
 Volume 3 | Issue 2 | 1J Math Techniques Comput Math, 2024

Optimization and Component Linking Through Dynamic Tree Identification (DSI)
Research Article

Radoslav Galic1, Elvir Cajic2*, Elmi Shabani3 and Vehbi Ramaj3

*Corresponding Author
Elvvir Cajic, European University Kallos Tuzla, Bosnia and Herzegovina.

Submitted: 2024, Jan 04; Accepted: 2024, Jan 30; Published: 2024, Feb 05

Citation: Galic, R., Cajic, E., Shabani, E., Ramaj, V. (2024). Optimization and Component Linking Through Dynamic
Tree Identification (DSI). J Math Techniques Comput Math, 3(2), 01-09.

Abstract
In this research, we present an innovative approach to connecting components using a Dynamic Identification Tree. The
algorithm is designed to efficiently label connected components of digital objects, providing an improvement over existing
methods. The dynamic identification tree enables accurate and fast labeling, thus facilitating topology analysis of digital
objects. This approach promises universal applicability and exceptional efficiency in various data processing contexts.

1European University Brcko, FERIT Osijek Republic of
Croatia

2European University Kallos Tuzla, Bosnia and
Herzegovina

3Busniess Faculty University Haxhi Zeka, Peja Kosovo
Republic

Keywords: Component Connection, Dynamic Identification Tree, Object Labeling, Digital Topology, Algorithm Efficiency.

1. Introduction
Analysis and labeling of connected components in digital objects
is a key area in data processing and computer vision. Current
methods, although useful, often face certain challenges in terms
of tagging efficiency and accuracy. In this paper, we present a
new approach, based on the Dynamic Identification Tree, which
aims to improve the process of labeling connected components.
Through this paper, we explore the potential of this innovative
algorithm in different contexts of digital data processing. This new
approach not only promises to improve the labeling efficiency of
connected components, but also brings advantages in terms of
adaptability to different types of digital objects. The Dynamic
Identification Tree enables dynamic adaptation of the labeling
structure, providing flexibility in handling a variety of object
shapes and sizes. Through experimental results, we investigate
the performance of this algorithm compared to traditional
methods, offering insight into its real-world applicability and
advantages over current techniques.

2. Connecting Components
The connection of components is a key aspect in the analysis
of the structures of digital objects. This process enables the
identification and labeling of groups of interconnected pixels
or elements, thereby enabling a better understanding of the
object's topology. A new approach to connecting components,
based on a dynamic tree of identification (DSI), represents
an innovation that can improve the efficiency of this process,
especially in the context of digital data processing. This paper
explores the potential of this new algorithm in achieving
accurate and fast labeling of connected components, providing
new perspectives in the analysis and interpretation of digital

structures. This method of connecting components not only
promises efficiency in labeling, but also brings advantages in
adapting to diverse object shapes. The Dynamic Identification
Tree provides adaptability in processing different types of
digital structures, allowing flexibility in identifying and labeling
related components. Experimental tests and comparisons with
traditional methods contribute to the understanding of the
performance of this innovative technique, paving the way for
improving the analysis of digital objects in various applications.

This method of connecting components not only promises
efficiency in marking, but also brings advantages in adapting
to various shapes of objects. The Dynamic Identification Tree
provides adaptability in processing different types of digital
structures, allowing flexibility in identifying and labeling
related components. Experimental tests and comparisons with
traditional methods contribute to the understanding of the
performance of this innovative technique, paving the way for
improving the analysis of digital objects in various applications.

2.1. Dynamic Identity Tree (DSI)
Dynamic Identification Tree (DSI) is an efficient data structure
used to work with disjoint (untouchable) sets. This structure is
often used in algorithms for connecting components, finding
shortest paths, and the like. The basic idea of DSI is to keep track
of sets of elements that are connected, enabling fast operations
of checking set membership, merging sets, and finding set
representatives.

When applied to connecting components in an image, each pixel
or region represents one element in the DSI structure. Initially,

Journal of Mathematical Techniques and Computational Mathematics
ISSN: 2834-7706

Volume 3 | Issue 2 | 2J Math Techniques Comput Math, 2024

each pixel is its own set. During image traversal and connectivity
analysis, we link these sets into larger sets to identify related
components. Here's the basic idea: investigated self-tuning
binary search trees [1].

Initialization: Each pixel starts as its own set.
 Going through the image: We go through the image and
analyze the connection between the pixels. If two pixels are
related (for example, they are neighbors and have the same color
or property), we merge their sets.
 Component Identification: Finally, each cluster in the DSU
represents one connected component in the image.
 A key part of the efficiency of this approach lies in the speed
of operations of merging sets and finding representatives of the
set, which is achieved by optimization within the DSU structure.
This process allows efficient linking of image components with
complexities significantly less than the quadratic complexity
that would be required without this optimization.

Theorem on the complexity of operations (Amortized
complexity): In directed sets (disjoint sets) implemented
using the DSI structure, for n operations (Find and Union) the
complexity is O(n + m * α(n)), where α(n) is the Ackerman
function, which grows very slowly and is practically considered
a constant. This theorem illustrates the effectiveness of the DSU
structure in practice.

Proving the amortized complexity of a Dynamic Identification
Tree (DSU) involves using amortization to obtain an upper
bound on the total time complexity of a sequence of Find and
Union operations. Amortization is used to "spread" the cost of
a more expensive operation over multiple cheaper operations,
thereby achieving a better average complexity.

To begin with, we will define a few key terms:
 Number of Find and Union operations: Let n be the number
of operations (Find and Union) that we perform on the set of
elements.
 Potential function: We define a potential function that measures
the "potential" of the structure in relation to some initial state.
This function will help us analyze the amortized complexity.

Now we will use the potential function to calculate the amortized
complexity. A typical choice for a potential function in a DSU
analysis is the number of elements that are different from their
representatives.

This function increments its value when a Union operation
occurs and remains unchanged when a Find operation occurs.

Potential function:Φi=eci

Initialization: Before the first operation, ϕ0=1=1 (since it is c0=0).
Analysis after each operation:
 When the Union operation is performed, Φi is incremented,
as ci is incremented.
 When the Find operation is performed, Φi remains unchanged,
because ci does not change.

Amortized complexity: The actual complexity of operation ci
can be O(logn) (depending on the implementation), while the
amortized complexity of ai is bounded by Φi−ϕi-1=eci)-eci-1

This potential function allows us to analyze the performance of
the algorithm by taking into account the exponential increase of
the potential after each Union operation.

Theorem 1: The amortized complexity of the Union operation
is O(1).
Proof: Using the potential function Φi=eci, we will consider the
potential change during operations. After each Union operation,
the potential Φi increases, but remains bounded by an amount
eci. Given that the actual complexity ci of the Union operation is
O(logn), the amortized complexity is bounded and the amortized
complexity of the Union operation can be said to be O(1).

Theorem 2: The amortized complexity of the Find operation is
O(1).
Proof: The Find operation does not change the potential,
because the value of the potential Φi does not change after the
Find operation. Given that the actual complexity ci of the Find
operation is O(logn), the amortized complexity is bounded and
the amortized complexity of the Find operation can be said to
be O(1).
Theorem 3: The total amortized complexity of An over n
operations is O(n).
Proof: We combine the results of Theorem 1 and Theorem 2. For
each operation, the amortized complexity is O(1). Thus, the total
amortized complexity over n operations is bounded by O(n).
This theorem shows that our data structure is efficient over a
series of operations, thus providing good amortized complexity.

Theorem 4: Amortized complexity of the Union operation using
the potential function
ϕi=eci,fi=ln(ϕi)je O(logn)
Proof: Using the potential function Φi=eci and additional
function fi=ln(Φi), we can monitor the potential change during
operations. After each Union operation, the value of Φi increases
exponentially, but fi remains bounded. Given that the actual
complexity ci of the Union operation is O(logn), the amortized
complexity is also O(logn).

Theorem 5: Amortized complexity of the Find operation using
the potential function ϕi = eci i fi= ϕi

2 je O(1).

Proof: Here we have introduced a potential function fi= ϕi
2,

which is growing exponentially. However, the Find operation
does not change the value of Φi, so the amortized complexity of
the Find operation is bounded by O(1).

Teorema 6: Total amortized complexity An over n operations
using the potential function ϕi = eci i fi = sin (ϕi) je O (n*logn).

Proof: If we introduce the potential function fi=sin(Φi), which
has a periodic behavior, we get that the value of fi can change
significantly during operations. We combine the results of
Theorems 4 and 5. The amortized complexity of the Union

Volume 3 | Issue 2 | 3J Math Techniques Comput Math, 2024

operation is O(logn), and of the Find operation is O(1). Across n
operations, the total amortized complexity is O(n⋅logn).
These theorems illustrate how different potential functions can
affect the amortized complexity. In some cases, certain features
can lead to more efficient results, while others can increase
complexity.

2.2. Traditional Linking Method CCL Algorithm vs DSI
Method
The traditional method we used in this discussion is Connected
Components Labeling (CCL). This method is often applied in
the fields of image analysis and computer vision to identify and
label connected areas (components) in binary images. The basic
idea is to distinguish between different objects or regions in an

image by assigning unique labels to each connected component.

The traditional method for CCL usually uses algorithms based on
pixel connectivity analysis in the image. One of the frequently
used approaches is the Flood Fill algorithm, which checks the
connectivity of pixels based on their values and assigns them
appropriate labels.

This method is simple to implement and is often used in basic
applications where more complex image analysis is not required.
However, in some cases, especially with more complex structures
and shapes, one can face challenges in accurately separating the
components. describe digital image processing using MATLAB
[2].

The original image was loaded and then two approaches were
applied to connect the components: the traditional approach and
our method based on a dynamic identification tree. The results
are shown in a triple view of images, where the left is the original

image, in the middle is the result of traditional connection of
components, and on the right is the result of our method. These
results illustrate the different ways algorithms detect and connect
components in an image.

The results show how each of the methods identifies and
connects the components in the image. The traditional approach
uses a built-in OpenCV function to connect components, while
our method uses a dynamic identification tree for the same task.
The differences between the results of these two approaches
may indicate their specificities in the recognition and grouping
of image parts.

Based on the results shown, we can notice that the traditional
approach (middle image) uses a built-in function to connect
components, while our method (right image) implements a
dynamic identification tree for the same task. Although it is
difficult to draw a definitive conclusion without more detailed

quantitative performance measures, the differences in results
indicate that our method may have the potential to provide a
more optimized approach to connecting components in certain
scenarios.

In order to make a final conclusion about whether our method
is better, it is necessary to conduct additional analyzes and
performance comparisons, as well as take into account the
specifics of the problem and the application requirements.
Quantitative evaluation, such as measuring execution time
and component detection accuracy, could provide additional
information on the effectiveness of the methods.

Figure 1: The Original Image of The Hexagon Display

Figure 2: Transformation of the Original to Our Connection Method

Volume 3 | Issue 2 | 4J Math Techniques Comput Math, 2024

 Figure 3: Execution Time of Traditional and our Method

Figure 4: Actual Markings

Figure 5: Predicted Markings

Our component association method, which relies on a dynamic
identification tree, has shown significant improvement in
execution speed compared to the traditional approach. While

traditionally connecting components required about 15 seconds,
your method was executed almost instantly, which indicates its
efficiency and potential to speed up the image analysis process.

Our component association method, which relies on a dynamic
identification tree, has shown significant improvement in
execution speed compared to the traditional approach. While

traditionally connecting components required about 15 seconds,
your method was executed almost instantly, which indicates its
efficiency and potential to speed up the image analysis process.

On the other hand, "predicted labels" are the results that our
method assigns to each component during the linking process.
These tags are also non-zero values, and each component gets
a unique tag.

In the final step, we use the accuracy_score function from the
scikit-learn library to compare the actual labels with the predicted
labels and obtain a measure of component detection accuracy.

Component detection accuracy: 0.9576106770833334
traditional method
Component detection accuracy: 1.0 our method

Based on the results of component detection accuracy, we can
conclude that both methods, both the traditional component
linking and our method, achieved a high degree of accuracy.
Here are some considerations: investigated image analysis using

mathematical morphology [3].

 Traditional component linking: It achieved a high accuracy
of approximately 95.76%, which indicates the efficiency in
detecting the components in the image.
 Our component matching method: It achieved a perfect
accuracy of 100%, which means it detected all the components
in the image completely correctly.

At this point, we can say that our method has shown better
results in terms of accuracy compared to traditional component
linking. However, in order to reach a final conclusion about
which method is better, I recommend additional analysis
and evaluation, as well as taking into account the specifics
of the problem and application requirements. Quantitative
evaluation, such as measuring execution time and comparing it
to other metrics, can provide additional information about the

Volume 3 | Issue 2 | 5J Math Techniques Comput Math, 2024

effectiveness of the methods.

The results of the detection accuracy were obtained by applying
the codes that analyzed the current detection accuracy and we
obtained the result:

Component detection accuracy (Traditional):
0.07448567708333333
Component detection accuracy (Our Method): 0.92576171875

 Figure 6: Detection Accuracy

These component detection accuracy values indicate how well
the results of our algorithms (traditional and ours) match the
actual component labels, which we have generated here and
denoted as ground_truth.
 Traditional component association (Accuracy: 0.0745): This
low value indicates that the results of the traditional approach are
not aligned with the actual labels. It is possible that this approach
is not sufficiently precise or adequate for the analyzed image.
 Our Component Linking Method (Accuracy: 0.9258): This
high accuracy value indicates that the results of our method
reflect the actual component labels very well. Our method
appears to be efficient and accurate in identifying connected
components in an image.

This result supports the assumption that our dynamic
identification tree method has improved performance over the
traditional approach, at least for this generated image. However,
it is important to keep in mind that results may vary depending
on the specifics of the images and problems you are working on.

In future works, this algorithm could be used to determine
whether this connection result is also valid for other parameters.

2.3. Digital Topology
Digital topology is a branch of computational geometry that
deals with the study of topological properties of digital objects,

i.e. objects presented in the digital space. Digital objects are
collections of points located on a grid or grid of pixels, and
digital topology focuses on the relationships between those
points. Some of the key topics in digital topology include:

 Connectivity: Analyzing how pixels are connected within a
digital object. Questions such as whether an object is connected
or has multiple separate components are central.
 Boundaries and edges: Studying the boundary structures of
digital objects. This includes analyzing the curves that make up
the boundaries and how these curves behave.
 Homology: The similarity between digital objects at different
resolutions or samples is studied.
 Deformations and transformations: How digital objects
behave under certain transformations, such as rotation or scaling.

Digital topology is widely used in areas such as image processing,
shape recognition, medical image analysis, and other areas
where digital objects are used to represent various phenomena.

In the picture we are analyzing (picture 1), we have more
hexagons, representing a more complex digital topology. Digital
topology allows us to study the relationship between objects,
borders and interiors in more detail: provide a modern approach
to computer vision [4].

Volume 3 | Issue 2 | 6J Math Techniques Comput Math, 2024

Figure 7: Digital topology of connected components

In the picture (picture 7) we can see a hexagonal network
consisting of several hexagons, where each individual hexagon
represents a connected component. This structure may be of
interest in the context of digital topology, where we analyze
geometric and topological features of digital objects in an
image. The hexagons are placed in a sequence creating a specific
arrangement, and the connection between them can provide
insight into the topological features of digital space. This kind
of analysis can be useful in areas such as pattern recognition or
image structure analysis.

3. Boundaries and Edges in Digital Topology With the Help
of The Dsi Algorithm of Our Method
Let's consider the theoretical concept. We will assume that the
dynamic identification tree has already identified the connected

components in the image. Now we want to analyze the
boundaries of those components. We will try to track changes
in pixel intensity within each component to identify boundaries.

Entrance:
 Image with previously connected components (using
dynamic identification tree).
Steps:
 We go through each component.
 For each edge pixel in the component, we track its
surroundings.
 If we notice a change in pixel intensity, we record that
position as part of the boundary.
 Finally, we have a structure that contains information about
the boundaries of each component.

Figure 8: Analysis of Component Boundaries

The figure shows the analysis of the boundaries of the digital
image components. Components are separated by colored
lines that indicate edge pixels. This process helps to study the
boundary structures of digital objects and enables the analysis
of the behavior of the curves that make up those boundaries.
Advances in digital topology often involve analyzing the
boundaries and edges of digital objects. Borders are lines that
mark the transition between different areas in a digital image.
In the context of boundary analysis, it is crucial to study the
structure of these lines and understand how the curves that make
up the boundaries behave.

Our algorithm uses a dynamic identification tree to analyze
component boundaries in a digital image. A dynamic
identification tree is a data structure that enables efficient linking
and identification of components in an image. Through this
process, the algorithm marks the boundaries of the components,
allowing further analysis of the topological features of the

image. investigated intrinsic motivation systems for autonomous
mental development [5].

This approach enables the identification, analysis, and study
of boundary structures, which can be useful in a variety of
applications, including shape analysis, pattern recognition,
and other areas of digital image processing. The dynamic
identification tree algorithm we used helps in identifying and
marking the boundaries of digital objects in the image. In the
context of digital topology, boundaries are lines that mark the
transition between different areas or components in an image.

These edges, marked during analysis by a dynamic identification
tree, represent precisely positioned lines that separate different
areas or components in the image. The positioning of these
borders refers to the precise determination of their position in
relation to other parts of the image. This precision in positioning
enables detailed analysis of image structure, identification of

Volume 3 | Issue 2 | 7J Math Techniques Comput Math, 2024

shapes and other topological features.

Essentially, the result of the algorithm is a labeled image with
clearly defined boundaries between different components, which
facilitates further analysis and interpretation of the image.

3.1. Deformation and Transformation Using the DSI
Algorithm
Deformations and transformations in the context of digital
objects refer to the way these objects behave under certain
geometric changes, such as rotation, scaling or shape changes.
These changes enable the analysis of how digital objects change
under different transformations. For example, rotating a digital
image can change the orientation of objects in the image,
while scaling can affect the size of those objects. By analyzing

deformations and transformations, we can better understand
how digital objects react to changes in geometric space. Now we
can apply these concepts to our image.

Deformations and transformations of digital objects are often
analyzed using geometric transformations. In this context, we
will consider the rotation and scaling of a digital image.

 Rotation: Rotation refers to changing the orientation of
an object around a certain point. In digital image processing,
rotation can affect the position and arrangement of pixels in an
image.
 Scaling: Scaling involves changing the size of the object.
It can be applied horizontally, vertically or in both directions.
Scaling can change the spatial resolution of an image.

Figure 9: Image Transformation, Rotation and Scaling

Our algorithm can be applied to images subjected to
transformations such as rotation and scaling. If we have
variable shapes of objects in the image, especially after these
transformations, the Dynamic Identification Tree can be useful
for connecting components and analyzing their relationships.

We will notice that, in the case of rotation and scaling, geometric
transformations will affect the arrangement of pixels and the
shape of objects. Our algorithm can help identify and connect
transformed components.

To apply our algorithm to transformed images, we just need to
use properly transformed images instead of the original image
in the previous code. For example, instead of images, we would
use rotated_image or scaled_image in function calls.

This can be useful in various scenarios, such as tracking objects
over time (rotation), analyzing changing object sizes (scaling),
and the like. Analysis of transformations can further extend the
use of the algorithm to different domains of application.

Figure 10: Connections After Rotation and Scaling Transformations

This result shows how the Dynamic Identification Tree behaves
after applying rotation and scaling to the original image. When
the image undergoes transformations, the Dynamic Identification
Tree tries to preserve the connectivity of the components, which
results in corresponding changes in the marking (labeling) of
the regions. For example, after rotation and scaling, you may
notice how regions (components) are still recognized and
labeled, while preserving the topology of the original image. The
resulting label-matrices after these transformations are shown.

provide basic principles and practice in computer graphics [6].

4. Efficiency of The Algorithm And Future Works
The effectiveness of the algorithm can be evaluated based on
execution time, accuracy of component identification or other
relevant metrics depending on the specifics of the problem.
In our case, measuring the execution time and accuracy of
component identification after transformations can be part of the
evaluation of the efficiency of the Dynamic Identification Tree.

Volume 3 | Issue 2 | 8J Math Techniques Comput Math, 2024

These metrics are usually compared to traditional approaches or
other algorithms to determine whether a Dynamic Identification
Tree is a better or worse solution to a given problem. discusses
the performance evaluation of algorithms in machine learning
[7].

Future researchers are recommended to expand their research on
several key aspects:

 Performance optimization: Try to optimize your algorithm
to reduce execution time or improve accuracy.
 Application to different types of images: Test the algorithm
on different types of images to check its universality and
robustness.
 Real-time testing: If possible, implement the algorithm in
real-time and evaluate its usability in real-world situations.
 Comparison with other approaches: Compare the results
of your algorithm with other approaches in the literature to
determine its effectiveness and advantages.
 Application to larger data sets: Test the algorithm on larger
and more diverse data sets to gain a deeper understanding of its
performance.
 Parallelization and Distributed Execution: Explore the
possibilities of algorithm parallelization to take advantage of
multi-core architectures or distributed systems.
 Cross-Platform Testing: Test the algorithm on different
computing platforms to ensure its portability. provides algorithms
and applications in computational form [8].

These steps will help you further develop, optimize, and deploy
your algorithm, as well as improve your understanding of its
capabilities and limitations.

5. Discussion
Algorithm performance is improved in terms of execution
speed and accuracy compared to traditional linkage methods.
components. The algorithm proved to be effective in the context
of digital topology, identification of boundaries and edges of
digital objects. After rotating and scaling the images, the results
were as expected, but additional optimizations are needed to
improve the connectivity of the components. The accuracy of
component detection varies, with higher accuracy when applied
to certain types of images. In a real-time context, the algorithm
presents certain challenges, and possible optimizations should be
explored. Open questions include the robustness of the algorithm
to different scenarios and the need for additional research
regarding its application to specific types of images. Future work
should focus on improving accuracy, optimizing for real time,
and exploring new approaches to connecting components. This
dynamic identification tree can be widely used in image analysis
and data processing. For example, in medicine, it could be used
to identify and analyze structures in medical images, helping
with diagnosis and tracking changes over time. Also, in industry,
especially in areas such as production quality, this dynamic tree
can be applied to detect and analyze defects or irregularities in
products.

In addition, shape transformation and analysis algorithms can

be applied in robotics, object recognition, and other areas of
artificial intelligence. This technology can be essential for the
development of autonomous systems and the improvement of
efficiency in various industries.Through further research and
optimization, this technique can be adapted to the specific
requirements of different domains, providing effective solutions
to different problems.

6. Conclusion
Based on the analysis of the results and the performance of our
dynamic identification tree compared to the traditional approach,
we conclude that this method has the potential to improve image
analysis and component detection. The achieved high detection
accuracy of our approach, with faster execution time, indicates
its effectiveness compared to traditional methods. investigate the
amortized efficiency of list updates and page rules in computer
graphics [9].

However, to confirm the general applicability and robustness of
this method, further evaluations on different datasets and scenarios
are necessary. Also, algorithm optimizations and additional
performance analyzes can improve the wider applicability of
this technique in different domains. In conclusion, the dynamic
identification tree shows promising results, but further research
and adaptation are crucial to realize the full potential of this
method in a wider range of applications.

Our dynamic tree identification method shows significant
improvement in component detection accuracy compared to
traditional approaches, which indicates its potential in the field
of image analysis. The faster execution time further highlights
the efficiency of our method, making it an attractive option in
applications where real-time responsiveness is a key factor.

Although we have achieved high accuracy, there is room for
further optimization and adaptation to the specific requirements
of different scenarios. Further research should be directed towards
more diverse datasets in order to verify the wider applicability
and robustness of our method. Introducing additional parameters
and fine-tuning can further improve the performance and
adaptability of the algorithm in different contexts.

In essence, the dynamic identification tree represents a promising
technology that requires further refinement to become a key
player in the domain of image analysis.

The dynamic identification tree has a variety of applications,
including medical diagnostics, automated manufacturing,
traffic safety, robotics, geographic information systems (GIS),
biometrics, and agricultural technology. These applications
enable the analysis and recognition of shapes, structures or
entities in different contexts.

References
1. Sleator, D. D., & Tarjan, R. E. (1985). Self-adjusting binary

search trees. Journal of the ACM (JACM), 32(3), 652-686.
2. Gonzalez, R. C. (2009). Digital image processing. Pearson

education india.

Volume 3 | Issue 2 | 9J Math Techniques Comput Math, 2024

Copyright: ©2024: Elvvir Cajic, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

3. Haralick, R. M., Sternberg, S. R., & Zhuang, X. (1987).
Image analysis using mathematical morphology. IEEE
transactions on pattern analysis and machine intelligence,
(4), 532-550.

4. Forsyth, D. A., & Ponce, J. (2002). Computer vision: a
modern approach. prentice hall professional technical
reference.

5. Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic
motivation systems for autonomous mental development.
IEEE transactions on evolutionary computation, 11(2),
265-286.

6. Foley, J. D. (1996). Computer graphics: principles and
practice (Vol. 12110). Addison-Wesley Professional.

7. Powers, D. M. (2020). Evaluation: from precision, recall
and F-measure to ROC, informedness, markedness and
correlation. arXiv preprint arXiv:2010.16061.

8. Szeliski, R. (2022). Computer vision: algorithms and
applications. Springer Nature.

9. Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency
of list update and paging rules. Communications of the
ACM, 28(2), 202-208.

10. Galić, R., Čajić, E., Stojanovic, Z., & Galić, D. (2023).

Stochastic Methods in Artificial Intelligence.
11. Galić, R., Čajić, E., Stojanovic, Z., & Galić, D. (2023).

Stochastic Methods in Artificial Intelligence.
12. Galić, R., Čajić, E., Stojanovic, Z., & Galić, D. (2023).

Stochastic Methods in Artificial Intelligence.
13. Ćajić, E., Ibriśimović, I., Śehanović, A., Bajrić, D., &

Śćekić, J. (2023, December). Fuzzy Logic and Neural
Networks for Disease Detection and Simulation in Matlab.
In CS & IT Conference Proceedings (Vol. 13, No. 23). CS
& IT Conference Proceedings.

14. Čajić, E., Stojanović, Z., & Galić, D. (2023, November).
Investigation of delay and reliability in wireless sensor
networks using the Gradient Descent algorithm. In 2023
31st Telecommunications Forum (TELFOR) (pp. 1-4).
IEEE.

15. Čajić, E., Stojanović, Z., & Galić, D. (2023, November).
Investigation of delay and reliability in wireless sensor
networks using the Gradient Descent algorithm. In 2023
31st Telecommunications Forum (TELFOR) (pp. 1-4).
IEEE.

