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Abstract
The research focuses on the optimization of numerical solutions of neutral stochastic differential equations with time delay. 
Analyzing approaches such as Euler-Maruyama, backward Euler and θ-Euler-Maruyama methods, the goal is to investigate 
the characteristics of approximate solutions, especially stability and boundedness. This study contributes to the understanding 
of the complexity of stochastic processes, offering a perspective for further mathematical modeling and optimization. The 
study of the characteristics of approximate solutions includes a detailed analysis of their stability and limitations, providing 
insight into the system's behavior in dynamic conditions. This analysis lays the foundations for the improvement of numerical 
methods and more precise modeling of stochastic processes with a time delay. The aforementioned approaches, such as the 
Euler-Maruyama, backward Euler and θ-Euler-Maruyama methods, provide tools for understanding and solving complex 
mathematical challenges. Through an interdisciplinary approach, this study sheds light on the field of optimization of numerical 
solutions, encouraging further development of theoretical and practical aspects of stochastic differential equations.
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1. Introduction
The concept of stochastic processes was introduced at the 
beginning of the last century when the natural sciences of 
engineering and physics were engaged in the study of phenomena 
that change over time, while the theory of probability still had 
a developed methodology for training such phenomena. Thus, 
the above was an entry card for the development of stochastic 
processes within which random variables that are time-
dependent would be considered. As for the mathematicians 
who dealt with this problem, we highlight Sluckii, Wiener, 
Kolmogorov, Carmer, Doob and many others. The theory 
of stochastic processes contributed to the development of 
many other mathematical theories that are important for other 
sciences such as economics, mechanics, electrical engineering, 
engineering, medicine. Each of the scientists introduced the 
concept of stochastic process on different examples and studied 
it on different examples. We can single out that Kolomogorov, 
in the work [27] and [28], established the terms of conditional 
probability for the development of Markov-type stochastic 
processes with an infinite parameter set, while Cramer elaborated 
the theory on the Gaussian process [1].

2. Stochastic Processes
Stochastic processes represent a mathematical concept that 
describes the evolution of some random variable over time. This 
process includes elements of uncertainty or randomness, which 
distinguishes it from deterministic processes that are completely 

predictable. In the context of stochastic processes, "stochastic" 
means that the future behavior of the system is conditioned by 
random or random variables. Examples of stochastic processes 
include stock price movements, temperature fluctuations, or 
changes in financial markets.

Formally, a stochastic process can be defined as a set of random 
variables, usually indexed by time, that evolve according to 
certain probabilistic regularities. The analysis of stochastic 
processes plays a key role in many fields, including statistics, 
finance, engineering, control theory, and other scientific 
disciplines.

Definition 1: The family {x(t), t ∈ T } of random measurable 
functions x(ω, t) : (Ω, F) → (Rd, B) is called a stochastic process 
with phase space (Rd, B) and parameter set T , where B is the 
Borel σ-algebra over Rd.

On the basis of the previous definition, it can be concluded that 
for each fixed t T, a random variable, or -measurable function 
x(ω, t) : (Ω, ) (Rd, ) is obtained. For any fixed ω Ω , x(ω, t) 
Rd represents a function of the real argument t T , called the 
trajectory or realization corresponding to the outcome ω Ω. If 
T = N , i.e. if the time interval is discrete, then it is a stochastic 
sequence { x(ω, n),n ∈ N}.

A stochastic process determines a family of finite-dimensional 
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distribution functions
Ft1,...,tn (x1, . . . , xn) = P {x(t1) < x1, . . . , x(tn) < xn},
where xi ∈R,t_i∈T,i=1,2,…,n,n∈N.

It is required that this family meets the following conditions:
(symmetry properties)
Ft1,...,tn (x1, . . . , xn) = Fti1 ,...,tin (xi1 , . . . , xin ), where (i1, . 
. . , in) is an arbitrary permutation of numbers (1, . . . , n), n ∈ N,
(agreement property)
Ft1,...,tj,tj+1,...,tn (x1, . . . , xj, ∞, . . . , ∞) = Ft1,...,tj (x1, . . . , xj 
), for j < n. [2]

Theorem 1: (Kolmogorov's Theorem) For every family of 
finite-dimensional distribution functions that satisfies conditions 
(1) and (2) there is a probability space (Ω,F, P ) and a stochastic 
process x(t), t ∈ T defined on it corresponds to that family of 
finite-dimensional distribution functions.

Definition 2: Stochastic processes x(t), t T and x˜(t), t T , defined 
on the same probability space and with the same set of states, are 
stochastically equivalent if for arbitrary t ∈ T
P {ω ∈ Ω : x(ω, t) = x˜(ω, t)} = 1.

In that case, the process {x˜(t), t ∈ T } is said to be a stochastic 
modification (version) of the process {x(t), t ∈ T } and vice versa.

In the definition of a stochastic process, it is not emphasized 
what the set T is, and the problem arises when the behavior of a 
stochastic process needs to be observed on an uncountable set of 
parameters t. In order to eliminate this difficulty, the concept of 
separability is introduced.

Definition 3: The stochastic process {x(t), t ∈ T } is separable 
if there exists a countable set G ⊂ T and a fixed event Λ ⊂ Ω of 
probability zero, so that for an arbitrary closed set K ⊂ Rd and 
an arbitrary open interval I ⊂ T , sets
{ω : x(ω, t) ∈ K, t ∈ I} and {ω : x(ω, t) ∈ K, t ∈ I ∩ G}
differ on a subset of Λ. The set G is called a separant.

Theorem 2. (Doob) For every stochastically continuous 
stochastic process {x(t),t ∈ T } there exists a stochastically 
equivalent, separable and measurable stochastic process{x˜(t), t 
∈ T }, defined on the same probability space and with the same 
set of values.

The stochastic process {x˜(t), t ∈ T } from the previous theorem is 
called a separable and measurable modification of the stochastic 
process {x(t), t ∈ T }.

The stochastic process {x(t), t ∈ T } is continuous in the middle 
order p, i.e. Lp- continuous, at the point t ∈ T , if E|x(t)|p < ∞, 
for each t ∈ T and E|x(t + h) − x(t)|p → 0,h → 0. The stochastic 
process is Lp-continuous on the set S ⊆ T if (1.1.2) holds for 

every t ∈ S.

P {ω ∈ Ω : x(ω, t) has a break at [a, b]} = 0.

The examination of almost certain continuity is often performed 
by applying the Kolmogorov criterion, which is expressed by the 
following theorem.

Theorem 3: (Kolmogorov Criterion) Let p, q and k be positive 
constants such that for each T > 0 and 0 ≤ t, s ≤ T holds
E|x(t) − x(s)|p ≤ k|t − s|1+q [3].

Then the stochastic process {x(t), t ∈ T } almost certainly has 
continuous modification.

Definition 4: The stochastic process {x(t), t ∈ T } is of the 
second order (L2 − process) if E|x(t)|2 < ∞, for every t ∈ T .

Definition 5. The stochastic process {x(t), t ∈ T } is a Markov 
process if for arbitrary 0 ≤ t1 < . . . < tk and B ∈ Bd, P {x(tk) ∈ 
B | holds x(t1), . . . , x(tk−1)} = P {x(tk) ∈ B | x(tk−1)}, almost 
certain.

Interpreting the random variables x(t1), · · · , x(tn−2) as the 
past, x(tn−1) as the present and x(tn) as the future, Markov 
processes can be described as processes in which the prediction 
of the future depends only on of the present, and not from the 
past. Markov processes are used to describe phenomena in the 
theory of mass catering, for example stochastic characteristics of 
waiting lines, or in the economics of share prices. An important 
class in the theory of stochastic processes, introduced strictly 
mathematically by Doob, are martingales [4].

Definition 6: The stochastic process {x(t), Ft, t ≥ 0} for which 
E|x(t)| < ∞, for each t ≥ 0 is:
martingale, if E(x(t) | Fs) = x(s) s.i. for every 0 ≤ s ≤ t;
submartingale, if E(x(t) | Fs) ≥ x(s) s.i. for every 0 ≤ s ≤ t;
supermartingale, if E(x(t) | Fs) ≤ x(s) s.i. for every 0 ≤ s ≤ t.

Submartingales and supermartingales together are called semi-
martingales. The definition of local martingale is based on the 
concept of stopping time [5,6].

3. Stochastic Differential Equations
The stochastic differential equation of the unknown n-dimensional 
stochastic process {x(t), t ∈ [t0, T ]} is an equation of the form 
dx(t) = f (x(t), t) dt + g(x(t), t ) dw(t), t ∈ [t0, T ], x(t0) = x0, 
where w = {w(t), t ≥ 0} is an m-dimensional Brownian motion, 
the initial condition x0 is a d-dimensional random variable that 
is stochastically independent in relation to Brownian motion and 
the functions f : Rd * [t0, T ] → Rd and g : Rd * [t0, T ] → 
Rd * Rm are non-random Borel-measurable functions with their 
domains. The equation in integral form reads:
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𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡0
 

 

x(t0) = x0 s.i.; 

 

the equation in the integral sense is satisfied s.i. for each t ∈ [t0, T ] [7].  

 

Definition 7: The equation has a unique strict solution if P {x(t) = x˜(t), t ∈ [t0, T ]} = 1 holds 

for every two strict solutions x(t) and x˜(t). 

One of the essential characteristics of differential equations is stability. The stability of the 

solution of stochastic differential equations is based on the examination of the state of the 

system in relation to small changes in the initial condition or some other parameters of the 

system. Stochastic stability is one of the highly researched areas of stochastic analysis and many 

mathematicians have contributed to its development. Considering that many stochastic 

differential equations are not explicitly solvable, it is necessary to apply numerical methods, 

and the stability of numerical solutions is also important [8]. 

 

Definition 8: A solution {x(t), t ≥ 0} of a stochastic differential equation is stochastically stable 

or probability stable if for every ε ∈ (0, 1) and r > 0, there exists δ = δ(ε, r, t0) > 0 so that, for 

|x0| < δ, P {|x(t; t0, x0)| holds < r, t ≥ t0} ≥ 1 − ε. 

 

Definition 9: The solution {x(t), t ≥ 0} of the stochastic differential equation is stochastically 

asymptotically stable if for every ε ∈ (0, 1) there exists δ = δ(ε, t0) > 0 such that, for |x0| < δ, 

valid: 

𝑃𝑃𝑃𝑃{ lim
𝑡𝑡𝑡𝑡→∞

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡;  𝑡𝑡𝑡𝑡0, 𝑥𝑥𝑥𝑥0)  =  0, 𝑡𝑡𝑡𝑡 ≥  𝑡𝑡𝑡𝑡0}  ≥  1 −  𝜀𝜀𝜀𝜀. 

 

Definition 10: The solution {x(t), t ≥ 0} of the stochastic differential equation is exponentially 

stable in the mean order p if for each x0 ∈ Rd, E|x0|p < ∞ holds: 

𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
1
𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔 𝐸𝐸𝐸𝐸(|𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡;  𝑡𝑡𝑡𝑡0 , 𝑥𝑥𝑥𝑥0 )|𝑠𝑠𝑠𝑠)  ≤  0. 

 

Definition 11: The solution {x(t), t ≥ 0} of the stochastic differential equation is almost certainly 

exponentially stable if for each x0 ∈ Rd: 

 
 

 
 

𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡→∞

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1
𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔 (|𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡;  𝑡𝑡𝑡𝑡0 , 𝑥𝑥𝑥𝑥0 )|𝑠𝑠𝑠𝑠)  ≤  0.[9] 

 

3.1 Numerical Methods For Solving Stochastic Differential Equations 

With the increase in the complexity of real problems in different areas of life, mathematical 

models consisting of systems of equations are increasingly used to describe key phenomena or 

processes relevant to the challenges posed. While analytical solutions can sometimes be found 

for simpler models, most models are complex, requiring the application of numerical methods 

to obtain approximate solutions. Different approximation methods are used to solve different 

types of stochastic differential equations, with criteria for comparing their efficiency. It is 

important that the method be simple to implement and that the approximate solutions retain the 

key characteristics of the exact solution [10]. 

 

In this paper, we first analyze the conditions under which there is a unique solution for the class 

of neutral stochastic differential equations with time-dependent delay and Markov transitions, 

as well as for the class of neutral stochastic differential equations with time-dependent delay. 

Numerical methods are then applied to obtain approximate solutions of these equations, while 

investigating the conditions under which the approximate solution shares the same 

characteristics as the exact solution, including stability - an aspect that is considered in more 

detail in the paper [11]. 

 

We will consider and compare explicit (like Euler-Maruyama method) and implicit (like 

backward Euler method and θ-Euler-Maruyama method) numerical approaches [12]. 

 

3.2 Euler-Maruyama Method 

The Euler-Maruyama method represents an explicit approach to the numerical solution of both 

ordinary and stochastic differential equations. This method generates explicit approximate 

solutions, where standard existence and uniqueness conditions, such as the Lipschitz condition, 

the linear growth condition and the L2-boundedness of the initial condition, are often required 

to prove the mean-square convergence of the corresponding approximate solutions [13]. 

 

The modeled stochastic differential equation has the form 

dx(t) = f(x(t)) dt + g(x(t)) dw(t), where t ∈ [0, T], x(t) ∈ Rd for each t, f: Rd → Rd, g: Rd → 

Rd×m, and w(t) represents the m-dimensional process of Brownian motion. P 
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Lipschitz condition, the linear growth condition and the L2-boundedness of the initial condition, are often required to prove the 
mean-square convergence of the corresponding approximate solutions [13].

The modeled stochastic differential equation has the form dx(t) = f(x(t)) dt + g(x(t)) dw(t), where t ∈ [0, T], x(t) ∈ Rd for each t, 
f: Rd → Rd, g: Rd → Rd×m, and w(t) represents the m-dimensional process of Brownian motion. P ristup of the Euler-Maruyama 
method includes the calculation of discrete approximate solutions Yk ≈ x(tk), where tk = k∆ and ∆ represents.

3.3 Backward Euler's Method
Backward Euler's method is an implicit method for numerically solving stochastic differential equations. It often appears in the 
literature as a semi-implicit Euler method. Backward Euler's method is implicit by the argument of the transfer coefficient.

More precisely, let the solution {x(t), t ∈ [0, T ]} of the equation be approximated on an arbitrary partition of the interval [0, T ], 0 = 
t0 < t1 < . . . < tn = T . For the chosen step size ∆ ∈ (0, 1), where tk = k∆, for k ∈ 0, 1, 2, . . . , n − 1, this method is based on solving 
the following equation:

These methods are applied to Eq
x(t) = f(x(t)) dt + g(x(t)) dw(t), x(0) = x_0.[14]

3.4 θ-Euler-Maruyama Method
The θ-Euler-Maruyama method is also an implicit method for numerically solving stochastic differential equations and is a 
generalization of the previously mentioned methods. The parameter θ ∈ [0, 1] is often called a measure of the implicitness of the 
numerical method. Specially, if θ = 0, the Euler-Maruyama method is obtained, while for θ = 1, the backward Euler method is 
obtained [15].

The solution of the equation x(t) = f(x(t)) dt + g(x(t)) dw(t), x(0) = x_0, is approximated by this method on an arbitrary partition 
of the interval [0,∞]. the selected step size ∆∈(0,1) where t_k=k∆. for k∈0,1,2,..., and is based on solving the following equation:

In order to introduce the numerical scheme, an auxiliary function is defined

F:Rd→Rd as follows

 
 

 
 

ristup of the Euler-Maruyama method includes the calculation of discrete approximate solutions 

Yk ≈ x(tk), where tk = k∆ and ∆ represents. 

 

3.3 Backward Euler's Method 

Backward Euler's method is an implicit method for numerically solving stochastic differential 

equations. It often appears in the literature as a semi-implicit Euler method. Backward Euler's 

method is implicit by the argument of the transfer coefficient. 

 

More precisely, let the solution {x(t), t ∈ [0, T ]} of the equation be approximated on an arbitrary 

partition of the interval [0, T ], 0 = t0 < t1 < . . . < tn = T . For the chosen step size ∆ ∈ (0, 1), 

where tk = k∆, for k ∈ 0, 1, 2, . . . , n − 1, this method is based on solving the following equation: 

𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1 = 𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘 + 𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1)∆ + 𝑔𝑔𝑔𝑔(𝑌𝑌𝑌𝑌𝐾𝐾𝐾𝐾)∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 gdje je 𝑌𝑌𝑌𝑌0 = 𝑥𝑥𝑥𝑥0 𝑖𝑖𝑖𝑖 ∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 = 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) − 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘). 

 

These methods are applied to Eq 

x(t) = f(x(t)) dt + g(x(t)) dw(t), x(0) = 𝑥𝑥𝑥𝑥0.[14] 

 

3.4 θ-Euler-Maruyama Method 

The θ-Euler-Maruyama method is also an implicit method for numerically solving stochastic 

differential equations and is a generalization of the previously mentioned methods. The 

parameter θ ∈ [0, 1] is often called a measure of the implicitness of the numerical method. 

Specially, if θ = 0, the Euler-Maruyama method is obtained, while for θ = 1, the backward Euler 

method is obtained [15]. 

 

The solution of the equation x(t) = f(x(t)) dt + g(x(t)) dw(t), x(0) = x_0, is approximated by this 

method on an arbitrary partition of the interval [0,∞]. the selected step size ∆∈(0,1) where 

t_k=k∆. for k∈0,1,2,..., and is based on solving the following equation: 

 

𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1 = 𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘 + 𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1)∆ + (1 − 𝜃𝜃𝜃𝜃)𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘)∆ + 𝑔𝑔𝑔𝑔(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘)∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 ,𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑌𝑌𝑌𝑌0 = 𝑥𝑥𝑥𝑥0𝑖𝑖𝑖𝑖∆𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) −𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘).  

 

In order to introduce the numerical scheme, an auxiliary function is defined 

 

F: Rd → Rdas follows 

 

 
 

 
 

ristup of the Euler-Maruyama method includes the calculation of discrete approximate solutions 

Yk ≈ x(tk), where tk = k∆ and ∆ represents. 

 

3.3 Backward Euler's Method 

Backward Euler's method is an implicit method for numerically solving stochastic differential 

equations. It often appears in the literature as a semi-implicit Euler method. Backward Euler's 

method is implicit by the argument of the transfer coefficient. 

 

More precisely, let the solution {x(t), t ∈ [0, T ]} of the equation be approximated on an arbitrary 

partition of the interval [0, T ], 0 = t0 < t1 < . . . < tn = T . For the chosen step size ∆ ∈ (0, 1), 

where tk = k∆, for k ∈ 0, 1, 2, . . . , n − 1, this method is based on solving the following equation: 

𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1 = 𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘 + 𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1)∆ + 𝑔𝑔𝑔𝑔(𝑌𝑌𝑌𝑌𝐾𝐾𝐾𝐾)∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 gdje je 𝑌𝑌𝑌𝑌0 = 𝑥𝑥𝑥𝑥0 𝑖𝑖𝑖𝑖 ∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 = 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) − 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘). 

 

These methods are applied to Eq 

x(t) = f(x(t)) dt + g(x(t)) dw(t), x(0) = 𝑥𝑥𝑥𝑥0.[14] 

 

3.4 θ-Euler-Maruyama Method 

The θ-Euler-Maruyama method is also an implicit method for numerically solving stochastic 

differential equations and is a generalization of the previously mentioned methods. The 

parameter θ ∈ [0, 1] is often called a measure of the implicitness of the numerical method. 

Specially, if θ = 0, the Euler-Maruyama method is obtained, while for θ = 1, the backward Euler 

method is obtained [15]. 

 

The solution of the equation x(t) = f(x(t)) dt + g(x(t)) dw(t), x(0) = x_0, is approximated by this 

method on an arbitrary partition of the interval [0,∞]. the selected step size ∆∈(0,1) where 

t_k=k∆. for k∈0,1,2,..., and is based on solving the following equation: 

 

𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1 = 𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘 + 𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1)∆ + (1 − 𝜃𝜃𝜃𝜃)𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘)∆ + 𝑔𝑔𝑔𝑔(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘)∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 ,𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑌𝑌𝑌𝑌0 = 𝑥𝑥𝑥𝑥0𝑖𝑖𝑖𝑖∆𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) −𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘).  

 

In order to introduce the numerical scheme, an auxiliary function is defined 

 

F: Rd → Rdas follows 

 

Assuming that the one-sided Lipschitz condition is valid, i.e. there is a constant μ>0, so that for each a,b∈R^d:

there is an inverse function F^(-1) and the solution Yk+1 can be represented as follows:
Yk+1=F-1 (Yk+(1-θ) f (Yk) ∆t + g ( Yk ) ∆ wk  where the random variable Yk Fk is measurable.

4. Optimization of The Solution of A Stochastic Differential Equation Using A Numerical Method Using A Specific Example
Consider the following example of a neutral stochastic differential equation:

 
 

 
 

  𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥 − 𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥)∆𝑡𝑡𝑡𝑡. 

 

Assuming that the one-sided Lipschitz condition is valid, i.e. there is a constant μ>0, so that for 

each a,b∈R^d: 

〈𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏, 𝑓𝑓𝑓𝑓(𝑎𝑎𝑎𝑎) − 𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏)〉 ≤ 𝜇𝜇𝜇𝜇(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)2 

 

  there is an inverse function F^(-1) and the solution Yk+1 can be represented as follows: 

𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘+1 = 𝐹𝐹𝐹𝐹−1(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘 + (1 − 𝜃𝜃𝜃𝜃)𝑓𝑓𝑓𝑓(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘)∆𝑡𝑡𝑡𝑡 + 𝑔𝑔𝑔𝑔(𝑌𝑌𝑌𝑌𝑘𝑘𝑘𝑘)∆𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘  where the random variable Yk Fk is 

measurable. 

 

4. Optimization of The Solution of A Stochastic Differential Equation Using A Numerical 

Method Using A Specific Example 

Consider the following example of a neutral stochastic differential equation: 

 

d[x(t)- 1
50
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡 − 𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡))] = − 1

48
𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + 1

20√6
𝑥𝑥𝑥𝑥�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡)�

1+𝑥𝑥𝑥𝑥2�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡)�
𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) … … … … . . (1) 

 

for t ∈[0,500], with the initial condition φ(t)=1,t∈[-τ,0], so that τ=0.5 and φ∈C_(F_0)^b([-τ,0];R 

). The transmission coefficient f(x,y)= -1/48 x satisfies the linear growth condition A1 for K=-

1/(48*48), where the function u(x)=1/50 sinx,xϵR satisfies the assumption A2 for β =1/500. Let 

the delay function of the form p(t)=1/4-1/4 sin 〖t,t∈[0,500]〗 Then: 

 

𝑠𝑠𝑠𝑠,(𝑡𝑡𝑡𝑡) = −1
4
𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ≤ 1

4
= �̅�𝑠𝑠𝑠 i 

 

|𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠)| ≤
1
4

|𝑡𝑡𝑡𝑡 − 𝑠𝑠𝑠𝑠|, 𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠 ∈ [0,500] 

 

Now let's see that: 

2�𝑥𝑥𝑥𝑥 − 𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦)�𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) + |𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)|2 = −
1

24
𝑥𝑥𝑥𝑥2 +

1
1200

𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 +
1

2400
𝑦𝑦𝑦𝑦2

(1 + 𝑦𝑦𝑦𝑦2)2 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠
2𝑥𝑥𝑥𝑥

≤ −
1

24
𝑥𝑥𝑥𝑥2 + −

1
2400

𝑥𝑥𝑥𝑥2 +
1

2400
𝑦𝑦𝑦𝑦2 +

1
2400

𝑦𝑦𝑦𝑦2 ≤ −
33

800
𝑥𝑥𝑥𝑥2 +

1
1200

𝑦𝑦𝑦𝑦2 

 

That is, it is valid that 𝛼𝛼𝛼𝛼1 = 33
800

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝛼𝛼𝛼𝛼2 = 1
1200
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Figure 2: Solution trajectories for delta =0.01 

 

How is it : 
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4(9(1−𝜃𝜃𝜃𝜃)2+𝜃𝜃𝜃𝜃2+3)([(1−𝜂𝜂𝜂𝜂)−1]+1)
⋏ 1 = 1
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𝛼𝛼𝛼𝛼1 𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃2𝐾𝐾𝐾𝐾 − (𝛼𝛼𝛼𝛼2𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃2𝐾𝐾𝐾𝐾 + 4𝛽𝛽𝛽𝛽2(1 − 𝜃𝜃𝜃𝜃)2)( [(1 − 𝜂𝜂𝜂𝜂)−1] + 1) = 0,0287 
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 where A= logε, while ε is the unique solution of our initial equation. By direct 

calculation we have that: 
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 𝐴𝐴𝐴𝐴 = 34,1444 

 

Now using the result we got with this method and the programming method, Figure 3 shows 

the graph of the solution with all three numerical methods and their approximations [16]: 
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Optimizing the solution of the stochastic differential equation implies the following steps: 

 

1. Finer time discretization: Increase the number of steps (N) to obtain a finer time 
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2. Adaptive steps: Consider using adaptive steps to automatically adjust the step size according 

to variations in the solution. This can improve accuracy and efficiency. 

 

3. Different solving methods: Consider using other numerical methods, such as implicit 

methods (eg implicit Euler, implicit Runge-Kutta), to see if there is a difference in performance. 

 

4. Parameter Validation: Check different parameters of the method (eg noise variance, time 

step) to see how they affect the results [17]. 

 

Now we have solved our method numerically using the Runge Kuta method using the implicit 

method as well, and we have obtained the following results, which we presented in Figure 4. 
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Figure 4: Simulation Stohastic Diferential Equations 

 

Based on the visualization of the graph and the difference in percentages, it can be noted that 

the fourth-order Runge-Kutta method (RK4) provided more accurate results compared to the 

Euler-Maruyama method. The difference between these two approaches is expressed in 

percentages and clearly indicates that RK4 is less prone to approximation errors compared to 

the Euler-Maruyama method. This may indicate a higher accuracy of the RK4 method in solving 

stochastic differential equations, with a possible higher computational complexity. 

Optimization, in this context, refers to the choice of the method that gives more precise results, 

and in this case, it is the RK4 method [18]. 
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simulation, is reflected in the order of accuracy. RK4 has an order of accuracy of 4, which 

means that the approximation error decreases quadratically with the reduction of the time step, 

while the Euler-Maruyama method has an order of accuracy of 0.5. This difference in accuracy 

results in a more precise reproduction of the trajectories of the stochastic process [19]. 
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Figure 4: Simulation Stohastic Diferential Equations

Based on the visualization of the graph and the difference in 
percentages, it can be noted that the fourth-order Runge-Kutta 
method (RK4) provided more accurate results compared to the 
Euler-Maruyama method. The difference between these two 
approaches is expressed in percentages and clearly indicates 
that RK4 is less prone to approximation errors compared to the 

Euler-Maruyama method. This may indicate a higher accuracy 
of the RK4 method in solving stochastic differential equations, 
with a possible higher computational complexity. Optimization, 
in this context, refers to the choice of the method that gives more 
precise results, and in this case, it is the RK4 method [18].
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The fourth-order Runge-Kutta method (RK4) is a numerical 
method used to solve differential equations. In this context, 
it was applied to the stochastic differential equation (SDE). 
RK4 is known for its high accuracy and stability in solving 
differential equation problems. The key advantage of RK4 
compared to the Euler-Maruyama method, which was also used 
in the simulation, is reflected in the order of accuracy. RK4 has 
an order of accuracy of 4, which means that the approximation 
error decreases quadratically with the reduction of the time step, 
while the Euler-Maruyama method has an order of accuracy 
of 0.5. This difference in accuracy results in a more precise 
reproduction of the trajectories of the stochastic process [19].

When optimizing the RK4 method, it is crucial to choose the 
time step (dt) carefully. By optimizing the time step, a balance 
between precision and computational efficiency can be achieved. 
In this context, a proper choice of time steps can increase the 
accuracy of the simulation . In addition, it is important to note that 
stochastic processes include random noise, so the optimization of 
the parameter for generating random numbers is also important. 
Providing high-quality random numbers contributes to the 
reliability of the simulation [20]. In conclusion, RK4 excels 
in the accuracy of the results, and optimization is achieved by 
careful selection of time steps and random number generation, 
enabling accurate reproduction of stochastic processes [21].
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In the case of applying the fourth-order Runge-Kutta method (RK4) to a stochastic differential 

equation (SDE), the key parameters and functions include [22]: 

 

1. Parameters: 

• T (Time): Total simulation time. 

• N (Number of steps): Number of time discretization steps [23]. 

• dt (Time Step): The time step between every two samples in the time discretization. 

• phi (Initial condition): Initial value of the process [24]. 

 

2. Functions: 
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In the case of applying the fourth-order Runge-Kutta method 
(RK4) to a stochastic differential equation (SDE), the key 
parameters and functions include [22]:

1. Parameters:
• T (Time): Total simulation time.
• N (Number of steps): Number of time discretization steps [23].
• dt (Time Step): The time step between every two samples in the 
time discretization.
• phi (Initial condition): Initial value of the process [24].

2. Functions:
• delta(t): A delay function that defines the time relationship 
between the current moment and the delay moment.
• f(x, y, t): Transfer coefficient used in SDE. In this case, the 
function describes a linear dependence on x, y and t.
3. Runge-Kutta Method:
• k1, k2, k3, k4: Steps of the method used to evaluate the change 
of the variable x in each time step.
• dw: Stochastic term representing the random change at each 
step. 

When we compare the Runge-Kutta method with the Euler-
Maruyama method (which is the second method used in the 
simulation), the Runge-Kutta stands out by a higher order of 

accuracy [25]. This order of accuracy makes RK4 more precise 
and reliable in reproducing stochastic process trajectories. 
(Figure 6).

Thus, the improvement comes from the mathematical nature 
of the RK4 method, which better approximates the changes in 
the stochastic process at each step. This mathematical approach 
allows obtaining more precise simulation results compared to 
simpler methods, such as the Euler-Maruyama method [26]. 

5. Conclusion Of Discussion
Investigating the stochastic differential equation provides a 
deeper understanding of the numerical methods applied to 
this type of problem. By analyzing the stability conditions, 
the optimal value of the step ∆ was determined, which ensures 
the stability of the numerical solution. Through experiments 
with Q Euler-Maruyama and Runge-Kutta methods, we 
notice that Runge-Kutta, thanks to a higher order of accuracy, 
provides more precise solutions and reduces the error in the 
approximation of stochastic changes. This optimization results 
in a better approximation of process trajectories, which is 
crucial for the analysis of system behavior. The effort to achieve 
stability and precision in numerical solutions plays a key role in 
the reliability of approaches to stochastic differential equations. 
The discussion of the results indicates that the selection of the 
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appropriate numerical method depends on the specificity of the 
problem. The Runge-Kutta method, although it requires more 
computing resources, shows superior accuracy compared to 
the Q Euler-Maruyama method. Increasing accuracy in solving 
stochastic differential equations is important for the analysis of 
real systems, where accuracy can have a significant impact on 
decision-making [27-29]. 

In addition, the research points to the importance of the correct 
determination of parameters, such as the step ∆, in order to achieve 
stability and reliability of numerical solutions. This approach 
can be applied to various stochastic systems and contribute to 
the understanding of their behavior over time. In conclusion, 
the combination of stability analysis, selection of an appropriate 
numerical method and careful adjustment of parameters is key 
to successfully solving stochastic differential equations. This 
research provides a basis for further understanding of numerical 
aspects of stochastic processes and their application in real 
situations [30].
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