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Abstract
In this paper we propose a shot percentage distribution strategy among the players of a basketball team to maximize the 
score that can be achieved by them. The approach is based on the concepts of game theory that are related to network flow. 
The paper starts with drawing similarity between network flow problem and passing sequence in basketball. The concept of 
Price of anarchy was applied in the basketball. Different strategies that can be used by teams are evaluated and compared 
with the proposed strategy that consider the players shooting behavior as the game progresses. The work also looks at 
the interaction of different participating players and how their collective behavior can be used to achieve an optimum 
performance. The paper explains that giving the ball to the best player of the team to take a shot might not be the best strategy 
to maximize the team’s overall score.
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1. Introduction
Basketball is a popular sport played by two teams with five 
players each. The team roster can have a maximum of twelve 
players with unlimited substitution allowed. The end goal is 
to score more points than the other team by throwing the ball 
through a hoop mounted on a ten foot high backboard at both 
ends of the court. 

Among the two teams, at any given moment the ball is with one 
team hence they are on offense and the other team is on defense. 
The ball is moved between players of the attacking team, a 
single instance of ball movement is called a pass. At the end 
of this complex movement of ball, a player takes an attempt to 
shoot a basket. We can see this movement of ball as a network 
flow problem as we will see in the next section.

Network traffic flow is a well researched domain and game theory 
is one of the tools that can be used to optimize the network. In 
subsequent sections we will draw similarities between network 
flow problem and basketball, go through the key game theory 
concepts, and understand the mathematics behind the optimizing 

process. The paper will conclude with results, limitations and 
future scope of this work.

1 Literature Review
1.1 Network Flow Problem
There are many interesting optimization problems in the domain 
of transportation, fluids and several other domains that can 
be viewed as a network flow problem. The general theory of 
networks tries to solve these problems in many diverse contexts 
using mathematical tools like but not limited to combinatorics 
and linear algebra.

Every network requires two entities: nodes and edges (also 
called arcs, link). The edges of a network can be unidirectional 
or bidirectional. Sometimes there can be a value associated to an 
edge that can be called its “capacity”. A network is often showed 
pictorially as in Figure 1. The goal of network flow problem 
is to find some set of values for capacities that satisfies certain 
constraints. The most basic example being incoming flow is 
equal to outgoing flow from every node.
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1.2 Game Theory on Networks
Game theory is a branch of mathematics that helps in 
understanding how individuals, groups, organization or countries 
interact with each other in a system where the decision taken by 
one entity can impact the choices available to the other entities 
in that system. Generally, the participating entities are called 
“players” in game theory, we will be using them interchangeably. 
Every option the entity of network chooses results in an outcome 
or reward which is called “payoffs”.

Game theory can be applied to understand a system of network 
where multiple entities are competing or cooperating to optimize 
the flow of information or resources through the network. “Price 
of Anarchy” is a concept in game theory that calculates the 
degradation of network due to selfish behavior of a player who 
seek of optimize their payoff without taking into consideration 

the global collective optimum. Game theory provides a 
very powerful and effective framework to understand the 
dependencies between the entities in the network, identify the 
equilibrium and to design solutions to incentivize cooperative 
behavior between players of the system. 

Price of Anarchy in traffic flow network – Braess Paradox
In traffic network flow, price of anarchy  can be clearly visualized 
often termed as “Braess Paradox”. The following example is 
taken from the work of [1]. 

Consider a simple network with two nodes A and B (represents 
cities here). There are two edges between them, edge 1 is a 
highway and edge 2 is a small sub lane along the highway. The 
network can be represented pictorially as shown in Figure 2.

 
Figure 2. Two nodes A and B connected by two edges termed as Highway 

and sub lane 
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B using highway is a constant 10 units. If using sub lane, then the time linear-

ly depends on the number of cars present in the sub lane i.e., if there is just 1 

car then 1 minute, if there are 3 cars then 3 minutes and so on. The equilibri-
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duration point of view there is no incentive in using the highways. This equi-
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It can be proved mathematically that the best course of action would be that 5 
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Assuming that there are 10 cars, the time it takes to go from 
point A to point B using highway is a constant 10 units. If using 
sub lane, then the time linearly depends on the number of cars 
present in the sub lane i.e., if there is just 1 car then 1 minute, 
if there are 3 cars then 3 minutes and so on. The equilibrium of 
system can be achieved when every car takes the sub lane, as 
from a duration point of view there is no incentive in using the 
highways. This equilibrium is called “Nash Equilibrium” where 
every player (i.e., car) is acting selfishly without thinking about 
the entire system consisting of other players. It can be proved 
mathematically that the best course of action would be that 5 
cars take the highway and other 5 cars take the sub lane. The 
complete mathematical solution can be found in the work. 

The difference between the overall system payoff in Nash 
equilibrium and the payoff when everyone is acting towards the 
optimum of entire system is called “Price of Anarchy”.

1.3 Similarity between basketball and network flow
Basketball if viewed from a distance is a network flow problem. 
Each player is a node, every pass is a possible edge (or arc) 
between the players. If a player takes the final shot, then the 
basket mounted on the backboard is a sink (or end node). There 
are infinite options of sequences which a team can opt for in 
an offensive position. The number would be much huge if we 
consider the defensive actions that is taken by the opposition. 
In this scope of this work, we will only consider the offensive 
action in the game of basketball. In a network form, a generic 
gameplay in basketball can be represented as shown in figure 
3 Every directional edge from a node to another is a pass 
completed. 

If we try to draw similarity between the traffic network and 
basketball then every passing sequence starts with a player 
let say node A, there are some intermediate nodes and edges 
between them. Finally, a player takes the shot to score a basket, 
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basket is like node B in traffic network discussed in the section 
above. 
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It might feel like the best possible passing sequence would be the 
one that gives the highest possible chance of success. It might 
be a sequence where the player with the best shooting accuracy 
takes the final shot, but we will show later that such choice of 
passing sequence is equivalent to “Nash equilibrium” or selfish 
and it doesn’t guarantee the best efficiency from a team point of 
view.

1.4 Previous Research
There is very limited research done in the field of optimizing 
gameplay in basketball [2]. Most of the research is performed 
to find the best sequence of passing or to find the trajectory 
of shooting to maximize total points without considering the 
changes in players shooting capability once the game starts. 
Moreover, nearly all the work focuses on using machine learning  
that tries to achieve the result that is close to Nash equilibrium 
which might not be the most optimal result in the real world 
scenario [3]. There are very few research pieces when it comes 
to using game theory to optimize the performance of the team.

Work done by Brian talks about using game theory to optimize 
team’s performance in basketball. This research work perfectly 
explains the use of game theory and explains how game theory 
can be used to achieve the true global optimum for a basketball 
team. 

1.5 Research Gaps
As discussed in the previous section, most of the research 
around optimizing team’s performance is in machine learning 
domain. The only drawback about the work is that it just talks 
about how it’s not always a good option to pass the ball to the 
player with best shooting accuracy in a game. The paper talks 
about shooting behavior of just one player with all other players 
from the team having a constant shooting behavior. The research 
broadly focuses on single player in a multi player system.

There is a need to explore domains like game theory to optimize 
team performance in basketball. There is a need to extend 
the work of Skinner, B. to a multi-player system where every 
player has an independent shooting behavior. It is important 
to understand how different players with different shooting 
behaviors can collaborate in a team to maximize the team’s 
utility, to understand different strategies and to compare the 
payoffs each of those strategies can deliver. This paper will try 
to cover all these gaps discussed above.

2 Methodology
2.1 Terminologies
Before diving into the details, it is important to understand the 
terminologies that will be used in this work. Most of these are 
basketball terminologies that will be used in the later sections. 
There are few terms that are not generally used in basketball but 
are required to understand the later sections.

• Free throw attempts (FTA): When a player gets an opportunity 
to score from a free throw line without any interference from the 
opposition. These are awarded because of foul committed by an 
opposition player.
• Field goal attempts (FGA): It refers to any attempt taken to try 
to score points by shooting basketball in the opponent’s basket. 
Field goal can be attempted from various distances, and they are 
the fundamental way to score points in the game.
• Points score (PS): This is the total points scored by a player or 
the team. In this paper it will always be the points scored by a 
player unless stated otherwise.
• Total shots (TS): This is the summation of FTA and FGA of a 
player.
• True Shooting percentage (TS%): This is an advanced statistics 
and it best thought of as a field goal percentage adjusted for 
free throws and field goal shots see [4]. TS% is defined by the 
formula given in equation 1.
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These are all the technical terms that will be used in the later 
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Calculating the player’s shooting behavior is a very difficult 
task and it is impacted by a lot of factors. First and foremost, 
the defensive action per-formed by the opposing team plays a 
significant factor in deciding a player’s shooting behavior. It 
can also be impacted by factors that are beyond the scope of 
game. In the book author Dean Oliver envisioned that there is an 
inverse relationship between TS% and FTS of a player [5]. This 
relationship between TS% and FTS remains a highly theoretical 
concept but this inverse relationship is the closest imitation to 
the real world scenario.

Using the TS% and FTS calculated earlier, we find a linear 
function that inversely relates the two factors for every player 
of Washington Wizards. The linear relationship between TS% 
and FTS for one of the player Bradley Beal is shown in figure 4.

2.4 Optimizing Function and Constraints
Let us assume a player A takes x percent of total team shots, 
using the behavior model created in the above section we can 
find the actual TS% for a given percentage of shots as shown in 
equation 3 (it is very much like sub lane, one of the paths in the 
traffic network example discussed in section 2.2). 
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With the calculated TS% for x% shots, we can find the actual 
shot % that would result in a score when a player takes x% of 
team shots. This value will be called utility. The sum of utility 
contributed by all five players of the team will be the team payoff. 

We can define the TS% of a player as a function of percentage of 
shots taken (i.e. fplayer A(x) ). To calculate the utility for playerA 
we can use equation (3):

In a team of five players, with each having their own shooting behavior we can create the objective function F that is to be maximized 
as

In the equation 5, F is the objective function that we want to 
maximize, xi is the percent of team shots playeri takes in a game, 
and fi is the shooting behavior function that we had calculated 
earlier. There are some constraints over the variables used in the 

objective function that is to be considered. The sum of shot % 
taken by every player should be equal to 1 (equation 6). The 
shot % of any player should not exceed 40% of overall team 
shots in a game (equation 7). This value was determined by past 
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behavior observed across teams in different seasons. The utility 
contributed by each player should never be negative (equation 
8).

7). This value was determined by past behavior observed across teams in dif-

ferent seasons. The utility contributed by each player should never be negative 

(equation 8). 

 

                  (6) 

             (7) 

            (8) 

 

We can maximize the objective function by staying in the bounds of con-

straint. The value of the objective function is what the team can achieve by 

taking into consideration the player‟s shooting behavior. 
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We can maximize the objective function by staying in the bounds 
of con-straint. The value of the objective function is what the 
team can achieve by taking into consideration the player’s 
shooting behavior.

3. Results
We ran the simulation model for every combination of five 
players who are part of the team and have played at least a 
defined number of games [6]. There were two groups created 
for the players. Group 1 had players who started at least 30 
games (regular starters) and group 2 had all the players, which 
were, part of the team roster and have played (different from 
starting the game) a certain number of games. For each of those 
groups we evaluated four different scenarios in which a team 
can operate.

We looked at four scenarios to compare the payoff a team (group 
of five players) can get. The most obvious scenario, where the 
player with the best shooting ability (the player with highest 
intercept value) takes the shot for most of the times. Then 
we moved to scenario where every player tries to contribute 
an equal utility value to the final objective function, we also 
looked at scenario where every team member is taking an equal 
percentage of shots i.e. 20% of total team shots each. Finally, we 
concluded with the proposed model we defined above, which 

considers the constraints, and shooting behavior model which 
we had calculated earlier.

a Group of Regular Starters
There were only 7 players who started more than 30 games, 
an observation which aligns with what we have seen in earlier 
season. On evaluating the result for all four different scenarios 
in which a team can operate for every combination of 5 players. 
Our proposed strategy model was better by 2% than the second 
best approach. The second best approach being that the player 
with best intercept value takes the most percentage of shots 
which is not a very ideal scenario in the real world but can be 
stated as the best case scenario. The proposed strategy model 
was better by 9% than the strategy where every player takes an 
equal percentage of shots which is much closer to real world 
scenario. The comparison of different strategies can be seen in 
figure 5.

b. Group of all Players on the Team Roster
There are a total of 14 players which were present on the team 
roster which satisfied our initial filtering of players based on 
various factors like minutes played and have played at least 10 
games (not necessarily started the games). There were a total of 
2002 different combination of players.

 
Figure 5. Payoffs for different strategies for the group of regular starters. The 

proposed strategy which considers player‟s shooting behavior is shown in red. 

The utility value for proposed model is 0.678 

 
Figure 6. Payoffs for different strategies for the group of all the players in the 

roster. The utility value for proposed model in this case is 0.717 (shown in 

red) 

Figure 5: Payoffs for different strategies for the group of regular starters. The proposed strategy which considers player’s shooting 
behavior is shown in red. The utility value for proposed model is 0.678
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Our proposed model was better by 4% than the second best 
approach where the best player takes the most percentage of team 
shots. The result was much more prominent when it comes to 
scenarios that imitate the real world situation. Our strategy was 
12% better than the strategy where every player takes an equal 
percentage of shots. The comparison of different strategies and 
our proposed strategy is shown in figure 6. The result obtained 
for this group was much more prominent.

4. Conclusion
In the first part we looked at the existing research that has been 
done in the area. We looked at the potential avenues and gaps 
in the work which has been done at the intersection of sports 
and game theory. The second part of the work looked at the 
methodology of the work starting with introducing the concepts 
that would be required to understand the work, then we deep 
dived into the data that has been used in the work. Later, we 
put our focus on modelling the player’s shooting behavior 
using terms derived from player stats using linear regression 
and we derived the optimization function and walked through 
the constraints applied over the function. In the final section we 
looked the result and compared proposed strategy with other 
different strategies.

There are a lot of external factors that affects the performance of 
the team in basketball. This work doesn’t take into consideration 
the defensive action that the opposition takes against the team 
with the ball. Defensive action is surely an important factor that 
affects the performance of the team. We only looked at the final 
arc of a passing sequence i.e. when the player takes a final shot 

that may or may not result in the increase of the score.

This paper provides the foundation and introduces optimization 
techniques for applying game theory concepts to basketball. 
We showed similarity between network flow and basketball, 
hence extending the concept of “Price of anarchy” to the game 
of basketball to find optimum distribution of shot percentage 
among the players of the team to maximize the points in a game 
of basketball. Sports is in general a domain where there is a lot 
of external influence, this makes analysis of sports very difficult. 
This paper provides a new perspective to improve the performance 
of basketball teams by finding the optimum distribution of shot 
attempts in the team to maximize points scored, a small step 
towards a more accurate quantitative analysis.
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