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At present, the generally accepted method for remote measurement 
of current velocity on the ocean surface is to determine the Doppler 
centroid, i.e., the position of the maximum of the backscattered 
signal Doppler spectrum (see, for example, [1] and the list of 
references there). However, if you look at the only realization of 
the Doppler spectrum it immediately becomes clear that finding 
the centroid is not a very simple task. Obviously, when observing 
from space, due to high speed of SAR carrier it is not possible to 
accumulate a sufficient number of realizations in order to smooth 
out random fluctuations in statistical estimates of the spectrum. 

Nevertheless, knowledge of the Doppler spectrum around which 
its components oscillate is useful. Below, an analytical formula for 
the spectrum is obtained and, on its basis, a method is proposed to 
increase the efficiency of existing algorithms for determining the 
Doppler centroid.

We consider the issue indicated by the title in relation to microwave 
synthetic aperture radar (SAR). The operation of aperture synthesis 
is determined by the matching filtering formula
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Here,        and             are the complex amplitudes (i.e., the Doppler parts) of the backscattered field 
and the SAR signal, respectively, and     is the integration time determining the nominal SAR resolution 
(the factor before the integral is introduced to preserve the dimension). Besides       , where    is 
the radar wavelength,   and   are the SAR carrier speed and the slant range, respectively; the nominal 
azimuthal SAR resolution    

       
                                                                                

It is assumed that the SAR moves in parallel the   -axis, and the size of resolution cell along the ground 
range   is small compared to the characteristic wavelength of the large ocean wave.  

We used the following expression for        (see [2] for details): 
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Here, a(𝑡′) and 𝑎𝑆AR(𝑡) are the complex amplitudes (i.e., the 
Doppler parts) of the backscattered field and the SAR signal, 
respectively, and ∆𝑡 is the integration time determining the nominal 
SAR resolution (the factor before the integral is introduced to 

preserve the dimension). Besides, 𝑘 = 2𝜋/ λ, where λ is the radar 
wavelength, 𝑉 and 𝑅 are the SAR carrier speed and the slant range, 
respectively; the nominal azimuthal SAR resolution

It is assumed that the SAR moves in parallel the 𝑥-axis, and the 
size of resolution cell ∆y along the ground range y is small com-

pared to the characteristic wavelength of the large ocean wave.

We used the following expression for a(𝑡′) (see [2] for details):
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Here,                is a statistically homogeneous (“standard”) small-
scale ripple with statistical characteristics constant  along  the  pro-
file  of  a  large  wave,               are  surface  elevations  due  to  
large  waves,  a  factor                 takes  into  account  the  amplitude  
modulation  of  the  scattered  field;  integration  is  within  the 

physical resolution cell. The amplitude 𝑎 (𝑥, 𝑡) is normalized so 
that the intensity averaged over the realizations of small-scale rip-
ples is equal to the normalized radar cross section 𝜎0.

We introduce the factor

Here          is a statistically homogeneous (“standard”) small-scale ripple with statistical characteristics 
constant along the profile of a large wave,          are surface elevations due to large waves, a factor 
         takes into account the amplitude modulation of the scattered field; integration is within the 
physical resolution cell. The amplitude         is normalized so that the intensity averaged over the 
realizations of small-scale ripples is equal to the normalized radar cross section   . 

We introduce the factor 
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Here it is appropriate to ask the question: does the width of the Doppler spectrum really not depend on the 
state of the surface? In fact, there is such dependence, but in the case of spaceborne SAR it is weak due to 
relation (12). 

Let us turn to the article [3], were, in particular, the results of the numerical modelling of the Doppler 
spectrum are given (see Fig.13 there). On can see that the averaged spectrum has the Gaussian shape, the 
width        is about       and the curves that envelop the random values of the spectrum estimation 
components from above and below (if they were drawn) would repeat (each with its coefficient    ) the 
averaging curve. We introduce the confidence interval and present its upper and lower boundaries: 

                 
      

               
                                            

In addition, from the mentioned Fig.13 of [3], we can conclude that the value       provides a 
probability close to 100% of finding the estimate within the confidence interval. In the general case, the 
value of α is set based on the specific requirement for the probability parameter of the confidence interval. 

Now let's turn to our Fig.1 and pay attention to the horizontal line         drawn through the Doppler 
centroid point;  denote the two points of intersection of this line with the upper boundary of the 
confidence interval    and      . Note that with the probability specified for the confidence interval, the 
relation   (ω) < 1 is valid for all frequencies outside the interval   < ω <   . Therefore, with the same 
probability we can exclude frequency regions outside this interval from the Doppler centroid search area 
and thereby narrow the search area. The right boundary of the specified interval can be found using the 
equation 
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In addition, from the mentioned Fig.13 of [3], we can conclude that the value       provides a 
probability close to 100% of finding the estimate within the confidence interval. In the general case, the 
value of α is set based on the specific requirement for the probability parameter of the confidence interval. 

Now let's turn to our Fig.1 and pay attention to the horizontal line         drawn through the Doppler 
centroid point;  denote the two points of intersection of this line with the upper boundary of the 
confidence interval    and      . Note that with the probability specified for the confidence interval, the 
relation   (ω) < 1 is valid for all frequencies outside the interval   < ω <   . Therefore, with the same 
probability we can exclude frequency regions outside this interval from the Doppler centroid search area 
and thereby narrow the search area. The right boundary of the specified interval can be found using the 
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face? In fact, there is such dependence, but in the case of space-
borne SAR it is weak due to relation (12).

Let us turn to the article [3], were, in particular, the results of 
the numerical modelling of the Doppler spectrum are given (see 

Figure.13 there). On can see that the averaged spectrum has the 
Gaussian shape, the width ∆𝑆0.5   is about 1𝐾𝐻𝑧, and the curves 
that envelop the random values of the spectrum estimation com-
ponents from above and below (if they were drawn) would repeat 
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and the left one symmetrically about the point          . 

In addition, from the mentioned Figure.13 of [3], we can conclude 
that the value 𝛼 ≅ 0.1 provides a probability close to 100% of 
finding the estimate within the confidence interval. In the general 
case, the value of α is set based on the specific requirement for the 
probability parameter of the confidence interval.

Now let's turn to our Figure.1 and pay attention to the horizontal 
line Ŝ(ω) = 1 drawn through the Doppler centroid point; denote the 

two points of intersection of this line with the upper  boundary of 
the confidence interval 𝜔1 and 𝜔2. Note that with the probability 
specified for the confidence interval, the relation Ŝ(ω) < 1 is valid 
for all frequencies outside the interval  ω1< ω < 𝜔2. Therefore, 
with the same probability we can exclude frequency regions out-
side this interval from the Doppler centroid search area and there-
by narrow the search area. The right boundary of the specified in-
terval can be found using the equation

 and the left one symmetrically about the point  ω = 2k𝑣̅ 𝑟𝑎𝑑.

It should be noted here that the true position of the centroid point 
is, strictly speaking, unknown to us. However, existing algorithms 

(see [3] and references there) give centroid uncertainty (standard 
deviation and bias) within 10 Hz, while the narrowed (i.e., effec-
tive) search bandwidth, as shown below, is about 200 Hz. Obvi-
ously, in this case, some blurring of the boundaries of the effective 
search area is insignificant.

It should be noted here that the true position of the centroid point is, strictly speaking, unknown to us. 
However, existing algorithms (see [2] and references there) give centroid uncertainty (standard deviation 
and bias) within 10 Hz, while the narrowed (i.e., effective) search bandwidth, as shown below, is about 
200 Hz. Obviously, in this case, some blurring of the boundaries of the effective search area is 
insignificant. 
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  Fig.1  Section of random realization of spectral estimate (the scheme).   
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then at     we obtain  the effective bandwidth 

               
    

                                                                      

and at        we obtain               along with the fact that the width of the Doppler spectrum at 
level 0.5 is about 1 KHz. 

Thus, we propose that when finding the Doppler centroid, first use one of the existing algorithms, and 
then, having obtained the first approximation centroid, apply the same algorithm to a narrowed search 
area. 
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Figure 1: Section of random realization of spectral estimate (the scheme).
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and at 𝛼 = 0.1 we obtain ∆ƒeff ≅ 200 𝐻𝑧 along with the fact that the 
width of the Doppler spectrum at level 0.5 is about 1 KHz.

Thus, we propose that when finding the Doppler centroid, first use 
one of the existing algorithms, and then, having obtained the first 
approximation centroid, apply the same algorithm to a narrowed 
search area.
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