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Abstract
Wear rate prediction is most important in industrial applications. Machine learning (ML) has made an admirable 
contribution to the field of tribology. Standard ML models are extremely dependent on the parameter values; hence, 
tuning plays a crucial role in enhancing predictive performance. ML models largely work empirically, based on the 
data availability and application domain, the parameter tuning process effectively attains the desired accuracy of 
the models. The main aim of this study is to develop optimized ML models which render better accuracy than the 
previous study by using a grid search hyperparameter optimization technique. Five ML models namely Random 
Forest (RF), Support Vector Machine (SVM), K- Nearest Neighbor (KNN), Gaussian Process Regression (GPR), and 
Linear Regression (LR) are designed by tuning the parameters which lead to the optimization of models concerning 
the prediction accuracy.
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Introduction
Peter H. Jost coined the name "tribology" in 1966, and since then, 
the field has grown to encompass many other scientific disciplines. 
The field of tribology, which studies the interactions between sur-
faces, has recently grown into various new subfields, such as bio-
mimetic tribology, nanotribology, and bio-tribology [1]. Despite 
the many attempts to develop principles on friction and wear, 
tribology is still an empirical study because of the complicated 
nature of friction and wear. Despite this, tribological studies had 
collected a wealth of information about the wear, friction, and sur-
face property of a wide range of materials, opening the door to 
the data-driven study. As the processing power of computers has 
increased, new data-driven analytical methods have emerged that 
can provide novel insights. 

Analysts are turning to artificial intelligence (AI) and ML methods 
of "Big Data" analytics to discover new connections in data-driven 
sectors. Triboinformatics is a relatively recent area of tribology 
made possible by the use of data-driven methods [2].

In most cases, the constituent known as carbon is responsible for 

modifying steel's properties [3-5]. Increases in the percentage of 
carbon in steel lead to improvements in both the material's tensile 
strength and its hardness [6-8]. Hypereutectoid steels have attract-
ed much interest from different areas of engineering, especially the 
railway sector, because of how well they perform in terms of wear 
resistance and mechanical properties [9-10]. Using a grid search, 
determined the best settings for ML models used in tribo-infor-
matics [11]. Applied the Bayesian hyperparameter optimization 
technique for the enhancement of tool wear rate prediction [12]. 
Hyperparameters for serval control were optimized by Hao et al. 
using Random Search [13]. Numerous research has attempted to 
predict wear performance using various machine learning (ML) 
methods however, their performance is dependent on hyperparam-
eters. In our previous work we used various ML algorithms with 
default argument values to predict the wear behavior of hypereu-
tectoid steel [14-21].  In this article, we have focused on the im-
provement of those ML models’ performances using the concept 
of hyperparameter tuning. Grid search is used as an optimization 
technique for hyperparameter tuning to find the efficient combina-
tion of parameter values for the ML models. 
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Materials and Methods
Dataset
Collecting relevant data is an important first step in creating a 
powerful data-driven ML algorithm. Training the ML algorithms 
on a sizable, relevant dataset yields better predicting accuracy. Tri-
bological experimentation is a time-consuming and resource-in-
tensive endeavor necessary for ML analysis. Considering this is-
sue, we have collected an effective dataset of the wear behavior of 
hypereutectoid steel by conducting experiments using the pin-on-
disc wear testing machine.  This dataset is composed of input fea-
tures, namely sliding speed, normal pressure, and sliding distance 
followed by wear rate as an output parameter.  

Data Pre-Processing
Here, we have made use of Spyder, an open-source integrated de-
velopment environment for programming in Python (version 3.7) 
including its software packages and frameworks for analyzing ML 
algorithm performance. Several crucial data processing stages were 
completed before ML model installation, including data cleaning, 
data separation as the training and testing sets, the transformation 
of data, and data standardization. The dataset is split into ten-fold 
cross-validation to evaluate the efficiency of ML models.

Machine Learning Models
The purpose of regression analysis in supervised machine learning 
is to quantify the relationship that exists between the input param-
eters and the output parameters. In the course of this study, the 
below-mentioned ML algorithms were put into action for the pre-
diction of tribological behavior based on input and output factors 
by utilizing the tribological data of hyper eutectoid steel.

Linear Regression
The linear relationship between the variables is one of the most 
significant and widespread regression approaches used to predict 
the result of a dependent variable based on the independent vari-
ables [22].

Random Forest
The RF method, which is essentially a collection of random deci-
sion trees, is far less dependent on the initial set of inputs than the 
decision tree. This is achieved because of randomly selected sub-
set features used for training the model, reducing the covariance 
between the trees. In context to the regression, the average of pre-
dictions is considered and hence the generalized predictive model 
is produced which reduces the notorious overfitting tendency [23].

Support Vector Machine
SVM regression uses trial and error to determine the hyperplane 
that has the biggest margin and is the region where the majority of 
data points fall [24].

K-Nearest Neighbor
Non-parametric KNN regression provides an estimate of the re-
lationship between independent variables and the continuous out-
come based on an intuitive average of data from neighboring lo-
cations [25].

Gaussian Process Regression
In the field of machine learning, the nonparametric, Bayesian re-
gression method known as Gaussian process regression (GPR) is 
ruffling feathers. GPR has several advantages, including the ability 
to cope with smaller datasets and can provide confidence estimates 
for predictions [26].  We have already provided in-depth discus-
sions for the above ML models in our previous work [15].

Parameter Optimization of ML Models
Through optimization, the developed machine learning regression 
models' potential for accurate prediction may be raised to its high-
est level. We examined many ML models and used grid search in 
combination with ten-fold cross-validation to ascertain the param-
eters that would lead to the highest level of performance. These 
optimization strategies may be added to the already established 
ML models. These methods include repeatedly running ML mod-
els with varying parameter settings, to determine which combina-
tions of settings produce the best results and then recommending 
those parameter values. The performance of the learning process 
as well as the accuracy of predictions can be directly influenced by 
hyperparameters, which are necessary parameters of the machine 
learning algorithm [27-28]. There is no "magic" combination of 
hyperparameters that, when applied to every dataset, will produce 
the best possible results. Before applying ML models, the records 
of the dataset were shuffled [29-30]. This method helped in getting 
good prediction accuracy because the ML models select (split) the 
test set randomly. Hence the shuffled dataset made the ML models 
learn better with a variety of data available.

At the stage of developing ML models, an optimization technique 
called grid search is used to select the effective combination of 
hyperparameters that gives the best performance metrics of wear 
rate prediction [31-32]. Table 1 maintains a record of the parame-
ters that have been determined to be effective for a variety of ML 
regression models.
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Table 1: Optimized parameters

Model name Selected parameters
SVM C=5, gamma=0.22, kernel='rbf', epsilon=0.05
GPR random_state=29
RF n_estimators=100, max_features=3, max_depth=5
LR fit_intercept=True, normalize=True
KNN n_neighbors=3

Results and Discussion
The In this section, to analyze the regression performance, MAE, 
RMSE, and R2 evaluative matrices were used. In regressor, MAE 
is a loss function that takes into account both positive and negative 
deviations from the real and predicted values when calculating a 
loss. The MSE metric evaluates how well a fitted line represents 
the data points. It is the difference that is squared between the val-
ues that are predicted by a model and the values that are observed. 

In our earlier work we trained three ML models, namely SVM, 
GPR, and RF, to predict the wear behavior of hypereutectoid steel 
using the default parameter values or without passing any explicit 
values to the arguments [21]. From Table 2, it is seen that random 
forest showed the best results in training and test datasets with 
95.4% and 94% accuracy respectively. Even the MAE and RMSE 
are also lower for the random forests as well.

Table 2: The efficiency of the algorithms without tuning the hyperparameters

R2- training R2-test MAE RMSE
SVM 0.895 0.832 0.307 0.454
GPR 0.907 0.845 0.362 0.466
RF 0.954 0.940 0.237 0.294

In this work, we have added two more ML models namely LR and 
KNN and the total of five comparative performance outcomes of 
different models with hyperparameter tuning are shown in Table 3.

To enhance the effectiveness of ML models, we have been work-
ing on optimization strategies including grid search and ten-fold 
cross-validation. Table 3 illustrates the level of accuracy achieved 
by the improved machine learning regression models when used 
to predict wear rate. The values of MSE, RMSE, and MAE were 

much lower than expected for each of the five standalone ML mod-
els, contributing to an R2 value that ranged between 0.80 and 0.98. 
When it came to the prediction of wear rate, the ML models per-
formed "satisfactorily" according to the statistics. Among the mod-
els, the RF outperformed others with R2 = 0.98, MAE=0.16, and 
RMSE=0.22 with a remarkable degree of concordance between 
the observed and anticipated rates of wear. With an R2 value of 
0.97, an MAE value of 0.11, and an RMSE value of 0.19, SVM 
has been the second-best prediction model execution for wear rate.

Table 3: The efficiency of the algorithms with tuning the hyperparameters

R2- training R2-test MAE RMSE
SVM 0.988 0.966 0.111 0.193
GPR 0.947 0.923 0.277 0.331
RF 0.980 0.979 0.163 0.220
LR 0.826 0.808 0.528 0.647
KNN 0.923 0.918 0.335 0.421

From looking at Tables 2 and 3, it is clear that there is a significant 
difference in the levels of performance achieved by the models 
before and after hyperparameter tuning. In this comparison, the 
accuracy of all models has increased with hyperparameter tuning.

Fig. 1 depicts the regression analysis graph for LR, KNN, GPR, 
SVM, and RF with the adopted optimization technique. In the 
graph, blue points represent the test data, and red colored dots rep-
resent the data used to train the corresponding ML model. The re-
gression line of training prediction is shown by the red dashed line, 
and its slope indicates how successfully the model was trained by 

making use of the training dataset. The ability of the model to 
make accurate predictions on the test dataset is represented by the 
dashed blue line. 

Based on the findings above, we can conclude that every model 
did a better job predicting the rate at which hypereutectoid steel 
would wear out. The method of normalizing and training the mod-
els using hyperparameter tuning allows us to obtain more accurate 
performance measurements for the models. SVM and RF models 
achieved the highest percentage accuracy by comparing the results 
without hyperparameter tuning.
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Figure 1: Regression analysis using SVM, GPR, RF, LR and KNN

Conclusions
Hyperparameter optimization aims to get maximum data perfor-
mance within an acceptable time period. This is crucial to a ma-
chine learning algorithm's ability to make reliable predictions. In 
this study, we have provided the findings of an evaluation that was 
conducted on many different ML algorithms to predict the wear 
rate of hypereutectoid steel.  The usefulness of the algorithms in 
predicting wear rate is evaluated, and they are contrasted with data 
obtained from earlier research. It would appear that almost all of 
the models reached the utmost feasible degree of accuracy once 
they were given access to a higher number of distinct machine 

learning matrices. The current ML models with hyperparameter 
tuning have at least 5% improved accuracy when compared to the 
results of our previously published ML models on the same data-
set and all ML models show a discernible decline in error levels. 
Hence, optimization strategies like hyperparameter tuning and 10-
fold cross-validation are applied to enhance the performance of 
the models.
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