the collapse of the wave caused by measurement. 
However, there is currently no mathematical description for the collapse of the wave. The transactional interpretation 
of quantum mechanics introduces advanced waves. The author successfully introduces advanced waves in classical 
electromagnetic theory. Retarded waves and advanced waves constitute mutual energy flow, and mutual energy flow possesses 
the properties of photons and can be considered as photons. Initially, the author believed that the self-energy flow of retarded 
waves and advanced waves collapsed in opposite directions. Recently, the author found that the reason for the need for 
reverse collapse is an error in the definition of the magnetic field in classical electromagnetic theory. After correcting the 
definition of the magnetic field, electromagnetic waves have reactive power, and thus, no collapse is needed. The author 
found that most quantum mechanics theories borrow patterns from classical electromagnetic theory. Thus, the probability 
flow in the Schrodinger equation and the Poynting energy flow in classical electromagnetic theory are very similar. Since the 
magnetic field in electromagnetic theory needs correction, the quantity corresponding to the magnetic field in the Schrodinger 
equation should also be corrected. The correction makes the self-energy flow obtained by the Schrodinger equation, i.e., the 
probability flow, have reactive power. The mutual energy flow obtained by the Schrodinger equation has active power. Thus, 
this mutual energy flow can express particles in quantum mechanics in a vacuum, such as electrons. Therefore, the collapse 
of the wave is entirely due to a problem with the definition of probability flow in quantum mechanics. After correcting this 
definition, the collapse of the wave is completely avoided. Once particles are represented by mutual energy flow, the wave-
particle duality problem is completely resolved.
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1. Introduction
The Schrodinger equation is the wave equation for particles such as electrons, and according to the Schrodinger equation, probability 
flow density can be constructed. This paper considers the motion of electrons in a vacuum. An electron moves from position a to 
another position b. According to the Schrodinger equation, the particle’s wave is emitted from a, spreading in all directions, and 
then collapses onto b. This is the interpretation of the Copenhagen school for the movement of electrons in a vacuum from a to 
b. Quantum mechanics has other interpretations, and the one the author favors the most is John Cramer’s quantum transactional 
interpretation in 1986 [1, 2]. This interpretation argues that a source a emits retarded waves, and a sink b emits advanced waves. 
Retarded waves and advanced waves interfere and reinforce along the line connecting a and b. The transactional interpretation is 
built on the foundation of Wheeler and Feynman’s absorber theory in 1945 [3, 4]. The Wheeler-Feynman absorber theory is based 
on the action-reaction theory and Dirac’s self-force problem in 1938 [5-8]. Additionally, Stephenson’s advanced wave theory is also 
intriguing [9].

The author found that if advanced waves are allowed to exist, emission and absorption are symmetric. If a point emits, it can be also 
a point of absorption, and energy flows from the emission point to the reception point. In this way, energy moves from one point to 
another. This type of energy flow is a point-to-point energy flow, rather than a diverging energy flow in all directions. This type of 
energy flow is closer to a particle.

The author initially studied electromagnetic field theory, and the introduction of advanced waves in the context of electromagnetic 
field theory was first mentioned by Welch in 1960 regarding the time-domain reciprocity theorem [10]. In 1987, the author proposed 
the electromagnetic mutual energy theorem, which is the Fourier transform of Welch’s time-domain reciprocity theorem. Welch 
defined his theorem as a reciprocity theorem rather than an energy theorem, and the author believes it might be due to the involvement 
of advanced waves, which are not widely accepted in the engineering and scientific communities. Therefore, calling it a reciprocity 
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theorem is more cautious. This theorem has been independently proposed multiple times, as seen in references [11-13]. However, 
they all position this theorem as a reciprocity theorem. Only the author defines it as an energy theorem.

In 2017, the author further argued that the mutual energy theorem (including Welch reciprocity theorem) is the law of energy 
conservation in electromagnetic field theory and introduced the mutual energy flow theorem (law) [14]. The author also proposed 
that the self-energy flow corresponding to the Poynting vector reversely collapses, so on average, the self-energy flow does not 
transfer energy. Energy in the vacuum space is only transferred by the mutual energy flow. The author considers the mutual energy 
flow as photons.

In 2020, the author further extended the concept of mutual energy flow from Maxwell’s equations to the Schrodinger equation [15]. 
According to this theory, the retarded wave emitted by a source reversely collapses. The advanced wave emitted by a sink also 
reversely collapses. The mutual energy flow from the source to the sink is responsible for transmitting the particle’s energy. The 
mutual energy flow can be regarded as particles. This way, the reverse collapse of two self-energy flows plus the mutual energy flow 
replaces the wave and wave collapse in the Copenhagen interpretation.

From 2020 to the present, the author has attempted to study various examples of electromagnetic waves, such as the energy flow 
between two parallel wires in a transformer, where one wire is the primary coil and the other is the secondary coil. Another example 
is the energy flow from a dipole emitting antenna to a dipole receiving antenna. In this process, the author found that Maxwell’s 
electromagnetic theory’s definition of the magnetic field is incorrect [16, 15, 17- 30]. Maxwell defined the magnetic field as the curl 
of the vector potential, 

                   B=∇×A                       (1)

This is correct. However, further defining the magnetic field B as the curl of the retarded potential A(r) is no longer correct. The 
formula, 

                  B=∇×A(r)                               (2)

 is incorrect. For example, for a plane electromagnetic wave, 

     A(r) ∼ exp (-jkz)x                               (3)

The corresponding electric field is 

According to Maxwell’s electromagnetic theory, the electric field and magnetic field are in phase. However, this is actually incorrect. 
According to the author’s electromagnetic theory, the phase of the magnetic field is consistent with A(r). For the far field, the 
magnetic field needs to be corrected to,
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The author discovered that the theory of the Schrodinger equation borrows some ideas from classical electromagnetic theory. 
Therefore, when classical electromagnetic theory needs correction, it is likely that the theory of the Schrodinger equation also needs 
similar correction. Based on this idea, the author made further corrections to the energy flow theory of the Schrodinger equation. 
This correction is entirely consistent with the correction made to electromagnetic theory by the author. Such corrections may 
seem absurd within the scope of quantum mechanics. The significance of these corrections can only be understood in the context 
of electromagnetic field theory. In the realm of quantum mechanics, understanding the consistency of this correction with the 
correction to electromagnetic theory is sufficient.

2. Review of The Author’s Electromagnetic Theory
2.1 Maxwell’s Equations
The author has completed the revision of Maxwell’s electromagnetic theory, mainly focusing on the modification of the far-field 
obtained from Maxwell’s electromagnetic theory. The original Maxwell’s equations are given by:
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Transitioning from electromagnetic field theory to electrodynamics, the transformation 

is performed. Therefore, 

The above expression represents the correction for the far field, where md stands for modified.

Thus, according to the author’s corrected magnetic field, the Poynting vector is imaginary, and its real part becomes zero. This 
indicates that electromagnetic waves have reactive power.

2.5 Mutual Energy Flow Density
In the author’s electromagnetic theory, the Poynting vector has reactive power. The transfer of energy flow is carried out by the 
mutual energy flow, given by, 

The factor 1/2 in the above expression is introduced based on the principle of half retarded waves and half advanced waves. The 
expression represents the mixed Poynting vector Sm md, which is the mutual energy flow density. This mutual energy flow uses the 
corrected magnetic field, hence Sm md is the author’s modified mutual energy flow density.

2.6 Energy Flow Law
In the author’s electromagnetic theory, the electromagnetic field satisfies the following law of localized energy conservation,

This formula represents the localized law of energy conservation. Due to the author’s correction to the magnetic field, electromagnetic 
waves (i.e., self-energy flow) have reactive power, and the transmitted energy is only carried by the mutual energy flow mentioned 
above. This mutual energy flow exhibits properties similar to photons. Therefore, the author considers it as a photon. In the author’s 
electromagnetic theory, only photons transmit energy. Thus, waves have reactive power, which is very close to the idea that waves 
are probabilistic. The mutual energy flow is a real quantity, indicating that energy is transferred by mutual energy flow particles.

2.7 Synchronization
In the Cramer quantum mechanics interpretation, there is a handshake process between retarded waves and advanced waves. In the 
author’s electromagnetic theory, this implies synchronization between retarded waves and advanced waves. This synchronization 
implies that, 

meaning that the magnetic field Hmd2 has the same phase as E1,
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The phase of E2 is the same as that of Hmd1. However, the phase of E2 is different from that of E1. This is because E1 induces a current 
I2. I2 can maintain the same phase as the electric field E1. However, the electric field E2 and the current I2 will maintain the same 
phase as the vector potential A2

(r), determined by 

Thus, the phase of E2 is the same as that of H md1, but the phase of E1 lags 90 degrees behind Hmd1. Therefore, E2 is 90 degrees ahead 
of E1. We know that E1×H*md2 represents action, and E*

2×Hmd1 represents reaction. This means that the reaction occurs before the 
action. This is understandable because the entire action is caused by the current I1, and I1 has the same phase as the magnetic field 
Hmd1. The electric field’s phase is 90 degrees later than the current. The reaction needs to be realized in Hmd1, so its phase must be 90 
degrees ahead of the electric field E1. In summary, in the author’s electromagnetic theory, not all quantities E1, Hmd1, E2, and Hmd2 
simply maintain the same phase. Instead, they are intricately combined.

3. Schrodinger Equation Theory
3.1 Schrodinger Equation
The probability density for the Schrodinger equation is given by

where Ψ is the wave function, and the superscript "*" denotes complex conjugation. Taking the time derivative of this probability 
density yields

The Schrodinger equation is given by

where U is the potential function. Rewriting the equation, we get 
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Consider

and

Define

where J is the quantum mechanical probability current density. The symbol "    " denotes the imaginary part.

This means that Ψ corresponds to the electric field E, and

where H is the magnetic field defined according to Maxwell’s electromagnetic theory (not the magnetic field Hmd defined in the 
author’s electromagnetic theory).

This indicates that in quantum mechanics, 1/i ∇Ψ is analogous to the magnetic field H.

3.2 Comparison with Electromagnetic Fields
The transformation from electromagnetic field theory to the Schrodinger equation is given by
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where 𝑱𝑱  is the quantum mechanical probability current density. The symbol "ℑ " denotes the 

imaginary part. 
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where 𝑯𝑯 is the magnetic field defined according to Maxwell’s electromagnetic theory (not the 
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Here, "→" means corresponds to. In this context,                is equivalent to the real part                  of the Poynting vector.

3.3 Schrodinger Equation with Sources
While the electromagnetic field equations have sources, the Schrodinger equation does not. In order to establish a correspondence 
between the Schrodinger equation and the electromagnetic field equation, sources need to be added to the Schrodinger equation [15]. 
These sources include both emitters and absorbers.

Alternatively,
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Integrating both sides over time,

The subscripts T denote the time integral               . Considering,

where

Considering ℏU having the dimensions of energy, U can be seen as the system’s energy. U(∞) is the energy at the end of the system, 
and this energy is 0. U(-∞) is the energy before the system starts, and this energy is also 0. Therefore, the above equation is 0. Thus, 
the energy term in equation (65) can be dropped after the time integration, resulting in
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Considering equations (56) and (57), we have
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be reflected in the theory of the Schrodinger equation. In other words, corresponding corrections should be made to the theory of the 
Schrodinger equation. The magnetic field before correction is given by,

The correction is applied to the far field. Fortunately, in quantum mechanics, we are concerned with plane waves, which belong to 
the far field. In electromagnetic field theory, the correction for retarded waves (involving the factor exp(-jkx) is given by

Considering the convention from electromagnetic field theory to electrodynamics, when

we have,

The corrected form is then,

Here, H is the magnetic field before correction, calculated according to Maxwell’s electromagnetic theory. This magnetic field is 
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That is, 
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𝑱𝑱����  �� corresponds to the Poynting vector in the electromagnetic field. It is the modified self-

energy flow. Comparing with formula (48), 
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This is because in quantum mechanics, ��Ψ∗�Ψ�  is the probability flow, which is not zero. 

ℜ𝑱𝑱����  �� is the probability flow after the author’s correction, which is zero. This is similar to the 

author’s theory that the self-energy flow does not overflow the universe. Note that the author does 
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𝑱𝑱����  �� being reactive power indicates that it does not transfer energy. 

 

3.6 Mutual Energy Flow Corresponding to the Schrodinger Equation 
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This is because in quantum mechanics,      is the probability flow, which is not zero.         is the probability flow after the 
author’s correction, which is zero. This is similar to the author’s theory that the self-energy flow does not overflow the universe. 
Note that the author does not consider        as a probability flow but regards it as an energy flow. Of course, ρ=ΨΨ* is not a 
probability either; it is energy or mass. The author’s view is consistent with that of Schrodinger. Therefore, Jself  md can be called the 
self-energy flow. The self-energy flow Jself  md  is imaginary, corresponding to reactive power.

Jself  md being reactive power indicates that it does not transfer energy.

3.6 Mutual Energy Flow Corresponding to the Schrodinger Equation
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The symbol ∼ indicates proportional. Equation (93) indicates that Ψ� and ∇Ψ� have the same 

phase. Similarly, 

 

 Ψ� ∼ ∇Ψ� (94) 

 

indicates that Ψ� and ∇Ψ� have the same phase. 

 

3.7 Example 

From the figure 1, it can be seen that assuming the electron is emitted from point 𝒂𝒂 and annihilated 

at point 𝒃𝒃. The green represents the energy flow (or mutual energy flow) of particles. The author 

considers this energy flow as the mutual energy flow 𝑱𝑱��  �� defined in the previous section. This 

mutual energy flow is the particle itself. Now, let’s calculate this mutual energy flow with an 

example. The emission from point 𝒂𝒂 is a retarded wave, spreading in all directions. We represent 

it with red dashed arrows. Dashed lines indicate that this wave is reactive power. The green line 

represents the mutual energy flow, which is the particle from 𝒂𝒂 to 𝒃𝒃. 

 

 
Figure 1: Red dashed lines represent retarded waves emitted from point 𝒂𝒂, blue dashed lines are 

advanced waves emitted from point 𝒃𝒃, both are reactive power waves. Green represents mutual 

energy flow. Mutual energy flow points from 𝒂𝒂 to 𝒃𝒃.  

  

We consider the interference reinforcement of retarded waves and advanced waves on the line 

connecting 𝒂𝒂 and 𝒃𝒃. In this way, retarded waves and advanced waves become plane waves on the 

connecting line. So, we assume, 
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We consider the interference reinforcement of retarded waves and advanced waves on the line 

connecting 𝒂𝒂 and 𝒃𝒃. In this way, retarded waves and advanced waves become plane waves on the 

connecting line. So, we assume, 

indicates that Ψb and ∇Ψa have the same phase.

3.7 Example
From the figure 1, it can be seen that assuming the electron is emitted from point a and annihilated at point b. The green represents 
the energy flow (or mutual energy flow) of particles. The author considers this energy flow as the mutual energy flow Jab md defined in 
the previous section. This mutual energy flow is the particle itself. Now, let’s calculate this mutual energy flow with an example. The 
emission from point a is a retarded wave, spreading in all directions. We represent it with red dashed arrows. Dashed lines indicate 
that this wave is reactive power. The green line represents the mutual energy flow, which is the particle from a to b.

Figure 1: Red dashed lines represent retarded waves emitted from point a, blue dashed lines are advanced waves emitted from point 
b, both are reactive power waves. Green represents mutual energy flow. Mutual energy flow points from a to b. 

We consider the interference reinforcement of retarded waves and advanced waves on the line connecting a and b. In this way, 
retarded waves and advanced waves become plane waves on the connecting line. So, we assume,

Ψa is the retarded wave emitted from point z=a.
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d is a constant, can be arbitrarily chosen to ensure that ∇Ψa is synchronous with Ψb,

Assume,

This ensures that ∇Ψa is synchronous with Ψb. The ∇Ψa obtained by the above formula is consistent with that obtained by taking the 
gradient from formula (95). Considering (95, 108, 101, 112),

Jab md is the mutual energy flow after the author considers a similar correction to the magnetic field. The direction of Jab md is in the 
direction of ẑ, and it is real. In this way, J ab md is the energy flow of the particle,

    takes the real part. It indicates that Jab md has active power. Jab md transmits positive energy. The direction of energy transmission is 
z. This indicates that Jab md, this mutual energy flow, is the particle itself.
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Figure 3: Wave propagating from point 𝑎𝑎 to point 𝑏𝑏. The wave travels to the right. 
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In other words, the quantity corresponding to the magnetic field, ∇Ψ� changes sign at 𝑧𝑧 � 𝑎𝑎, and 

∇Ψ� changes sign at 𝑧𝑧 � 𝑏𝑏. The sign change results in cancellation of the quantities that were 

originally added together. Therefore, within the range 𝑎𝑎 � 𝑧𝑧 � 𝑏𝑏 , the mutual energy flow 

undergoes interference reinforcement. Fortunately, outside this range, interference cancellation 

occurs. Therefore, 
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 (119) 

 

This formula tells us that the mutual energy flow 𝑱𝑱��  �� is generated at the source and annihilated 

at the sink. The quantum mechanics formula for mutual energy flow (80) can be rewritten as, 
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Figure 3: Wave propagating from point a to point b. The wave travels to the right.

In other words, the quantity corresponding to the magnetic field, ∇Ψa changes sign at z=a, and ∇Ψb changes sign at z=b. The sign 
change results in cancellation of the quantities that were originally added together. Therefore, within the range a≤z≤b, the mutual 
energy flow undergoes interference reinforcement. Fortunately, outside this range, interference cancellation occurs. Therefore,
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3.9 Comparison between the Author’s Theory and the Copenhagen Interpretation
3.9.1 First Scenario
The first scenario is the quantum mechanics interpretation of the Copenhagen school. The wave of the Schrodinger equation 
propagates in all directions from the source. Then, when measuring at the sink, it means the wave collapses to the sink.

Figure 4: Copenhagen interpretation: the wave travels in all directions, then collapses to the position of the absorber.

Figure 5: Author’s proposal in 2017: self-energy flows collapse in reverse, and mutual energy flow transfers energy. Mutual energy 
flow is in green.

The original Schrodinger equation only defined self-energy flow,

This energy flow Jself moves from the source in all directions. Therefore, when we receive a particle at a certain point, we have to say 
that the wave collapsed onto the absorbing atom. See Figure 4.

3.9.2 Second Scenario

��Ψ�, 𝑆𝑆����� is the input energy of the quantum mechanical system (transferring energy from one 

atom to space). �𝑆𝑆�,Ψ���� is the output energy of the quantum mechanical system (transferring 

energy from space to the receiving atom). And ∯ 𝑱𝑱��  �� ⋅ 𝑛𝑛���𝑑𝑑𝑑��  is the energy transferred by 

photons. Since ∯ 𝑱𝑱��  �� ⋅ 𝑛𝑛���𝑑𝑑𝑑��  does not have the dimension of energy, we can also express 

the energy transferred by photons as ℏ∯ 𝑱𝑱��  �� ⋅ 𝑛𝑛���𝑑𝑑𝑑�� . In this way, the energy transferred by 

photons is entirely due to the transfer of mutual energy flow. 
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This scenario mainly comes from the author’s previous paper [15]. The author believes that self-

energy flow collapses in reverse, as shown in 5. Thus, self-energy flow does not transfer energy. 

At this point, retarded waves emitted from the source and advanced waves emitted from the sink 
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phase. Corresponding to electromagnetic field theory, this essentially requires 𝑬𝑬� and 𝑬𝑬� to have 

the same phase. Since the current 𝐼𝐼� can have the same phase as 𝑬𝑬�, but 𝑬𝑬� cannot have the same 

phase as 𝐼𝐼�, 𝑬𝑬� cannot have the same phase as 𝑬𝑬�. Therefore, this kind of synchronization is 

problematic. However, this synchronization is still correct in numerical calculations of energy flow. 
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This scenario mainly comes from the author’s previous paper [15]. The author believes that self-energy flow collapses in reverse, 
as shown in Figure 5. Thus, self-energy flow does not transfer energy. At this point, retarded waves emitted from the source and 
advanced waves emitted from the sink are synchronized. Note that this synchronization implies that Ψa and Ψb have exactly the 
same phase. Corresponding to electromagnetic field theory, this essentially requires Ea and Eb to have the same phase. Since the 
current Ib can have the same phase as Eb, but Eb cannot have the same phase as Ib, Eb cannot have the same phase as Ea. Therefore, 
this kind of synchronization is problematic. However, this synchronization is still correct in numerical calculations of energy flow. 
In this case, there is self-energy flow,

The above two equations represent self-energy flow, which must collapse in reverse, as shown in Figure 5. Here is the mutual energy 
flow Jab,

Mutual energy flow Jab transfers energy. Mutual energy flow Jab can be regarded as the particle itself. This scenario is an improvement 
over the first scenario. Collapse is replaced by reverse collapse. The mutual energy flow can be seen as the particle itself.

3.9.3 Third Scenario
The third scenario is shown in Figure 6. This scenario corresponds to a correction to the magnetic field, making self-energy flow 
reactive power. Waves of reactive power are represented by dashed lines. Such waves do not carry energy. These waves alternately 
transmit energy forward and backward within one period. On average, they do not transmit energy. In electromagnetic field theory, 
this scenario is discussed in references [29, 30, 23, 24, 25, 26, 27, 28]. This paper generalizes these viewpoints to the quantum theory 
corresponding to the Schrodinger equation. Corrections have been made to mutual energy flow in quantum theory.

Figure 6: Scenario proposed by the author since 2022: retarded and advanced waves are both reactive power waves, represented by 
dashed lines, and mutual energy flow transfers energy. Mutual energy flow is in green.

For the energy flow defined above,

This energy flow 𝑱𝑱���� moves from the source in all directions. Therefore, when we receive a 

particle at a certain point, we have to say that the wave collapsed onto the absorbing atom. See 

Figure 4. 
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The one transmitting energy is the mutual energy flow Jab md. The magnitude of the mutual energy flow obtained in the third 
scenario is consistent with that in the second scenario. It’s just that in the second scenario, synchronization is between Ψa and Ψb. 
In electromagnetic field theory, we have already proven that this kind of synchronization is unrealistic. The synchronization in the 
third scenario is,

This kind of synchronization can be achieved in electromagnetic field theory. Therefore, when calculating mutual energy flow, the 
second scenario can be adopted. The third scenario is telling everyone that there is no wave collapse in real particle situations. The 
collapse of the wave is entirely due to the fact that the calculated wave has active power. In fact, these waves are all reactive power. 
This has been verified in electromagnetic theory [15, 31, 17, 23- 30]. Moreover, synchronization also needs to borrow conclusions 
from electromagnetic theory.

The third scenario comprehensively and effectively interprets the wave-particle duality problem in quantum mechanics. Waves have 
reactive power, so there is no need for collapse. Particles are mutual energy flows, which are composed of retarded and advanced 
waves. Since retarded waves can act as waveguides for advanced waves, and advanced waves can act as waveguides for retarded 
waves, the waves only interfere and strengthen along the line from a to b, while interfering weakly in other directions. Therefore, 
retarded and advanced waves almost become plane waves, which is light ray. Inside the light ray, light is almost a plane wave.

4. Extension of the Concept of Mutual Energy Flow to Path Integrals
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Now we can perform path integrals. The concept of path integrals can be found in textbooks on 

quantum mechanics or quantum field theory, and we won’t go into details here. The key point is 

that this path integral is, in fact, the mutual energy flow defined by the author. It is essential to 

note that the middle part in Equation (134) and its right side are completely equivalent. The middle 

part is the expression of mutual energy flow, and the right side is the path integral. 

 

This implies that path integrals are nothing else but mutual energy flow. The author believes that 

mutual energy flow is the particle. Thus, the path integral in quantum mechanics is, in essence, the 

particle itself. This is also the reason why Feynman’s path integral is so effective in quantum 

mechanics. The path integral is the representation of the particle’s energy flow, completely 

equivalent to mutual energy flow. Mutual energy flow is the particle itself. 

 

When the author mentions mutual energy flow, the advanced wave, retarded wave, and their 

combination are discussed as contributors to mutual energy flow. However, in Feynman’s path 

integral, the advanced wave is not explicitly mentioned. Feynman and his mentor Wheeler 

proposed the absorber theory[3, 4], which explicitly introduced the concept of advanced waves. 

The path integral theory also emerged around the same time as the absorber theory. Due to 

criticism of the causality violation inherent in the theory of advanced waves, Feynman had to 

heavily emphasize probabilities in his path integral theory to gain acceptance. However, in his path 

integral theory, Feynman introduced the famous Feynman propagator which is a propagator that 

is half retarded and half advanced [32]. 

 

In Feynman’s path integral theory, he mentions Huygens’ principle, stating that the idea of the 

path integral was inspired by Huygens’ principle [32]. However, he did not derive the path integral 

from Huygens’ principle. The author’s proposed mutual energy flow and the mutual energy flow 

principle have always been closely associated with Huygens’ principle[33-34, 17]. This way, the 

author has tightly linked path integrals with Huygens’ principle and mutual energy flow. 
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Now we can perform path integrals. The concept of path 
integrals can be found in textbooks on quantum mechanics or 
quantum field theory, and we won’t go into details here. The key 
point is that this path integral is, in fact, the mutual energy flow 
defined by the author. It is essential to note that the middle part 
in Equation (134) and its right side are completely equivalent. 
The middle part is the expression of mutual energy flow, and the 
right side is the path integral.

This implies that path integrals are nothing else but mutual energy 
flow. The author believes that mutual energy flow is the particle. 
Thus, the path integral in quantum mechanics is, in essence, 
the particle itself. This is also the reason why Feynman’s path 
integral is so effective in quantum mechanics. The path integral 
is the representation of the particle’s energy flow, completely 
equivalent to mutual energy flow. Mutual energy flow is the 
particle itself.

When the author mentions mutual energy flow, the advanced 
wave, retarded wave, and their combination are discussed as 
contributors to mutual energy flow. However, in Feynman’s 
path integral, the advanced wave is not explicitly mentioned. 
Feynman and his mentor Wheeler proposed the absorber 
theory[3, 4], which explicitly introduced the concept of advanced 
waves. The path integral theory also emerged around the same 
time as the absorber theory. Due to criticism of the causality 
violation inherent in the theory of advanced waves, Feynman 
had to heavily emphasize probabilities in his path integral 
theory to gain acceptance. However, in his path integral theory, 
Feynman introduced the famous Feynman propagator which is a 
propagator that is half retarded and half advanced [32].

In Feynman’s path integral theory, he mentions Huygens’ 
principle, stating that the idea of the path integral was inspired 
by Huygens’ principle [32]. However, he did not derive the 
path integral from Huygens’ principle. The author’s proposed 
mutual energy flow and the mutual energy flow principle have 
always been closely associated with Huygens’ principle[33-34, 
17]. This way, the author has tightly linked path integrals with 
Huygens’ principle and mutual energy flow.

5. Conclusion
The wave-particle duality is a result of the incorrect understanding 
of waves in classical electromagnetism and quantum theory. 
This misconception arises from classical electromagnetism, 
where waves have active power, and quantum mechanics, 
which borrows from classical electromagnetism, also considers 
waves with active power. Since waves have active power, they 
can transmit energy, but particles can also transmit energy. 
Thus, there are two entities capable of transmitting energy: 
(1) waves and (2) particles. This duality is the root cause of 
wave-particle duality. In 2017, the author proposed the reverse 
collapse of electromagnetic waves and that waves do not 
transmit energy. Consequently, only particles remain capable 
of transmitting energy. The author believes that particles are 
mutual energy flows. Recently (after 2022), the author found 
that electromagnetic waves have reactive power, and energy 
transfer is facilitated by mutual energy flow. Mutual energy flow 

is identified as photons. Photons are mutual energy flows. In this 
paper, the author applies this idea to particles, such as electrons. 
Electrons satisfy the Schrodinger equation or the Dirac equation. 
In the Schrodinger equation, the author identifies quantities 
corresponding to the electric field and magnetic field, and a 
correction is applied to the quantity corresponding to the magnetic 
field. After this correction, the self-energy flow corresponding to 
the Schrodinger equation becomes reactive power. The mutual 
energy flow corresponding to the Schrodinger equation can still 
have active power.

This renders the concept of wave collapse unnecessary. Instead, 
waves are considered to have reactive power. Particles are 
mutual energy flows, with the mutual energy flow of photons 
satisfying Maxwell’s equations (with appropriate corrections 
to the magnetic field), and the mutual energy flow of electrons 
satisfying the Schrodinger equation (with appropriate corrections 
to the corresponding magnetic field quantity). Mutual energy 
flow involves point-to-point energy transfer. The phase of the 
quantity corresponding to the magnetic field in mutual energy 
flow needs correction. The author believes that the ideas 
presented in this paper are applicable to the Dirac equation as 
well, making them relevant to quantum field theory.
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