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Abstract
In this research, we present an innovative approach to connecting components using a Dynamic Identification Tree. The 
algorithm is designed to efficiently label connected components of digital objects, providing an improvement over existing 
methods. The dynamic identification tree enables accurate and fast labeling, thus facilitating topology analysis of digital 
objects. This approach promises universal applicability and exceptional efficiency in various data processing contexts.
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1. Introduction
Analysis and labeling of connected components in digital objects 
is a key area in data processing and computer vision. Current 
methods, although useful, often face certain challenges in terms 
of tagging efficiency and accuracy. In this paper, we present a 
new approach, based on the Dynamic Identification Tree, which 
aims to improve the process of labeling connected components. 
Through this paper, we explore the potential of this innovative 
algorithm in different contexts of digital data processing. This new 
approach not only promises to improve the labeling efficiency of 
connected components, but also brings advantages in terms of 
adaptability to different types of digital objects. The Dynamic 
Identification Tree enables dynamic adaptation of the labeling 
structure, providing flexibility in handling a variety of object 
shapes and sizes. Through experimental results, we investigate 
the performance of this algorithm compared to traditional 
methods, offering insight into its real-world applicability and 
advantages over current techniques.

2. Connecting Components
The connection of components is a key aspect in the analysis 
of the structures of digital objects. This process enables the 
identification and labeling of groups of interconnected pixels 
or elements, thereby enabling a better understanding of the 
object's topology. A new approach to connecting components, 
based on a dynamic tree of identification (DSI), represents 
an innovation that can improve the efficiency of this process, 
especially in the context of digital data processing. This paper 
explores the potential of this new algorithm in achieving 
accurate and fast labeling of connected components, providing 
new perspectives in the analysis and interpretation of digital 

structures. This method of connecting components not only 
promises efficiency in labeling, but also brings advantages in 
adapting to diverse object shapes. The Dynamic Identification 
Tree provides adaptability in processing different types of 
digital structures, allowing flexibility in identifying and labeling 
related components. Experimental tests and comparisons with 
traditional methods contribute to the understanding of the 
performance of this innovative technique, paving the way for 
improving the analysis of digital objects in various applications.

This method of connecting components not only promises 
efficiency in marking, but also brings advantages in adapting 
to various shapes of objects. The Dynamic Identification Tree 
provides adaptability in processing different types of digital 
structures, allowing flexibility in identifying and labeling 
related components. Experimental tests and comparisons with 
traditional methods contribute to the understanding of the 
performance of this innovative technique, paving the way for 
improving the analysis of digital objects in various applications.

2.1. Dynamic Identity Tree (DSI)
Dynamic Identification Tree (DSI) is an efficient data structure 
used to work with disjoint (untouchable) sets. This structure is 
often used in algorithms for connecting components, finding 
shortest paths, and the like. The basic idea of DSI is to keep track 
of sets of elements that are connected, enabling fast operations 
of checking set membership, merging sets, and finding set 
representatives.

When applied to connecting components in an image, each pixel 
or region represents one element in the DSI structure. Initially, 
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each pixel is its own set. During image traversal and connectivity 
analysis, we link these sets into larger sets to identify related 
components. Here's the basic idea: investigated self-tuning 
binary search trees [1].

Initialization: Each pixel starts as its own set.
 Going through the image: We go through the image and 
analyze the connection between the pixels. If two pixels are 
related (for example, they are neighbors and have the same color 
or property), we merge their sets.
 Component Identification: Finally, each cluster in the DSU 
represents one connected component in the image.
 A key part of the efficiency of this approach lies in the speed 
of operations of merging sets and finding representatives of the 
set, which is achieved by optimization within the DSU structure. 
This process allows efficient linking of image components with 
complexities significantly less than the quadratic complexity 
that would be required without this optimization.

Theorem on the complexity of operations (Amortized 
complexity): In directed sets (disjoint sets) implemented 
using the DSI structure, for n operations (Find and Union) the 
complexity is O(n + m * α(n)), where α(n) is the Ackerman 
function, which grows very slowly and is practically considered 
a constant. This theorem illustrates the effectiveness of the DSU 
structure in practice.

Proving the amortized complexity of a Dynamic Identification 
Tree (DSU) involves using amortization to obtain an upper 
bound on the total time complexity of a sequence of Find and 
Union operations. Amortization is used to "spread" the cost of 
a more expensive operation over multiple cheaper operations, 
thereby achieving a better average complexity.

To begin with, we will define a few key terms:
 Number of Find and Union operations: Let n be the number 
of operations (Find and Union) that we perform on the set of 
elements.
 Potential function: We define a potential function that measures 
the "potential" of the structure in relation to some initial state. 
This function will help us analyze the amortized complexity.

Now we will use the potential function to calculate the amortized 
complexity. A typical choice for a potential function in a DSU 
analysis is the number of elements that are different from their 
representatives.

This function increments its value when a Union operation 
occurs and remains unchanged when a Find operation occurs.

Potential function:Φi=eci

Initialization: Before the first operation, ϕ0=1=1 (since it is c0=0).
Analysis after each operation:
 When the Union operation is performed, Φi is incremented, 
as ci is incremented.
 When the Find operation is performed, Φi remains unchanged, 
because ci does not change.

Amortized complexity: The actual complexity of operation ci 
can be O(logn) (depending on the implementation), while the 
amortized complexity of ai is bounded by Φi−ϕi-1=eci )-eci-1

This potential function allows us to analyze the performance of 
the algorithm by taking into account the exponential increase of 
the potential after each Union operation.

Theorem 1: The amortized complexity of the Union operation 
is O(1).
Proof: Using the potential function Φi=eci, we will consider the 
potential change during operations. After each Union operation, 
the potential Φi increases, but remains bounded by an amount 
eci. Given that the actual complexity ci of the Union operation is 
O(logn), the amortized complexity is bounded and the amortized 
complexity of the Union operation can be said to be O(1).

Theorem 2: The amortized complexity of the Find operation is 
O(1).
Proof: The Find operation does not change the potential, 
because the value of the potential Φi does not change after the 
Find operation. Given that the actual complexity ci of the Find 
operation is O(logn), the amortized complexity is bounded and 
the amortized complexity of the Find operation can be said to 
be O(1).
Theorem 3: The total amortized complexity of An over n 
operations is O(n).
Proof: We combine the results of Theorem 1 and Theorem 2. For 
each operation, the amortized complexity is O(1). Thus, the total 
amortized complexity over n operations is bounded by O(n). 
This theorem shows that our data structure is efficient over a 
series of operations, thus providing good amortized complexity.

Theorem 4: Amortized complexity of the Union operation using 
the potential function 
ϕi=eci,fi=ln(ϕi)je O(logn)
Proof: Using the potential function Φi=eci and additional 
function fi=ln(Φi), we can monitor the potential change during 
operations. After each Union operation, the value of Φi increases 
exponentially, but fi remains bounded. Given that the actual 
complexity ci of the Union operation is O(logn), the amortized 
complexity is also O(logn).

Theorem 5: Amortized complexity of the Find operation using 
the potential function ϕi = eci i fi= ϕi

2 je O(1).

Proof: Here we have introduced a potential function fi= ϕi
2, 

which is growing exponentially. However, the Find operation 
does not change the value of Φi, so the amortized complexity of 
the Find operation is bounded by O(1).

Teorema 6: Total amortized complexity An over n operations 
using the potential function ϕi = eci i fi = sin (ϕi) je O (n*logn). 

Proof: If we introduce the potential function fi=sin(Φi), which 
has a periodic behavior, we get that the value of fi can change 
significantly during operations. We combine the results of 
Theorems 4 and 5. The amortized complexity of the Union 
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operation is O(logn), and of the Find operation is O(1). Across n 
operations, the total amortized complexity is O(n⋅logn).
These theorems illustrate how different potential functions can 
affect the amortized complexity. In some cases, certain features 
can lead to more efficient results, while others can increase 
complexity.

2.2. Traditional Linking Method CCL Algorithm vs DSI 
Method
The traditional method we used in this discussion is Connected 
Components Labeling (CCL). This method is often applied in 
the fields of image analysis and computer vision to identify and 
label connected areas (components) in binary images. The basic 
idea is to distinguish between different objects or regions in an 

image by assigning unique labels to each connected component.

The traditional method for CCL usually uses algorithms based on 
pixel connectivity analysis in the image. One of the frequently 
used approaches is the Flood Fill algorithm, which checks the 
connectivity of pixels based on their values and assigns them 
appropriate labels.

This method is simple to implement and is often used in basic 
applications where more complex image analysis is not required. 
However, in some cases, especially with more complex structures 
and shapes, one can face challenges in accurately separating the 
components. describe digital image processing using MATLAB 
[2].

The original image was loaded and then two approaches were 
applied to connect the components: the traditional approach and 
our method based on a dynamic identification tree. The results 
are shown in a triple view of images, where the left is the original 

image, in the middle is the result of traditional connection of 
components, and on the right is the result of our method. These 
results illustrate the different ways algorithms detect and connect 
components in an image.

The results show how each of the methods identifies and 
connects the components in the image. The traditional approach 
uses a built-in OpenCV function to connect components, while 
our method uses a dynamic identification tree for the same task. 
The differences between the results of these two approaches 
may indicate their specificities in the recognition and grouping 
of image parts.

Based on the results shown, we can notice that the traditional 
approach (middle image) uses a built-in function to connect 
components, while our method (right image) implements a 
dynamic identification tree for the same task. Although it is 
difficult to draw a definitive conclusion without more detailed 

quantitative performance measures, the differences in results 
indicate that our method may have the potential to provide a 
more optimized approach to connecting components in certain 
scenarios.

In order to make a final conclusion about whether our method 
is better, it is necessary to conduct additional analyzes and 
performance comparisons, as well as take into account the 
specifics of the problem and the application requirements. 
Quantitative evaluation, such as measuring execution time 
and component detection accuracy, could provide additional 
information on the effectiveness of the methods.

Figure 1: The Original Image of The Hexagon Display

Figure 2: Transformation of the Original to Our Connection Method
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 Figure 3: Execution Time of Traditional and our Method

Figure 4: Actual Markings

Figure 5: Predicted Markings

Our component association method, which relies on a dynamic 
identification tree, has shown significant improvement in 
execution speed compared to the traditional approach. While 

traditionally connecting components required about 15 seconds, 
your method was executed almost instantly, which indicates its 
efficiency and potential to speed up the image analysis process.

Our component association method, which relies on a dynamic 
identification tree, has shown significant improvement in 
execution speed compared to the traditional approach. While 

traditionally connecting components required about 15 seconds, 
your method was executed almost instantly, which indicates its 
efficiency and potential to speed up the image analysis process.

On the other hand, "predicted labels" are the results that our 
method assigns to each component during the linking process. 
These tags are also non-zero values, and each component gets 
a unique tag.

In the final step, we use the accuracy_score function from the 
scikit-learn library to compare the actual labels with the predicted 
labels and obtain a measure of component detection accuracy.

Component detection accuracy: 0.9576106770833334 
traditional method   
Component detection accuracy: 1.0 our method

Based on the results of component detection accuracy, we can 
conclude that both methods, both the traditional component 
linking and our method, achieved a high degree of accuracy. 
Here are some considerations: investigated image analysis using 

mathematical morphology [3].

 Traditional component linking: It achieved a high accuracy 
of approximately 95.76%, which indicates the efficiency in 
detecting the components in the image.
 Our component matching method: It achieved a perfect 
accuracy of 100%, which means it detected all the components 
in the image completely correctly.

At this point, we can say that our method has shown better 
results in terms of accuracy compared to traditional component 
linking. However, in order to reach a final conclusion about 
which method is better, I recommend additional analysis 
and evaluation, as well as taking into account the specifics 
of the problem and application requirements. Quantitative 
evaluation, such as measuring execution time and comparing it 
to other metrics, can provide additional information about the 
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effectiveness of the methods.

The results of the detection accuracy were obtained by applying 
the codes that analyzed the current detection accuracy and we 
obtained the result:

Component detection accuracy (Traditional):    
0.07448567708333333
Component detection accuracy (Our Method): 0.92576171875

 Figure 6: Detection Accuracy

These component detection accuracy values indicate how well 
the results of our algorithms (traditional and ours) match the 
actual component labels, which we have generated here and 
denoted as ground_truth.
 Traditional component association (Accuracy: 0.0745): This 
low value indicates that the results of the traditional approach are 
not aligned with the actual labels. It is possible that this approach 
is not sufficiently precise or adequate for the analyzed image.
 Our Component Linking Method (Accuracy: 0.9258): This 
high accuracy value indicates that the results of our method 
reflect the actual component labels very well. Our method 
appears to be efficient and accurate in identifying connected 
components in an image.

This result supports the assumption that our dynamic 
identification tree method has improved performance over the 
traditional approach, at least for this generated image. However, 
it is important to keep in mind that results may vary depending 
on the specifics of the images and problems you are working on.

In future works, this algorithm could be used to determine 
whether this connection result is also valid for other parameters. 

2.3. Digital Topology
Digital topology is a branch of computational geometry that 
deals with the study of topological properties of digital objects, 

i.e. objects presented in the digital space. Digital objects are 
collections of points located on a grid or grid of pixels, and 
digital topology focuses on the relationships between those 
points. Some of the key topics in digital topology include:

 Connectivity: Analyzing how pixels are connected within a 
digital object. Questions such as whether an object is connected 
or has multiple separate components are central.
 Boundaries and edges: Studying the boundary structures of 
digital objects. This includes analyzing the curves that make up 
the boundaries and how these curves behave.
 Homology: The similarity between digital objects at different 
resolutions or samples is studied.
 Deformations and transformations: How digital objects 
behave under certain transformations, such as rotation or scaling.

Digital topology is widely used in areas such as image processing, 
shape recognition, medical image analysis, and other areas 
where digital objects are used to represent various phenomena.

In the picture we are analyzing (picture 1), we have more 
hexagons, representing a more complex digital topology. Digital 
topology allows us to study the relationship between objects, 
borders and interiors in more detail: provide a modern approach 
to computer vision [4].
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Figure 7: Digital topology of connected components

In the picture (picture 7) we can see a hexagonal network 
consisting of several hexagons, where each individual hexagon 
represents a connected component. This structure may be of 
interest in the context of digital topology, where we analyze 
geometric and topological features of digital objects in an 
image. The hexagons are placed in a sequence creating a specific 
arrangement, and the connection between them can provide 
insight into the topological features of digital space. This kind 
of analysis can be useful in areas such as pattern recognition or 
image structure analysis.

3. Boundaries and Edges in Digital Topology With the Help 
of The Dsi Algorithm of Our Method
Let's consider the theoretical concept. We will assume that the 
dynamic identification tree has already identified the connected 

components in the image. Now we want to analyze the 
boundaries of those components. We will try to track changes 
in pixel intensity within each component to identify boundaries.

Entrance:
 Image with previously connected components (using 
dynamic identification tree).
Steps:
 We go through each component.
 For each edge pixel in the component, we track its 
surroundings.
 If we notice a change in pixel intensity, we record that 
position as part of the boundary.
 Finally, we have a structure that contains information about 
the boundaries of each component.

Figure 8: Analysis of Component Boundaries

The figure shows the analysis of the boundaries of the digital 
image components. Components are separated by colored 
lines that indicate edge pixels. This process helps to study the 
boundary structures of digital objects and enables the analysis 
of the behavior of the curves that make up those boundaries. 
Advances in digital topology often involve analyzing the 
boundaries and edges of digital objects. Borders are lines that 
mark the transition between different areas in a digital image. 
In the context of boundary analysis, it is crucial to study the 
structure of these lines and understand how the curves that make 
up the boundaries behave.

Our algorithm uses a dynamic identification tree to analyze 
component boundaries in a digital image. A dynamic 
identification tree is a data structure that enables efficient linking 
and identification of components in an image. Through this 
process, the algorithm marks the boundaries of the components, 
allowing further analysis of the topological features of the 

image. investigated intrinsic motivation systems for autonomous 
mental development [5].

This approach enables the identification, analysis, and study 
of boundary structures, which can be useful in a variety of 
applications, including shape analysis, pattern recognition, 
and other areas of digital image processing. The dynamic 
identification tree algorithm we used helps in identifying and 
marking the boundaries of digital objects in the image. In the 
context of digital topology, boundaries are lines that mark the 
transition between different areas or components in an image.

These edges, marked during analysis by a dynamic identification 
tree, represent precisely positioned lines that separate different 
areas or components in the image. The positioning of these 
borders refers to the precise determination of their position in 
relation to other parts of the image. This precision in positioning 
enables detailed analysis of image structure, identification of 
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shapes and other topological features.

Essentially, the result of the algorithm is a labeled image with 
clearly defined boundaries between different components, which 
facilitates further analysis and interpretation of the image.

3.1. Deformation and Transformation Using the DSI 
Algorithm
Deformations and transformations in the context of digital 
objects refer to the way these objects behave under certain 
geometric changes, such as rotation, scaling or shape changes. 
These changes enable the analysis of how digital objects change 
under different transformations. For example, rotating a digital 
image can change the orientation of objects in the image, 
while scaling can affect the size of those objects. By analyzing 

deformations and transformations, we can better understand 
how digital objects react to changes in geometric space. Now we 
can apply these concepts to our image.

Deformations and transformations of digital objects are often 
analyzed using geometric transformations. In this context, we 
will consider the rotation and scaling of a digital image.

 Rotation: Rotation refers to changing the orientation of 
an object around a certain point. In digital image processing, 
rotation can affect the position and arrangement of pixels in an 
image.
 Scaling: Scaling involves changing the size of the object. 
It can be applied horizontally, vertically or in both directions. 
Scaling can change the spatial resolution of an image.

Figure 9: Image Transformation, Rotation and Scaling

Our algorithm can be applied to images subjected to 
transformations such as rotation and scaling. If we have 
variable shapes of objects in the image, especially after these 
transformations, the Dynamic Identification Tree can be useful 
for connecting components and analyzing their relationships.

We will notice that, in the case of rotation and scaling, geometric 
transformations will affect the arrangement of pixels and the 
shape of objects. Our algorithm can help identify and connect 
transformed components.

To apply our algorithm to transformed images, we just need to 
use properly transformed images instead of the original image 
in the previous code. For example, instead of images, we would 
use rotated_image or scaled_image in function calls.

This can be useful in various scenarios, such as tracking objects 
over time (rotation), analyzing changing object sizes (scaling), 
and the like. Analysis of transformations can further extend the 
use of the algorithm to different domains of application.

Figure 10: Connections After Rotation and Scaling Transformations

This result shows how the Dynamic Identification Tree behaves 
after applying rotation and scaling to the original image. When 
the image undergoes transformations, the Dynamic Identification 
Tree tries to preserve the connectivity of the components, which 
results in corresponding changes in the marking (labeling) of 
the regions. For example, after rotation and scaling, you may 
notice how regions (components) are still recognized and 
labeled, while preserving the topology of the original image. The 
resulting label-matrices after these transformations are shown. 

provide basic principles and practice in computer graphics [6].

4. Efficiency of The Algorithm And Future Works
The effectiveness of the algorithm can be evaluated based on 
execution time, accuracy of component identification or other 
relevant metrics depending on the specifics of the problem. 
In our case, measuring the execution time and accuracy of 
component identification after transformations can be part of the 
evaluation of the efficiency of the Dynamic Identification Tree. 
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These metrics are usually compared to traditional approaches or 
other algorithms to determine whether a Dynamic Identification 
Tree is a better or worse solution to a given problem. discusses 
the performance evaluation of algorithms in machine learning 
[7].

Future researchers are recommended to expand their research on 
several key aspects:

 Performance optimization: Try to optimize your algorithm 
to reduce execution time or improve accuracy.
 Application to different types of images: Test the algorithm 
on different types of images to check its universality and 
robustness.
 Real-time testing: If possible, implement the algorithm in 
real-time and evaluate its usability in real-world situations.
 Comparison with other approaches: Compare the results 
of your algorithm with other approaches in the literature to 
determine its effectiveness and advantages.
 Application to larger data sets: Test the algorithm on larger 
and more diverse data sets to gain a deeper understanding of its 
performance.
 Parallelization and Distributed Execution: Explore the 
possibilities of algorithm parallelization to take advantage of 
multi-core architectures or distributed systems.
 Cross-Platform Testing: Test the algorithm on different 
computing platforms to ensure its portability. provides algorithms 
and applications in computational form [8].

These steps will help you further develop, optimize, and deploy 
your algorithm, as well as improve your understanding of its 
capabilities and limitations.

5. Discussion
Algorithm performance is improved in terms of execution 
speed and accuracy compared to traditional linkage methods. 
components. The algorithm proved to be effective in the context 
of digital topology, identification of boundaries and edges of 
digital objects. After rotating and scaling the images, the results 
were as expected, but additional optimizations are needed to 
improve the connectivity of the components. The accuracy of 
component detection varies, with higher accuracy when applied 
to certain types of images. In a real-time context, the algorithm 
presents certain challenges, and possible optimizations should be 
explored. Open questions include the robustness of the algorithm 
to different scenarios and the need for additional research 
regarding its application to specific types of images. Future work 
should focus on improving accuracy, optimizing for real time, 
and exploring new approaches to connecting components. This 
dynamic identification tree can be widely used in image analysis 
and data processing. For example, in medicine, it could be used 
to identify and analyze structures in medical images, helping 
with diagnosis and tracking changes over time. Also, in industry, 
especially in areas such as production quality, this dynamic tree 
can be applied to detect and analyze defects or irregularities in 
products.

In addition, shape transformation and analysis algorithms can 

be applied in robotics, object recognition, and other areas of 
artificial intelligence. This technology can be essential for the 
development of autonomous systems and the improvement of 
efficiency in various industries.Through further research and 
optimization, this technique can be adapted to the specific 
requirements of different domains, providing effective solutions 
to different problems.

6. Conclusion
Based on the analysis of the results and the performance of our 
dynamic identification tree compared to the traditional approach, 
we conclude that this method has the potential to improve image 
analysis and component detection. The achieved high detection 
accuracy of our approach, with faster execution time, indicates 
its effectiveness compared to traditional methods. investigate the 
amortized efficiency of list updates and page rules in computer 
graphics [9].

However, to confirm the general applicability and robustness of 
this method, further evaluations on different datasets and scenarios 
are necessary. Also, algorithm optimizations and additional 
performance analyzes can improve the wider applicability of 
this technique in different domains. In conclusion, the dynamic 
identification tree shows promising results, but further research 
and adaptation are crucial to realize the full potential of this 
method in a wider range of applications.

Our dynamic tree identification method shows significant 
improvement in component detection accuracy compared to 
traditional approaches, which indicates its potential in the field 
of image analysis. The faster execution time further highlights 
the efficiency of our method, making it an attractive option in 
applications where real-time responsiveness is a key factor.

Although we have achieved high accuracy, there is room for 
further optimization and adaptation to the specific requirements 
of different scenarios. Further research should be directed towards 
more diverse datasets in order to verify the wider applicability 
and robustness of our method. Introducing additional parameters 
and fine-tuning can further improve the performance and 
adaptability of the algorithm in different contexts.

In essence, the dynamic identification tree represents a promising 
technology that requires further refinement to become a key 
player in the domain of image analysis.
 
The dynamic identification tree has a variety of applications, 
including medical diagnostics, automated manufacturing, 
traffic safety, robotics, geographic information systems (GIS), 
biometrics, and agricultural technology. These applications 
enable the analysis and recognition of shapes, structures or 
entities in different contexts.
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