

Research Article

Journal of Marine Science Research and Oceanography

On the Reproducibility of Bird and Mammal Transect Counts in Polar Seas

Claude R Joiris 1,2*

¹Laboratory for Polar Ecology (PolE), F-26130 Saint-Restitut, France

²Conservation Biology Unit, Royal Institute for Natural Sciences, B-1000 Brussels, Belgium

*Corresponding author

Claude R Joiris, Laboratory for Polar Ecology (PolE), Saint-Restitut, France Conservation Biology Unit, Royal Belgian Institute for Natural Sciences, Brussels, Belgium. E-mail: crjoiris@gmail.com

Submitted: 05 Jan 2021; Accepted: 11 Jan 2021; Published: 27 Jan 2021

Citation: Claude Joiris (2021) On the Reproducibility of Bird and Mammal Transect Counts in Polar Seas. J Mari Scie Res Ocean, 4(1): 145-153.

Abstract

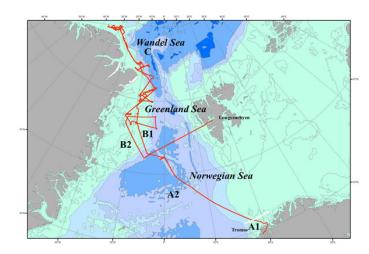
In order to make comparisons between seabird and marine mammal data collected at sea, a first step consists in evaluating their reproducibility. The same transects counted during years show huge variations up to one or two orders of magnitude. In this paper, I compare return transects followed in a short period. Out of important heterogeneities such as local hotpot concentrations, results obtained along the same return transect seem to vary by a factor of two to four. Within a same transect, data simultaneously collected by two observers on both sides of the bridge show ratios of mean values (numbers per 30 min counts) remaining below a factor two, with a mean variation by a factor 1.4.

Keywords: Seabirds & Marine Mammals, Polar Seas, Transect Counts, Reproducibility

Introduction

The main aims of the long-term study by this team concern on the one hand to identify the basic mechanism explaining their distribution at sea (hydrography), and on the other hand to detect possible temporal and spatial changes, with special attention to global climate changes. For this second aspect, a major question concerns the variability and reproducibility of transect counts.

Materials and Methods

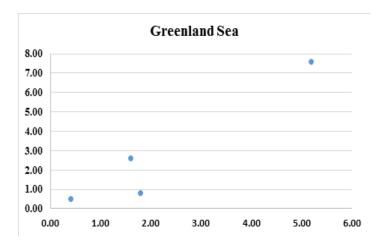

Our counting methodology is adapted to polar marine ecosystems with (very) low densities. Transect counts were conducted from the bridge of icebreaking RV *Polarstern* (18 m above sea level) without width limitation during 30 min periods, on a continuous basis when light and visibility conditions allowed and when speed was higher than seven knots. When detected, followers were included as far as possible once per count only. More details on our counting method have been described and discussed previously [1, 2]. One observer was counting from the side of the bridge, covering an angle of 90° ahead, in four hour watches. Animals were detected with naked eye and observations confirmed with 10X40 binoculars when necessary.

Results

This paper concerns the comparison of data collected on the same return route during a short period.

In the Arctic, an expedition of RV Polarstern during August 2018

allowed to compare two return transects in the Greenland and Wandel seas respectively (Fig. 1) [3]. The abundance of seabird and mammal species was very different in both areas, but a quantitative comparison shows reproducibility factors between one and three within an area for the most numerous species (Table 1), variability being obviously much higher by low densities.



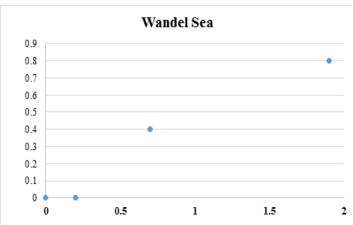
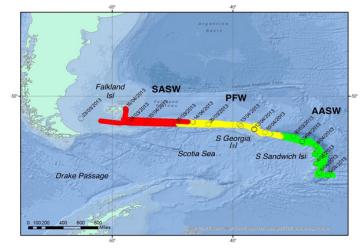
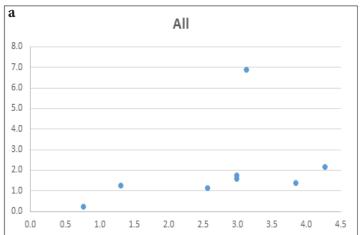
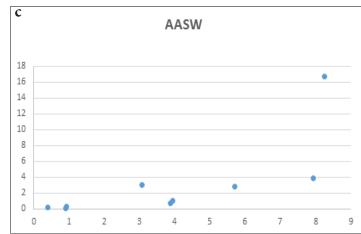

Figure 1: Seabird and mammal transect counts in August 2018: main geographical zones; return transects were B1 and B2 in the Greenland Sea and Fram Strait, and C in the Wandel Sea [3]

Table 1: Reproducibility of results: data collected during a return route in the same zone, main species; n = number of 30min transect counts; N = total number of individuals, mean per count, ratio of means

	Zone*	В	B1			∑B	C1		C2		\sum C
	Speed (knots)	6.	6.9)		6.7		6.9		
	n	7	78		37		63		65		
		N	mean	N	mean	ratio	N	mean	N	mean	ratio
Fulmar all	Fulmarus glacialis	123	1.6	96	2.6	0.61	47	0.7	24	0.4	1.75
Ivory gull	Pagophila eburnea	142	1.8	28	0.8	2.25	121	1.9	50	0.8	2.38
Kittiwake	Rissa tridactla	34	0.4	17	0.5	0.8	1	0	2	0	-
Little auk	Alle alle	403	5.2	281	7.6	0.68	15	0.2	2	0	-


^{*} B: Greenland Sea + Fram Strait, partim latitudinal transect; C: Wandel Sea;




Figure 2: Main bird species recorded during return routes (mean number per 30min transect count). Greenland Sea and Fram Strait, section B; from left to right: kittiwake *Rissa tridactyla*, fulmar *Fulmarus glacialis*, ivory gull *Pagophila eburnea*, little auk *Alle alle* (a); Wandel Sea, section C: from left to right: kittiwake, little auk, ivory gull, fulmar (b); see Table 1 and Fig. 1; please note difference in scales

An Antarctic expedition allows a similar comparison: the Polarstern expedition along the Scotia Ridge, including South Georgia and South Sandwich Islands in March-April 2013 [4]. Three zones were recognised on the basis of hydrological data (mainly water temperature SST and salinity) (Fig 3). The first zone being very limited and showing differences in route was excluded from this discussion. Important heterogeneities (hotspots) were observed for some species in one area of the other, making calculation of mean and comparisons impossible: Antarctic prion Pachyptila desolata and prion sp., Antarctic fur seal Arctocephalus gazella and, to a lesser extend, southern right whale Eubalaena australis this is why they are not represented in the figure. A typical example of hotspot is the one of Antarctic prions: out of a total of 9800 individuals for the whole expedition, 9270 were tallied at eight successive counts close to the Antarctic Front, including 5000 in one count. Antarctic fur seal and humpback whale Megaptera novaeangliae were also present in the same area (Tables 2 & 3).

Figure 3: *Polarstern* expedition along the Scotia Ridge, Scotia Sea; main water masses defined on the basis of water temperature SST and salinity: sub-Antarctic Surface Water (SASW), Polar Front Water (PFW), Antarctic Surface water (AASW); see Table 4 [4].

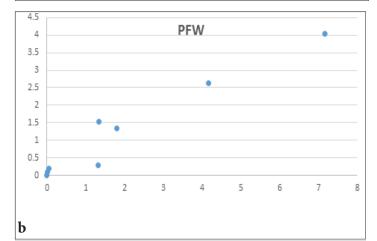


Figure 4: Main bird species recorded during return routes (mean number of individuals per 30min transect count) along the Scotia Ridge. Whole expedition (a): from left to right, Wilson's storm-petrel *Oceanites oceanicus*, Cape petrel *Daption capense*, southern giant petrel *Macronectes giganteus*, southern fulmar *Fulmarus glaucoides*, black-belied storm-petrel *Fregetta tropica*, chinstrap penguin *Pygoscelis antarctica*, black-browed albatross *Diomedea melanophri*, white-chinned petrel *Procellaria aequinoctialis*. Polar Front Water PFW (b), from left to right: Cape petrel, chinstrap penguin, southern fulmar, Wilson's storm-petrel, southern giant petrel, black-bellied storm-petrel, black-browed albatross, white-chinned petrel. Antarctic Surface Water AASW (c): Wilson's storm-petrel, southern giant petrel, black-browed albatross, southern fulmar, southern giant petrel, black-bellied storm-petrel, Cape petrel, chinstrap penguin; see Table 2 and Fig. 3.

Table 2: Main water masses and fronts detected along the North Scotia Ridge and South Sandwich Trench; water temperature (SST) and salinity values: mean (min-max)

	Position	SST °C	Salinity
		Mean (min- max)	Mean (min- max)
Sub-Antarctic Surface Water (SASW)		6.45 (4.96-7.15)	33.98 (33.87-34.02)
Antarctic front (AF)	53.6°S, 49°W		
Polar Front Water (PFW)		3.06 (1.76-4.79)	33.76 (33.15-33.89
Polar Front (PF)	55°S, 32°W		
Antarctic Surface Water (AASW)		0.47 (-0.17-1.70)	33.81 (33.70-33.93)

Table 3: Reproducibility of results: data collected during a return route in the same zone, main species; n = number of 30min transect counts; mean per count; ratio of means

	Zone*	All 1	All 2	∑All	PFW 1	PFW 2	∑PFW	AASW 1	AASW 2	∑AASW
				Ratio			Ratio			Ratio
	n	202	145	343	94	69	263	76	59	
Chinstrap penguin	Pygoscelis antarctica	3.13	6.90	0.45	0.05	0.2	0.25	8.25	16.7	0.49
Black-browed albatross	Diomedea melanophris	3.85	1.38	2.79	4.17	2.62	1.59	0.93	0.29	3.21
Southern giant petrel	Macronectes giganteus	2.57	1.14	2.26	1.35	1.52	0.89	3.95	0.97	4.07
Cape petrel	Daption capense	2.99	1.57	1.91	0	0.01	0.00	7.93	3.83	2.07
Southern fulmar	Fulmarus glacialoides	1.31	1.27	1.03	0.02	0.1	0.20	3.08	2.98	1.03
\sum prions	Pachyptila sp.	37.45	3.64	10.28	77.12	4.77	16.17	3.88	0.66	5.88
White-chinned petrel	Procellaria aequinoctialis	4.27	2.14	1.99	7.17	4.04	1.77	0.9	0.1	9.00
Wilson's storm-petrel	Oceanites oceanicus	0.77	0.22	3.48	1.33	0.3	4.43	0.39	0.17	2.29
Black-bellied storm-petrel	Fregatta tropica	2.99	1.76	1.70	1.81	1.33	1.36	5.7	2.76	2.07
All birds		67.58	27.28	2.48						
Antarctic fur seal	Arctocephalus gazella	9.79	9.79	1.00	19.9	5.74	3.47	0.73	0.36	2.03

^{*} All: Scotia Ridge expedition; PFW: Polar Front Water; AASW: Antarctic Surface Water; see Table 2 and Fig. 2

Table 4: Hotspot concentration of selected species close to South Georgia; number per count from the bridge (left)

Count	Date	Time	Latti- tude °S	Longi- tude °W	Water temperature	Depth	Antarc- tic prion Pachypti- la desolata	Antarctic fur seal Arctoceph- alus gazella	southern right whale Eubalaena australis	hump- back whale Megap- tera novaean- glia\
130	29/03/13	13:30	54,33	36,04	2,93	5696	11	7	0	0
131	29/03/13	14:00	54,40	35,93	2,70	5514	60	9	0	0
132	29/03/13	14:30	54,46	35,82	2,71	5263	220	11	0	0
133	29/03/13	15:00	54,53	35,72	2,72	5311	600	23	0	0
134	29/03/13	15:30	54,59	35,61	2,74	5251	1700	9	0	0
135	29/03/13	16:00	54,66	35,50	2,79	6186	1500	55	0	0
136	29/03/13	16:30	54,71	35,39	2,73	6243	5000	750	0	14
137	29/03/13	17:00	54,77	35,26	2,72	6276	180	4	0	0
138	30/03/13	05:30	55,01	31,93	2,07	6474	0	16	0	8
	(Antarctic Front)									
139	30/03/13	06:00	55,02	31,77	1,70	5482	0	2	0	0

140	30/03/13	06:30	55,04	31,60	1,44	4306	0	0	0	0
141	30/03/13	07:00	55,05	31,44	1,37	4203	2	0	0	0
142	30/03/13	07:30	55,06	31,28	1,23	1189	0	0	0	2
143	30/03/13	08:00	55,07	31,12	1,20	1157	2	4	0	0
144	30/03/13	09:10	55,10	30,74	1,04	1345	5	0	2	4
145	30/03/13	09:40	55,12	30,58	1,05	3663	2	0	1	1
146	30/03/13	10:10	55,13	30,42	1,04	3721	7	0	0	0
147	30/03/13	10:40	55,14	30,25	1,02	4014	4	0	0	0
148	30/03/13	11:10	55,15	30,09	1,03	3925	2	0	1	0
Total							9295	890	4	29

Variability of counting data was compared between simultaneous counts from both sides of the bridge of *Polarstern*, two observers being separated by 25m, counting following an angle of 90° ahead. Reproducibility was as expected much better, the mean ratio between mean values per count being always less than a factor two (Table 5).

Table 5: Main species tallied from both sides of the bridge of RV Polartsern during the Scotia Ridge expedition n = number of 30min transect counts; N: total number of individuals; mean per count; ratio of means

		left		right		
	n	365		352		
		N	mean	N	mean	ratio
Chinstrap penguin	Pygoscelis antarctica	2852	7.81	1632	5.79	0.74
Black-browed albatross	Diomedea melanophris	732	2.01	977	3.46	1.72
Southern giant petrel	Macronectes giganteus	567	1.55	685	2.43	1.57
Cape petrel	Daption capense	360	0.99	450	1.6	1.62
Southern fulmar	Fulmarus glacialoides	709	1.94	831	2.95	1.52
∑ prions	Pachyptila sp.	1359	3.72	884	3.13	0.84
White-chinned petrel	Procellaria aequinoctialis	936	2.56	1189	4.22	1.65
Wilson's storm-petrel	Oceanites oceanicus	340	0.93	503	1.78	1.91
Black-bellied storm-petrel	Fregatta tropica	787	2.16	859	3.05	1.41
All birds		20740	56.8	17852	48.9	1.16
Hourglass dolphin	Lagenorhynchus cruciger	76	0.21	60	0.21	1.00
Humpback whale	Megaptera novaeangliae	41	0.11	41	0.15	1.40
Antarctic fur seal	Arctocephalus gazella	1634	4.48	2317	8.22	1.83
Mean						1.41

Discussion and Conclusion

Drastic changes in population abundance and/ or geographical distribution can be detected by comparing data collected during different expeditions, for instance the decrease of Arctic gulls in northern Canada and northern Greenland [5-8]. or the increase of cetacean density in the North Atlantic Ocean probably due to decrease of ice coverage in the North-East and North-West Passages from 2005 and 2007 on [9]. More limited changes however can be much difficult to detect. This is why in this article I tried to compare data collected by the same team and methodology, especially their reproducibility. This study concerns the most abundance species, since variability obviously increase by low densities.

When the same transect is followed in different years and seasons, the general trends are confirmed, mainly the importance of hydrological features. Reproducibility however can be very weak, mainly due to seasonal changes in distribution both for seabirds and marine mammals the variability might reached one order of magnitude or more [10-12]. So that quantitative comparisons should concern only return routes followed during a short period. Out of very large heterogeneities such as hotspots, variability seems to remain within a factor of two to four. By simultaneous comparisons this factor is reduced to a mean value of 1.4, reaching a maximum value of two.

The practical consequence seems to be that at-sea counting might

allows detecting differences by one order of magnitude and more, after correction for heterogeneity (hotspots), seasonal movements and migrations, and changing ice conditions [2].

Acknowledgements

Observers of the PolE team were often invited on board RV Polarstern (AWI, Bremerhaven), especially from 1988 till 2014.

References

- 1. Joiris CR, Falck E (2010) Summer at-sea distribution of little auks Alle and harp seals Pagophilus (Phoca) groenlandica in the Greenland Sea: impact of small-scale hydrological events. Polar Biol 34: 541-548.
- Joiris CR (2011) Possible impact of decreasing Arctic pack ice on the higher trophic levels - seabirds and marine mammals. Adv Environ Res 23: 207-221.
- Joiris CR, D'Hert D (2020) Seabird and marine mammal at-sea distribution in the Norwegian, Greenland and Wandel seas, 2018. J Mar Sci Res Oceano 3: 129-134.
- 4. Joiris CR, Humphries GRW, D'Hert D, Lafontaine R-M, Robert H, et al. (2015) Major hotspots detected along the Scotia Ridge in autumn for southern right whales Eubalaena australis, Antarctic fur seals Arctocephalus gazella and Antarctic prions Pachyptila desolata. Adv Polar Sc 26: 282-291.
- Mallory ML, Gilchrist HG, Fontaine AJ, Akearok JA (2003) Local ecological knowledge of ivory gull declines in Arctic Canada. Arctic 56: 293-298.

- Gilchrist HG, Mallory ML (2005) Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol Conserv 121: 303-309.
- 7. Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B (2009) Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol 32: 1275-1286.
- 8. Joiris CR (2017) Drastic decrease of high Arctic gulls ivory Pagophila eburnea and Ross's Rhodostethia rosea in the northern Greenland Sea and Fram Strait from 1988 to 2014. Polar Biol (2017) 40: 1029-1034.
- Joiris CR (2016) Considerable increase in bowhead, blue, humpback and fin whales numbers in the Greenland Sea and Fram Strait between 1979 and 2014. Adv Polar Sc 27: 117-125
- 10. Joiris CR, Humphries GRW, De Broyer A (2013) Seabirds encountered along return transects between South Africa and Antarctica in summer in relation to hydrological features. Polar Biol 36: 1633-1647.
- 11. Joiris CR, Humphries GRW, De Broyer A (2015) Summer distribution of marine mammals encountered along transects between South Africa and Antarctica during 2007-2012 in relation to oceanographic features. Adv Polar Sc 26: 265-273.
- 12. Jungblut S, Nachtsheim DA, Boos K, Joiris CR (2017) Biogeography of top predators seabirds and marine mammals along latitudinal transects in the Atlantic Ocean. Deep-Sea Res II 141: 59-73.

Annexes

As a complement of information, more complete data for the main expeditions discussed in this article are presented as annexes.

Annex 1: Observations of seabirds and marine mammals registered during the PS115-1 expedition of RV Polarstern in the Norwegian, Greenland and Wandel seas, August 2018; n = number of 30 min transect counts; N = total number; mean number per count

	Zone	All		A*		B*		C*		
	n	381		88		166		128		
Species	Species	N	mean	N	mean	N	mean	N	mean	Remark
Arctic diver	Gavia stellata	1		1		0		0		
Fulmar L	Fulmarus glacialis	645	1.7	390	4.4	232	1.4	23	0.2	
Fulmar D	Fulmarus glacialis	207	0.5	13	0.15	146	0.9	48	0.4	
Fulmar all	Fulmarus glacialis	840	2.2	403	4.6	366	2.2	71	0.6	
Gannet	Sula bassana	6		6		0		0		
Pomarine skua	Stercorarius pomarinus	0		0		0		0		1 out of effort
Arctic skua	Stercorarius parasiticus	25	0.1	17	0.2	7	0.04	1		
Long-tailed skua	Stercorarius longicaudus	11	0.03	4	0.05	6	0.04	1		
Skua sp	Stercorarius sp	11	0.03	1		8	0.05	2		
Herring gull	Larus argentatus	1204	3.2	1204	13.7	0		0		
Lesser black-backed gull	Larus fuscus	2		2		0		0		
Great black-backed gull	Larus marinus	643	1.7	643	7.3	0		0		

Common gull	Larus canus	61	0.2	61		0		0		
Sabine's gull	Xema sabini	1		0		0		1		+ 1 out of effort
Glaucous gull	Larus glaucoides	9	0.02	0		9	0.05	0		
Ivory gull	Pagophila eburnea	342	0.9	0		171	1.0	171	1.3	
Kittiwake	Rissa tridactyla	228	0.6	141	1.6	84	0.5	3		
Common tern	Sterna hirundo	18	0.05	18	0.2	0		0		
Arctic tern	Sterna paradisaea	44	0.1	27	0.3	17		0		
Black guillemot	Cepphus grylle	2		0		2		0		
Atlantic puffin	Fratercula arctica	3120	8.3	3043	34.6	0		0		off Norway
Little auk	Alle alle	713	1.9	3		693	4.2	17	0.1	
Brünnich's guillemot	Uria lomvia	15	0.04	0		15	0.1	0		
Common guillemot	Uria aalge	48	0.13	44	0.5	4	0.02	0		
Razorbill	Alca torda	3		3		0		0		
Common eider	Sommateria mollissima	5		5		0		0		
∑ birds		7376	19.5	5630	64.0	1382	8.3	267	2.1	
Number of species		25		18		14		7		
Harbour porpoise	Phocoena phocoena	5		5		0		0		
Humpback whale	Megaptera novaeangliae	3		0		3		0		
Bowhead	Balaena mysticetus	0		0		0		0		1 out of effort, E Greenland
Fin whale	Balaenoptera physalus	3		2		1		0		+ 5 out of ef- fort, Fram Strait
Blue whale	Balaenoptera musculus	0		0		0		0		2 out of effort
Minke whale	Balaenoptera acurostrata	7		5		2		0		
Sperm whale	Physeter macrocephalus	5		5		0		0		
Killer whale	Orcinu orca	9		9		0		0		
Dolphin sp	Lagenorhynchus	6		6		0		0		White-beaked or white-sided
Large whale sp		7		3		5		0		
∑ cetaceans		46	0.12	35	0.4	11	0.07	0		
Number of species		7		6		4		0		
Harp seal	Pagophilus groenlandi- cus	3		0		3		0		+ 10 out of effort
Bearded seal	Erignathus barbatus	10	0.03	0		7	0.04	3		
Ringed seal	Pusa hispida	12	0.03	0		9	0.05	3		
Hooded seal	Cystophora cristata	13	0.03	0		9	0.05	4		
pinniped sp	pinnipedia sp	64	0.17	0		44	0.3	27	0.2	
\sum Pinnipeds		38	0.10	0		72	0.4	37	0.3	
Number of species		4				4		3		
Polar bear	Ursus maritimus	8	0.02	0		5	0.03	3	0.02	+ 2 out of effort

^{*} A: Norwegian Sea; B: Greenland Sea + Fram Strait; C: Wandel Sea

Annex 2 : Seabirds and marine mammals tallied along the Scotia Ridge and South Sandwich Trench; N: total number recorded; mean per 30 min transect count; partim Polarstern [4]

	n >	365		282		
		left (a)		right (a)		
		N	mean	N	mean	Remark
King penguin	Aptenodytes patagonicus	215	0.59	201	0.71	
Gentoo penguin	Pygoscelis papua	80	0.22	42	0.15	
Chinstrap penguin	Pygoscelis antarctica	2852	7.81	1632	5.79	
Rockhopper penguin	Eudyptes chrysocome	5		7		
Macaroni penguin	Eudyptes chrysolophus	66	0.18	42	0.15	
Penguin sp.		141	0.39	93	0.33	
Southern royal albatross	Diomedea [epomorpha] epomorpha	14	0.04	14	0.05	
Wandering albatross	Diomedea [exulans] sp.	184	0.5	175	0.62	
Wwand/royal albatross	Diomedea [exulans]/[epomorpha] sp.	25	0.07			
Black-browed albatross	Thalassarche [melanophrys] melanophrys	732	2.01	977	3.46	
Grey-headed albatross	Thalassarche chrysostoma	52	0.14	46	0.16	
Sooty albatross	Phoebetria fusca	8		6		
Light-mantled sooty albatross	Phoebetria palpebrata	30	0.08	32	0.11	
Southern giant petrel	Macronectes giganteus	567	1.55	685	2.43	
Northern giant petrel	Macronectes halli	40	0.11	63	0.22	
Giant petrel sp.	Macronectes sp.	38	0.1	84	0.3	
Southern fulmar	Fulmarus glacialoides	709	1.94	831	2.95	
Cape petrel	Daption capense	360	0.99	450	1.6	
Snow petrel	Pagodroma [nivea] sp.	9		11	0.04	
White-chinned petrel	Procellaria aequinoctialis	936	2.56	1189	4.22	
Kerguelen petrel	Pterodroma brevirostris	123	0.34	136	0.48	
Great-winged petrel	Pterodroma [macroptera] macroptera	1		1		
Soft-plumaged petrel	Pterodroma mollis	345	0.95	379	1.34	
Atlantic petrel	Pterodroma incerta	2		2		
Grey petrel	Procellaria cinerea	6		4		
Blue petrel	Halobaena caerulea	278	0.76	325	1.15	
Antarctic prion	Pachyptila desolata	9769	26.76	7487	26.55	
Slender-billed prion	Pachyptila belcheri	9		2		
Fairy prion	Pachyptila turtur	106	0.29	42	0.15	
Prion sp.	Pachyptila sp.	1253	3.43	742	2.63	
Sooty shearwaterr	Puffinus griseus	67	0.18	142	0.5	
Great shearwater	Puffinus gravis	19	0.05	28	0.1	
Wilson storm-petrel	Oceanites oceanicus	340	0.93	503	1.78	
Grey-backed storm-petrel	Oceanites nereis	31	0.08	24	0.09	
Black-bellied storm-petrel	Fregetta tropica	787	2.16	859	3.05	
Storm-petrel sp.		24	0.07	2	0.01	
Common diving-petrel	Pelecanoides urinatrix			33	0.12	

South Georgian diving-petrel	Pelecanoides georgicus					One wrecked on board
Diving-petrel sp.	Pelecanoides sp.	369	1.01	376	1.33	
South Georgia shag	Phalacrocorax [atriceps] georgianus	19	0.05	13	0.05	
Snowy sheathbill	Chionis alba	1		1		
Antarctic tern	Sterna vittata	111	0.3	117	0.41	
South polar skua	Catharacta [skua] maccormicki	1		1		
Brown skua	Catharacta [skua] antarctica	15	33	11	0.04	
Arctic skua	Stercorarius parasiticus			1		
Phalarope sp.	Phalaropus sp.	1				Off S America
Total all birds		20740	56.82	17811	63.16	
Total selected birds (c)		18870	51.7	16501	45.21	
Commerson's dolphin	Cephalorhynchus commersonii					One Strait of Magellan
Hourglass dolphin	Lagenorhynchus cruciger	76	0.21	60	0.21	
dolphin sp.		20	0.05	16	0.06	
Long-finned pilot whale	Globicephala melas			30	0.11	
Killer whale	Orcinus orca			3	0.01	
sperm whale	Physeter macrocephalus			1	0	
Southern bottlenosed whale	Hyperoodon australis					
Southern right whale	Eubalaena australis	6	0.02	3	0.01	
Humpback whale	Megaptera novaeangliae	41	0.11	41	0.15	
Fin whale	Balaenoptera physalus	6	0.02	11	0.04	
large whale sp.		35	0.1	37	0.13	
Total all cetaceans		184	0.5	152	0.54	
Total selected cetaceans (c)		129	0.35	149	0.53	
South American fur seal	Arctocephalus australis	14	0.04	52	0.18	Off S America
Antarctic fur seal	Arctocephalus gazella	1634	4.48	2317	8.22	South Georgia
Seal sp.		511	1.4			
Southern elephant seal	Mirounga leonina	2	0.01	6	0.02	
Total all pinnipeds		2281	6.25	2402	8.08	
Total selected pinnipeds (c)		1650	4.52	2375	8.42	

⁽a): counting from backboard and portside of the bridge respectively; (b): not included in calculations; (c): after exclusion of unidentified and strictly coastal species

Copyright: ©2021 Claude R Joiris. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.