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Abstract 
We present an axiomatic foundation of non-integrable phases of Schrödinger wave functions and use it for interpreting Dirac’s 
1931 pioneering article in terms of the electromagnetic 4-potential. The quantization of the electric charge in terms of e 
implies the quantization of the dielectric flux through closed surfaces Ψ :=        D · dS in terms of the ‘Lagrangean’ dielectric 
flux quantum ΨD = e. The quantization of the analogous magnetic monopole charge in terms of g implies the quantization 
of the magnetic flux through closed surfaces Φ :=      B· dS in terms of the ‘Diracian’ magnetic induction flux quantum ΦB = 
g = h/e, and vice versa. Here, the question is raised, if the quantization of the magnetic charge (and hence field) in a given 
volume depends on the total electric charge in that volume. Furthermore, we have ΦB/ΨD = g/e = h/e2 = RK, the von Klitzing 
constant, the basic resistance of the quantum Hall effect. RK and the vacuum permittivity ε0 and permeability μ0, respectively, 
combine to two natural speed constants different from that of light in vacuum c [1.]
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Abstract. We present an axiomatic foundation of non-integrable phases of Schrödinger

wave functions and use it for interpreting Dirac’s 1931 pioneering article in terms of the

electromagnetic 4-potential. The quantization of the electric charge in terms of e implies

the quantization of the dielectric flux through closed surfaces Ψ̄ :=
�

D⃗ · dS⃗ in terms

of the ‘Lagrangean’ dielectric flux quantum ΨD = e. The quantization of the analogous

magnetic monopole charge in terms of g implies the quantization of the magnetic flux through

closed surfaces Φ̄ :=
�

B⃗ · dS⃗ in terms of the ‘Diracian’ magnetic induction flux quantum

ΦB = g = h/e, and vice versa. Here, the question is raised, if the quantization of the

magnetic charge (and hence field) in a given volume depends on the total electric charge in

that volume. Furthermore, we have ΦB/ΨD = g/e = h/e2 = RK, the von Klitzing constant,

the basic resistance of the quantum Hall effect. RK and the vacuum permittivity ε0 and

permeability µ0, respectively, combine to two natural speed constants different from that of

light in vacuum c. [1]

I. INTRODUCTION

Why there are free electric but – according to all experiments done so far – no free

magnetic charges? As a matter of fact, this question is not new.

A seminal step is due to Dirac’s famous explorations of the non-integrable phases of wave

functions [2]. It has been largely extended in a second article [3].

The existence of an elementary magnetic charge implies the existence of an elementary

electric charge, while the opposite is not true. As a matter of fact, this is still the only

explanation for the existence of the elementary electric charge.

In particle physics, a magnetic monopole is a hypothetical elementary particle which

consists of an isolated magnet with only one magnetic pole (a north pole without a south

2pole or vice versa) [4][5]. A magnetic monopole would have a net ’magnetic charge’. Modern

interest in the concept stems notably from the grand unified and superstring theories which

predict their existence [6][7].

Magnetism in bar magnets and electromagnets is not caused by magnetic monopoles. Some

condensed matter systems contain quasi-particles which behave like effective (non-isolated)

magnetic monopoles [8] or exhibit phenomena that are mathematically analogous to magnetic

monopoles [9].

This article concentrates on the following four points.

1. The quantization of the electric charge implies the quantization of the dielectric flux

through closed surfaces (Section II).

2. An axiomatic foundation of the occurrence of non-integrable phases of Schrödinger

wave functions is presented (Section III).

3. That foundation is exploited for interpreting Dirac’s quantization of the magnetic

charge (magnetic monopoles) and the magnetic induction flux through closed surfaces

in terms of the electromagnetic 4-potential from the very beginning (Section IV).

4. The ratio of the elementary magnetic and (di)electric fluxes and charges equals the

von Klitzing constant. The latter one combines with the vacuum permittivity and

permeability to two natural speeds different from that of light in vacuo (Section V).

Thus, the purpose of this article is also to stimulate research along the following two

questions.

1. Can the search for magnetic charges (monopoles) be brought forward through consider-

ing the magnetic flux through closed surfaces?

2. Can the quantization of the electric flux be exploited like that of the magnetic flux in

SQUIDs?

II. ELEMENTARY ELECTRIC CHARGE AND DIELECTRIC FLUX QUANTA

For later use, we will sketch the relation between the discretization of field sources and

fluxes through closed surfaces, using the electric field. In particular, we will use Gauss’ law

in its differential and integral forms as an example to stress this:
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II. Elementary Electric Charge and Dielectric Flux Quanta

Theorem 1 (Gauss’s law) The amount of sources of a field (charge, mass) within a volume

Ω equals the total flux of that field through any surface ∂Ω enclosing that volume.

Specifically, Gauss’ law [10] states that the scalar source of the dielectric displacement D⃗

is the density ρe of the free electric charges qe [11].

∇ · D⃗ = ρe (1)

Its integral form reads
�

Ω

ρe d
3r = qe =

�

Ω

∇ · D⃗ d3r =

�

∂Ω

D⃗ · d2r⃗ =: Ψ̄, (2)

where Ψ̄ denotes the dielectric flux through the closed surface ∂Ω. It reveals that the dielectric

displacement D⃗ is also a flux density. If the surface lies outside the charge distribution, Ψ̄ is

independent of the surface, provided that Gauss-Ostrogradsky’s divergence theorem used in

eq. (2) applies.

Indeed, like the magnetic induction B⃗, the dielectric displacement D⃗ is an “area vector.”

[12] In contrast, the electric and magnetic field strengths E⃗ and H⃗ are “line vectors” (see

[14] for more details). Notice also that B⃗ and D⃗ are extensive quantities, while E⃗ and H⃗ are

intensive ones.

According to Theorem 1, the volume Ω contains an integer number of free elementary

particles of charge 0 or ±e, −e being the electron charge. Hence, qe is discretized as

qe = Ne+e+Ne−(−e) = (Ne+ −Ne−) e, (3)

where Ne± is the number of positively/negatively charged elementary particles. As a conse-

quence, the dielectric flux through closed surfaces is discretized, too.

Ψ̄ = (Ne+ −Ne−) e = (Ne+ −Ne−)ΨD, (4)

where ΨD is the ‘Lagrangean’ [10] elementary dielectric flux quantum,

ΨD = e. (5)

III. AXIOMATIC FOUNDATION OF NON-INTEGRABLE PHASES OF SCHRÖDINGER

WAVE FUNCTIONS

In this section, we will provide an axiomatic foundation of the occurrence of non-integrable

phases for Schrödinger wave functions in terms of the electromagnetic 4-potential. It seems

4
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III. Axiomatic Foundation of Non-Integrable Phases of Schrödinger Wave Functions

to us that this makes some subtleties of Dirac’s approach [2] easier to grasp. Moreover, we

are using SI units. This facilitates to understand that the factor of 2 in his eq. (9) is not

related to the magnetic flux quantization in superconductors but to his use of Gaussian units.

A. Relationships between interactions and conserved quantities after and beyond

Helmholtz

Thus, we will generalize Helmholtz’s exploration of the relationship between mechanical

forces and conservation of energy as follows [13].

• For a point-like body, its momentum p⃗(t) is a stationary-state function in the sense

that it is time-independent in stationary (force-free) states, in which p⃗(t) = p⃗0 = const.

Are there interactions (external forces) which leave the momentum unchanged? The

answer is ’no’.

• Next, consider a mechanical system in a stationary state with total energy E. Are

there interactions (external forces) which leave the amount of E unchanged? The

answer is ’yes’, given by forces of the form

−∇V (r⃗) + v⃗ × K⃗(t, r⃗, v⃗, a⃗, . . .) . (6)

Here, K⃗(t, r⃗, v⃗, a⃗, . . .) is a rather arbitrary vector function of time t, position r⃗, velocity

v⃗, acceleration a⃗, and higher-order time-derivatives of r⃗. The second term is due to

R. Lipschitz [15]. Surprisingly enough, it is missing in all textbooks we are aware

of. Its relevance reveals from this: It is compatible with canonical mechanics, iff

K⃗(t, r⃗, v⃗, a⃗, . . .) = ∇× K⃗ ′(t, r⃗). This leads to the magnetic Lorentz force [16].

In this case, the Hamiltonian H(p⃗, r⃗, t) = H0(p⃗, r⃗) = E = const. is a stationary-state

function.

• For a quantum-mechanical system with wave function ψ(r⃗, t) and Hamiltonian

H(ˆ⃗p, r⃗, t), the expressions

|ψ(r⃗, t)|2 and ⟨ψ(r⃗, t)|H(ˆ⃗p, r⃗, t)|ψ(r⃗, t)⟩ (7)
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5are stationary-state functions in the sense that they are time-independent in stationary

states with energy E, where

|ψ(r⃗, t)|2 = |ψE(r⃗)|2 (8a)

⟨ψ(r⃗, t)|H(ˆ⃗p, r⃗, t)|ψ(r⃗, t)⟩ = ⟨ψE(r⃗)|H0(ˆ⃗p, r⃗)|ψE(r⃗)⟩ = E = const. (8b)

Are there interactions which leave the stationary “weight function” [17] |ψE(r⃗)|2 and

the energy E unchanged? The answer is ’yes’ as will be shown in the next subsection.

B. Interactions leaving the time-independent weight function and the energy

unchanged. (Ehrenberg-Siday-)Aharonov-Bohm effect

Obviously, the value of the stationary weight function |ψE(r⃗)|2 is not changed when

ψE(r⃗) =: ψE,0(r⃗) is replaced by ψE,β(r⃗) := ψE,0(r⃗)e
iβE(r⃗). Then, the value of ⟨ψE(r⃗)|H0(ˆ⃗p, r⃗)|ψE(r⃗)⟩ =

E is also not changed when at once H0(ˆ⃗p, r⃗) is replaced by Hβ = H0(ˆ⃗p− ℏ∇βE(r⃗), r⃗).

Now, the Hamiltonian H0(ˆ⃗p−ℏ∇βE(r⃗), r⃗) is that of an electrical charge qe in the external

vector potential A⃗(r⃗) = ℏ∇β(r⃗)/qe, where β is independent of E. This phase factor causes the

(Ehrenberg-Siday-)Aharonov-Bohm effect [18]. There is no electromagnetic field connected

with such a vector potential as B⃗ = ∇× A⃗ ≡ 0⃗ and E⃗ = −∂A⃗/∂t ≡ 0⃗. For this, in the next

subsection, we will generalize this approach such that arbitrary electromagnetic fields are

dealt with. This will lead us to the non-integrable phases in Subsection III D.

C. Interactions leaving time-dependent weight

function and Schrödinger equation unchanged

(arbitrary electromagnetic fields). Gauge invariance

The results of the foregoing subsection can be generalized by means of the phase
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These formulas (10) correspond to Dirac’s more general definitions ([2] formulas after (3))

κx :=
∂β

∂x
, κy :=

∂β

∂y
, κz :=

∂β

∂z
, κ0 :=

∂β

∂t
. (11)

However, as Dirac does not point to another application than electromagnetism, we will

continue using the electromagnetic potentials and fields. This is easier to grasp and agrees

with our concentration onto magnetic charges aka monopoles.

Analogously to the foregoing subsection, the time-dependent weight function |ψ(r⃗, t)|2 is

unchanged when ψ(r⃗, t) is multiplied by eiβ(r⃗, t), while now not the time-independent but the

time-dependent Schrödinger equation remains unchanged as
[
H(ˆ⃗p, r⃗, t)− iℏ

∂

∂t

]
ψ(r⃗, t)

=

[
H(ˆ⃗p− qeA⃗, r⃗, t) + qeϕ(r⃗, t)− iℏ

∂

∂t

]
ψ(r⃗, t)eiβ(r⃗, t) . (12)

This fact is closely related to gauge invariance. If ψβ = eiβψ0 obeys any wave equation

involving the energy-momentum operator p̂µ (14b), ψ0 obeys the corresponding wave equation

in which p̂µ is replaced with p̂µ − qeA
µ (Aµ being the contravariant 4-potential (14a); cf. [2]

p. 65). If Aµ is regauged to A′µ = Aµ + ∂µχ, β has to be changed to β + χ.

D. Non-integrable phase

The phase β (9) is non-integrable, if

∂2β

∂x∂y
− ∂2β

∂y∂x
∝ ∂Ay

∂x
− ∂Ax

∂y
= Bz ̸= 0 etc. (13)

Dirac (cite2 p. 66) notes,

“The connection between non-integrability of phase and the electromagnetic

field given in this section is not new, being essentially just Weyl’s Principle of

Gauge Invariance in its modern form. [20]

That gauge invariance is displayed in eq. (12).

In what follows, it will turn out that the usage of 4-vectors and 4-tensors considerably

shortens the notation, where we will use the signature +−−−.

Aµ =
(

1
c
Φ, A⃗

)
= − ℏ

qe
∂µβ = − ℏ

qe
κµ , (14a)

p̂µ =
(
iℏ ∂

c∂t
,−iℏ∇

)
=:

(
1
c
Ŵ , ˆ⃗p

)
; µ = 0, 1, 2, 3 (14b)
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7Non-integrability implies that the change in phase round a closed curve sµ,

�

∂S

∂β

∂xµ

dsµ = −qe
ℏ

�

∂S

Aµ dsµ

= −qe
ℏ

�

S

(∂µAν − ∂νAµ) dSµν = −qe
ℏ

�

S

F µνdSµν , (15)

may not vanish (cf. [2] formula (4); F µν being the Faraday tensor). This corroborates an

important conclusion by Dirac obtained from a much more complicated reasoning.

“The above result that the change in phase round a closed curve must be the

same for all wave functions means that this change in phase must be something

determined by the dynamical system itself (and perhaps also partly by the

representation) and must be independent of which state of the system is considered.

As our dynamical system is merely a simple particle, it appears that the non-

integrability of phase must be connected with the field of force in which the

particle moves.” ([2] p. 64)

Luckily, it is sufficient that the path lies completely in the 3d position space, sµ = (0,−s⃗)

([2] p. 67). In this case, formula (15) simplifies to

qe
ℏ

�

∂S

A⃗ · ds⃗ = qe
ℏ

�

S

(∇× A⃗) · dS⃗ =
qe
ℏ

�

S

B⃗ · dS⃗ =
qe
ℏ
Φ , (16)

Φ being the magnetic flux through the surface S. As long as there are no singularities, this

holds true for any surface S with boundary ∂S. Then, if the surface S is single-connected

(what is not the case in the (Ehrenberg-Siday-)Aharonov-Bohm effect mentioned in Subsection

III B), the magnetic induction flux through a closed surface S̄ vanishes identically.

Φ̄ :=

�

S̄

B⃗ · dS⃗ ≡ 0 (17)

IV. QUANTIZATION OF MAGNETIC CHARGE AND

INDUCTION FLUX THROUGH CLOSED SURFACES

A. Singularities of vanishing wave functions

Now, singularities occur when the wave function vanishes, since then its phase looses

its meaning (although it enters the conditions of vanishing, of course). As this vanishing

8
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8

IV. Quantization of Magnetic Charge and Induction Flux Through Closed Surfaces

includes two conditions (the wave function is complex-valued), they occur along “nodal lines”

(cite2 p. 67), nowadays called ‘Dirac strings’. Again, it is sufficient to consider Dirac strings

in 3d position space. If a Dirac string crosses the surface under consideration, the surface is

no longer simply connected. As a consequence, the phase change along its boundary (16) is

not necessarily small when the length of the boundary vanishes but close to 2πn, where the

integer n is a characteristic of that Dirac string. The sign of n indicates the direction in which

it crosses the surface. If more than one Dirac string crosses the surface, their characteristic

values n sum up as (cf. [2] sum (8))

qe

ℏ

�

∂S

A⃗ · dr⃗ = qe

ℏ

�

S

B⃗ · dS⃗ + 2π
∑

n . (18)

B. Magnetic flux quantum.

Elementary magnetic and electric charges

For a closed surface, formula (18) yields not the identity (17) but
�

S̄

B⃗ · dS⃗ +
2πℏ
qe

∑
n = 0 . (19)

Here, the sum over n includes only those Dirac strings which end within the enclosed volume.

“If
∑

n does not vanish, some nodal lines [Dirac strings] must have end points

inside the closed surface, since a nodal line without such end point must cross

the surface twice (at least) and will contribute equal and opposite amounts to
∑

n at the two points of crossing. The value of
∑

n for the closed surface will

thus equal the sum of the values of n for all nodal lines having end points inside

the surface. This sum must be the same for all wave functions [19]. Since this

result applies to any closed surface, it follows that the end points of nodal lines

must be the same for all wave functions. These end points are then points of

singularity in the electromagnetic field.” (cite2 p. 68)

The flux through a small surface surrounding just one of that end points is

Φ̄ :=

�

S̄

B⃗ · dS⃗ = −2πℏ
qe

n . (20)

In what follows, Dirac – without notice – confines himself to the case of a single electron,

qe = −e. As a consequence, there is an ‘Diracian’ elementary magnetic (induction) flux

9

B. Magnetic flux quantum. Elementary magnetic and electric charges
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n . (18)

B. Magnetic flux quantum.

Elementary magnetic and electric charges

For a closed surface, formula (18) yields not the identity (17) but
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∑
n = 0 . (19)

Here, the sum over n includes only those Dirac strings which end within the enclosed volume.
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qe = −e. As a consequence, there is an ‘Diracian’ elementary magnetic (induction) flux
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ΦB =
h

e
= 2Φ0 . (21)

Here, Φ0 is the magnetic flux quantum in superconductors with Cooper pairs of electrons

with total charge −2e. It corresponds to an elementary magnetic charge

g = ΦB =
h

e
(22)

(see Section II for the relation between field sources and fluxes). In turn, there is an elementary

electric charge e as

e =
h

g
. (23)

C. Question

More generally, according to eq. (20), the flux through a small surface surrounding just

one of that end points is

Φ̄ :=

�

S̄

B⃗ · dS⃗ = −2πℏ
qe

n = − h

(N+
e −N−

e ) e
n = −h

e

n

N+
e −N−

e
. (24)

Does the quantization of the magnetic charge (and hence field) in a given volume depend on

the total electric charge in that volume?

D. The force between elementary magnetic and electric charges

The forces between two electrons and two elementary monopoles, respectively, equal

Fe =
e2

4πε0r2
; Fg =

g2

4πµ0r2
=

1

4α2
Fe ≈ 4691Fe, (25)

where

α :=
e2

4πε0ℏc
≈ 1

137
(26)

is the fine structure constant. In view of Fg ≫ Fe, Dirac concludes, “that there must be

some cause of dissimilarity between electricity and magnetism” (cite2 pp. 71f.). Notice that

this dissimilarity concerns also the different geometric properties of the four electromagnetic

field quantities [14] and the different PT symmetries of the electric and magnetic charge and

current densities [21].
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V. Von Klitzing Constant and Conductance Quantum. Two Natural Velocities Differing From That of Light In Vacuum

V. VON KLITZING CONSTANT AND CONDUCTANCE

QUANTUM. TWO NATURAL VELOCITIES DIFFERING

FROM THAT OF LIGHT IN VACUUM

A. Von Klitzing constant and conductance quantum

The elementary charges g = ΦB and e = ΨD combine to

g · e = ΦB ·ΨD = h and (27a)
g

e
=

ΦB

ΨD

=
h

e2
=: RK =

2

G0

. (27b)

Here, RK ≈ 25.8 kΩ is the von Klitzing constant which governs the Hall resistance in the

integer quantum Hall effect [22]. G0 is the conductance quantum [23], where the factor of 2

is due to the spin degeneracy of the electron states involved.

That means that RK and G0 represent not only a relation between voltage and current

but also between elementary electric e and magnetic charges g as well as between the

corresponding elementary dielectric ΨD and induction fluxes ΦB.

B. Space-time and electromagnetic relationships in vacuum permittivity and per-

meability. On the fine-structure constant

Similarly to g and e, the vacuum permeability µ0 and permittivity ε0 combine to two

important natural constants. (i),

µ0 ε0 = 1/c20 , (28a)

where c0 is the speed of light in vacuum. Through its dimension ‘length/time’, c0 expresses

the space-time relationship contained in µ0 and ε0. (ii),

µ0

ε0
= Z2

0 , (28b)

where Z0 is the impedance of free space. Through its dimension ‘voltage/current’, Z0 exhibits

the electro-magnetic relationship in µ0 and ε0 [24].

The ratio of the impedance of free space Z0 (28b) and the von Klitzing constant RK (27b)

equals just twice the fine-structure constant α (26).

Z0

RK
= 2α (29)
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Recall that (2α)2 equals the ratio of the forces between two elementary electrical and magnetic

charges, respectively, see formula (25).

C. Two natural speeds differing from that of light in vacuum

In vacuum, one can formally define an elementary electrical flux ΨE := ΨD/ε0 (recall that

the electrical field strength E⃗ is not an area vector). The ratio of the elementary electrical

and induction fluxes yields a natural speed being much smaller than the speed of light in

vacuum c0.

c< :=
ΨE

ΦB

=
ΨD

ΦB ε0
=

1

RK ε0
= 2αc0 ≈

1

68.5
c0 (30)

Analogously, one can formally define an elementary magnetic (field strength) flux ΦH :=

ΨD/µ0 (recall that the magnetic field strength H⃗ is not an area vector). The ratio of the

elementary magnetic and dielectric fluxes yields a natural speed being much larger than the

speed of light in vacuum c0,

c> :=
ΦH

ΨD

=
ΦB

µ0ΨD

=
RK

µ0

=
1

2α
c0 ≈ 68.5 c0 (31)

c> is of the order of the expansion speed during the inflation phase of the universe required

by Barrow [25].

In that two velocities, the pairing of electromagnetic field quantities is (E⃗, B⃗) and (H⃗, D⃗)

as in the Maxwell equations. That pairing is in contrast to their pairing as area and line

vectors, respectively, in Section II, p. 4 [26].

In bypassing we note that the product formula

c< c> = c20 (32)

resembles the relation

cphasecgroup = c20 (33)

for the phase and group velocities of a matter wave in de Broglie’s imagination of electron

waves in Bohr orbitals [27].

D. Occurrence of c< and c> in circuits.

On the meaning of RK and Z0

c< and c> also occur in circuits with condensers, inductances, and resistors as follows.

12
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The capacity of a condenser consisting of two plates of area ℓ2C in distance ℓC in vacuum

equals C = ε0 ℓC . The combination of that condenser with a resistor of value RK exhibits

the time constant τC,K = RK C. Dividing the characteristic length ℓC by the time constant

τC,K yields the characteristic speed

cC,K :=
ℓC
τC,K

=
C

ε0

1

RK C
=

1

ε0RK
= c< . (34)

Analogously, for an inductance L, there is a characteristic length ℓL := L/µ0. The

combination of an inductance L with a resistor of value RK exhibits the time constant

τL,K = L/RK. Dividing the characteristic length ℓL by the time constant τL,K yields the

characteristic speed

cL,K :=
ℓL
τL,K

=
L

µ0

RK

L
=

RK

µ0

= c> . (35)

When using the vacuum impedance Z0 rather than the von Klitzing resistance RK, the

resulting characteristic speeds are that of light in vacuum c. This suggests RK to correspond

to localized phenomena, while Z0 is characteristic for the (delocalized) propagation of waves.

The relationship between spatial and temporal aspects in the speed of wave propagation

V is also reflected in d’Alembert’s wave equation,

V 2 =
∂2Y/∂t2

∂2Y/∂x2
. (36)

The numerator corresponds to an acceleration, the denominator – to a curvature; both being

in equilibrium to another. In sound waves, the wave equation results from the equilibrium

between the force densities of inertia (resistance against changing the temporal aspect of

motion) and elasticity (resistance against changing positions).

VI. SUMMARY AND CONCLUSIONS

Generalizing Helmholtz’s and Lipschitz’s explorations of the relation between forces and

energies[15], we have presented an axiomatic foundation of Dirac’s phase factor eiβ with

non-integrable phase β for Schrödinger wave functions. The phase factors (not the phases

themselves) uniquely determine the electromagnetic field [28]. Having that in mind, Dirac’s

1931 pioneering approach [2] is interpreted in terms of the electromagnetic 4-potential from

the very beginning. If the existence of the Diracian induction flux quantum ΦB = h/e and

13

The capacity of a condenser consisting of two plates of area ℓ2C in distance ℓC in vacuum

equals C = ε0 ℓC . The combination of that condenser with a resistor of value RK exhibits

the time constant τC,K = RK C. Dividing the characteristic length ℓC by the time constant

τC,K yields the characteristic speed

cC,K :=
ℓC
τC,K

=
C

ε0

1

RK C
=

1

ε0RK
= c< . (34)

Analogously, for an inductance L, there is a characteristic length ℓL := L/µ0. The

combination of an inductance L with a resistor of value RK exhibits the time constant

τL,K = L/RK. Dividing the characteristic length ℓL by the time constant τL,K yields the

characteristic speed

cL,K :=
ℓL
τL,K

=
L

µ0

RK

L
=

RK

µ0

= c> . (35)

When using the vacuum impedance Z0 rather than the von Klitzing resistance RK, the

resulting characteristic speeds are that of light in vacuum c. This suggests RK to correspond

to localized phenomena, while Z0 is characteristic for the (delocalized) propagation of waves.

The relationship between spatial and temporal aspects in the speed of wave propagation

V is also reflected in d’Alembert’s wave equation,

V 2 =
∂2Y/∂t2

∂2Y/∂x2
. (36)

The numerator corresponds to an acceleration, the denominator – to a curvature; both being

in equilibrium to another. In sound waves, the wave equation results from the equilibrium

between the force densities of inertia (resistance against changing the temporal aspect of

motion) and elasticity (resistance against changing positions).

VI. SUMMARY AND CONCLUSIONS

Generalizing Helmholtz’s and Lipschitz’s explorations of the relation between forces and

energies[15], we have presented an axiomatic foundation of Dirac’s phase factor eiβ with

non-integrable phase β for Schrödinger wave functions. The phase factors (not the phases

themselves) uniquely determine the electromagnetic field [28]. Having that in mind, Dirac’s

1931 pioneering approach [2] is interpreted in terms of the electromagnetic 4-potential from

the very beginning. If the existence of the Diracian induction flux quantum ΦB = h/e and

13

VI. Summary and Conclusions

the elementary magnetic charge (monopole) g = ΦB is due to a wave-mechanical effect, the

discretization of magnetic induction flux and magnetic charge is actually a quantization.

g and e combine to Planck’s constant h = g e and von Klitzing’s constant RK = g/e.

Magnetic induction flux quantization is best known from superconductors. However, that

does not refer to the flux through a closed surface. As a consequence, the actual flux quantum

can deviate from Φ0 = h/2e.

Another example of magnetic induction flux quantization through an open surface occurs in

the Landau levels. For an electron, the flux through the surface enclosed by the corresponding

classical cyclotron orbit of the Landau level № n equals (h/e)(n+ 1
2
) = ΦB(n+ 1

2
). As there

is only one electron involved, ΦB rather than Φ0 appears.

While the magnetic induction B⃗ is also called ‘magnetic flux density’, its electric analogue,

the dielectric displacement D⃗, is usually not called ‘dielectric flux density’. However, Gauss’

law in integral form justifies this alias. Due to the discretization resp. quantization of the

free electric charges as entire multiples of the electron charge e, the dielectric flux through a

closed surface is discretized resp. quantized, too. It is an entire multiple of the Lagrangian

dielectric flux quantum ΨD = e.

In vacuum, additionally to the elementary flux quanta of magnetic induction, ΦB = g, and

dielectric displacement, ΨD = e, elementary magnetic, ΦH := ΦB/µ0 = g/µ0, and electric,

ΨE := ΨD/ε0 = e/ε0, flux quanta can (formally) be defined. This leads to two natural speeds

which are much smaller resp. larger than that of light in vacuum by a factor of twice the fine

structure constant, 2α ≈ 1/68.5.

The factor 2α also equals the ratio (29) of the impedance of free space and the von Klitzing

constant. Its square equals the ratio of the forces between two elementary electrical and

magnetic charges, respectively, see formula (25).

Possibly, there are two speeds related to the time it takes to induce the electric field by a

vortex of the magnetic field, and vice versa, c< and c>. The geometric mean of both is the

(resulting) speed of light in vacuo c0,
√
c<c> = c0.

c> = c/2α ≈ 68.5 c may be related to the enhanced speed of light during the inflationary

development of our universe when compared with its nowadays value c [25].

Acknowledgement 2 We feel highly indebted to Klaus Kilian, Vladimir Onoochin, and

Romano Rupp for their most useful comments. Originally, the text was typed in LATEX, where
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c> = c/2α ≈ 68.5 c may be related to the enhanced speed of light during the inflationary

development of our universe when compared with its nowadays value c [25].
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