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Abstract
This paper focus on natural convection in the presence of an applied magnetic field for analysing entropy generation 
and fluid flow phenomena in a porous medium. The numerical technique adopted was the finite difference method. The 
parameters used for numerically analysing the fluid flows are the Rayleigh number (103 ≤ Ra ≤ 106), Eckert number 
(10−6,10−5,5 × 10−5) , Forchheimer number (0 ≤ Γ ≤ 1), inverse Darcy (0 ≤ γ ≤ 1), radiation (0 ≤ Rd ≤ 10), Prandtl 
number (Pr = 0.7,1.0,7.0,10) and Hartmann number (0 ≤ Ha ≤ 30). The numerical results were compared with existing 
papers and excellent agreements have been made. Findings reveal that as Hartmann increase the streamlines become 
distorted showing a reduction in the flow rate due to retarding impact of the Lorentz force. Enhancing radiation, leads 
to the intensification of the flow rate. As Rayleigh number increases entropy generation of the medium significantly 
increases.
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1. Introduction
Magnetic fields and their effects on heat transfer and fluid flows 
has attracted growing interest in recent years. The behaviors of 
these flows are generally altered by magnetic fields base on the 
retarding influences of the Lorentz force, which suppress the fluid 
flow. Magnetic fields are also used to regulate fluid flows, allowing 
for precision control, targeted medicine administration, efficient 
transportation, exact flow measurements, enhanced medical 
imaging, and unique power generating technologies. Furthermore, 
its practical applications can be extended to electromagnetic 
flow-meters, magnetic levitation trains, and magnetic resonance 
imaging. Numerous developments in magnetohydrodynamics 
has motivated researchers to investigate applications in this 
discipline. Ganga et al. studied magnetic effect of viscous and 
ohmic dissipation on the boundary layer of a fluid through a 
vertical plate together with heat generation observed internally 
[1]. The increase on magnetic field strength resulted in higher 
temperature for the fluid and reduced the thickness of the boundary 

layer. Geridonmez et al. studied the effects of Hartmann number 
on temperature distribution. The authors showed that magnetic 
field has a significant impact on temperature, and as well reduce 
the rate of heat transfer in the cavity [2]. Subsequently, Fagbade 
et. al investigated the hydromagnetic effect on thermophoresis 
and viscous dissipation on fluid-saturated porous media [3]. In 
a pioneering study, Jamshed et al. model the behavior of non-
Newtonian fluids using computational methodologies, taking into 
consideration viscous dissipation and applied magnetic field. Their 
research provides a comprehensive investigation of the behavior of 
magnetic fields and revealing fresh light on the physical principles 
at work in these systems [4].

Porous media are mostly model by Darcy-Forchheimer which 
plays a crucial role in many applications. The Darcy-Forchheimer 
is a frequently used empirical model that represents fluid flow 
through a porous material by accounting for both the Darcy and 
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Forchheimer flow components. The model is used to analysed fluid 
flow in porous materials including soils, rocks, and packed beds. 
In addition, the Darcy Forcheimer model has practical applications 
in areas such as geothermal energy, chemical, petroleum and 
environmental engineering. The knowledge on non-Darcy can 
help to optimize flow conditions and improve process efficiency in 
energy systems. For instance, Jumah et al. examined the transfer 
of heat in saturated porous media using the Darcy-Forchheimer 
model [5]. The authors concluded that heat transfer in a flow can 
be improved and optimized by controlling buoyancy and viscous 
dissipation within the porous cavity. The combined effect of suction 
and thermal radiation on a non-Darcy flow was studied by Haider 
et al. [6]. Their investigation revealed that viscous and form drag 
has a significant effect in the distribution of thermal radiation.

Entropy generation can be found in all heat transfer process due 
to its irreversible natural process, as stated on the second law of 
thermodynamics. It is referred to as the qualitative representation 
of loss of energy in most phenomenon. Many factors contributed 
greatly to the change in entropy generation in a system, among 
which includes fluid flow friction, heat transfer mechanisms and 
hydromagnetic effects. Since entropy concentrate on how much 
thermal energy is lost in a system. In recent years, extensive 
research have been done on minimizing the amount of energy 
lost in thermal systems. Theoretical and experiment research 
have shown that, the inclusion of magnetic fields can improve 
heat transfer performance while decreasing system entropy 
formation. We could observe its wide range of real-life application 
on boiling water, popcorn making, ice melting and so on [7-11]. 
Consequently, Khan et al. studied free convection, radiation and 
generation of entropy on the fluid flows in a Darcy-Forchheimer 
porous medium and their effects. Rasool et al. analysed entropy 
generation in a magneto hydronics flow in a porous medium. The 
authors concluded that regardless of the presence of the solid 
matrix in the porous medium, entropy generation is significantly 
hindered by the presences of the magnetic field [12, 13]. Fares 
et al.  investigated the impact of MHD on entropy generation 
in a Brinkman-Forchheimer porous medium. According to the 
findings, the magnetic effect has an important influence on entropy 
generation. Consequently, Tayebs et al. investigated the effects of 
magnetic fields and entropy generation of natural convective flow 
in a nanofluid-filled circular enclosure. Bonabid et al. presented a 
numerical study on the impact of entropy generation in a cavity 
filled with a binary mixture fluid subjected to thermosolutal 
convection with imposed magnetic field. The authors performed 
an extensive analysis of the various factors affecting entropy 
generation in the system such as heat transfer, viscous dissipation, 
and magnetic field. Arikoglu et al. analysed the effects of slip on 
other parameters such as the flow structure and velocity distribution 
in the system. The paper provide valuable insight into the effects of 
slip on entropy generation in MHD flows [14-17].

Finite difference method (FDM) is a numerical scheme which 
discretized domains of equations into grids and using finite 
difference approximations to estimate the derivatives that appears 

in the equations under study. It helps in the determination of 
temperature distributions, heat fluxes, and thermal behaviour in a 
variety of systems such as heat exchangers, buildings, and electronic 
devices. FDM’s significance as an iterative method stems from 
its adaptability, precise localized results, iterative convergence, 
computational efficiency, widespread acceptance, and educational 
benefits. These characteristics render FDM invaluable for solving 
various types of partial differential equations (PDEs) and examining 
fluid dynamics challenges. Al-Odat et al. used FDM to investigate 
a flat plate exposed to forced convection with an impose magnetic 
field [18]. The authors investigated the influence of several factors 
on the entropy production rate, such as magnetic field strength, 
fluid velocity, and temperature differential. Oztop et al. adopted 
FDM to analyse fundamental equations of entropy generation and 
how they relate to the second rule of thermodynamics [19]. With 
the aid of FDM, Abolbashari et al. discussed the energy lost and 
irreversibility that occurs in nanofluid flows exposed to magnetic 
fields over a stretching surface [20]. The governing equations for 
unsteady flow and heat transfer in a vertical porous channel are 
numerically solved by Obalalu et al. to visualized temperature 
and velocity profiles. Similar work was done by Yusuf et al. 
which focused on radial magnetic fields and viscous dissipation of 
couette flows [21,22].

An important phenomenon in different fields of study includes 
natural convection. The impact of which could be notice in the area 
of environment, geophysics, engineering sciences and industrial 
systems. They usually occur when fluids are heated below and 
result to a rise in natural flows. Natural convection influences 
temperature distribution, fluid dynamics, and entropy generation 
analyses. Efforts have been made by researchers to understand 
natural convection phenomena and related domains. Fujii et al. 
investigated heat transfer on natural convection from a plate with 
arbitrary inclination [23]. The authors examines the influence of 
plate inclination on heat transfer characteristics, including the 
average Nusselt number and boundary layer analysis. A theoretical 
and experimental study was done by Ostrach et al. on natural 
convection in an enclosure [24]. Consequently, Bilgen et al. studied 
the effect of heat transfer on natural convection in an inclined 
square cavity [25]. Apparently, Shi et al. investigated laminar 
natural convection heat transfer in a differentially heated square 
cavity with a thin fin on the relatively hotter wall [26]. The authors 
examines the effect of fin length and position on flow and heat 
transfer characteristics, providing insights into the enhancement of 
heat transfer in such configurations.

Finite difference with Darcy Forchheimer models are investigated 
in this research. We seek to analysed the effect of entropy generation 
to properly understand the thermodynamic systems. The results 
obtained from the study revealed that hydromagnetic and thermal 
radiation has a significant effect on heat transfer characteristics 
which leads to changes in entropy generation. The study also 
has numerous applications in the area of energy conversion and 
material processing where electromagnetic waves can be used to 
optimized fluid flows in general.
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Nomenclature
u velocity along x component ρ density
v velocity along y component µ dynamic viscosity
x x component CP specific heat
y y component k Thermal conductivity
p Pressure K permeability of the porous media
T local temperature d mean particle diameter
ϵ porosity F form drag constant
β Thermal expansion coefficient g gravitational acceleration
|V | velocity vector σ∗ Stefan-Boltzmann constant
k′ absorption coefficient Th hot area at the boundary
Tc cold area at the boundary ω vortocity
ψ stream function ν Kinematic viscosity
Ra Rayleigh number γ inverse Darcy number
Γ Forchheimer Number Gr Grashof Number
Da Darcy number Rd radiation parameter
Ec Eckert number Nu Local Nusselt number

Nuavg Average Nusselt number α Thermal diffusivity
θ Dimensionless Temperature Φ Viscous dissipation
SH Entropy due to heat SF Entropy due to fluid friction
ST Total Entropy ∆θ Temparature Difference
qrx Radiation flux with respect to x qry Radiation flux with respect to y
qr Thermal Radiation t̄ Dimensionless time
ϖ relaxation parameter ϱ infinitesimal change
χ diffusion coeffiecient Υ energy in the system

2 Mathematical formulation

The problem under study is considered unsteady, laminar, incompressible natural convection
filled with saturated porous square cavity in the presence of a magnetic field. The geometry of
the problem is depicted in figure 1. The top and bottom walls are considered adiabatic, with
the left wall considered hot with a temperature of (Th) while the right wall taken as cold and is
maintained at relatively lower temperature (Tc). The porous medium is isotropic, homogenous,
and the local thermal equilibrium between the fluid and the porous medium exist. The density
of buoyancy in the momentum equation is solved on the basis of the Boussinesq model. The
thermophysical properties of the flow are assumed as constants. The viscous dissipation, and
radiation effects are all inclusive and significant in the Brinkman-Forchheimer model.

The following equations are adopted to model the problem stated:

∂u
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= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ µ∇2u− µϵ+

K
u− Fϵ+

2

√
K

|V |u− σβ2
0

ϵρ
u (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ µ∇2v − µϵ+

K
v − Fϵ+

2

√
K

|V |v + gβ(T − Tc) (3)

4

Petro Chem Indus Intern, 2023

2. Mathematical Formulation
The problem under study is considered unsteady, laminar, 
incompressible natural convection filled with saturated porous 
square cavity in the presence of a magnetic field. The geometry 
of the problem is depicted in figure 1. The top and bottom walls 
are considered adiabatic, with the left wall considered hot with 
a temperature of (Th) while the right wall taken as cold and is 
maintained at relatively lower temperature (Tc). The porous 

medium is isotropic, homogenous, and the local thermal 
equilibrium between the fluid and the porous medium exist. The 
density of buoyancy in the momentum equation is solved on the 
basis of the Boussinesq model. The thermophysical properties of 
the flow are assumed as constants. The viscous dissipation, and 
radiation effects are all inclusive and significant in the Brinkman-
Forchheimer model. The following equations are adopted to model 
the problem stated:

Nomenclature
u velocity along x component ρ density
v velocity along y component µ dynamic viscosity
x x component CP specific heat
y y component k Thermal conductivity
p Pressure K permeability of the porous media
T local temperature d mean particle diameter
ϵ porosity F form drag constant
β Thermal expansion coefficient g gravitational acceleration
|V | velocity vector σ∗ Stefan-Boltzmann constant
k′ absorption coefficient Th hot area at the boundary
Tc cold area at the boundary ω vortocity
ψ stream function ν Kinematic viscosity
Ra Rayleigh number γ inverse Darcy number
Γ Forchheimer Number Gr Grashof Number
Da Darcy number Rd radiation parameter
Ec Eckert number Nu Local Nusselt number

Nuavg Average Nusselt number α Thermal diffusivity
θ Dimensionless Temperature Φ Viscous dissipation
SH Entropy due to heat SF Entropy due to fluid friction
ST Total Entropy ∆θ Temparature Difference
qrx Radiation flux with respect to x qry Radiation flux with respect to y
qr Thermal Radiation t̄ Dimensionless time
ϖ relaxation parameter ϱ infinitesimal change
χ diffusion coeffiecient Υ energy in the system

2 Mathematical formulation

The problem under study is considered unsteady, laminar, incompressible natural convection
filled with saturated porous square cavity in the presence of a magnetic field. The geometry of
the problem is depicted in figure 1. The top and bottom walls are considered adiabatic, with
the left wall considered hot with a temperature of (Th) while the right wall taken as cold and is
maintained at relatively lower temperature (Tc). The porous medium is isotropic, homogenous,
and the local thermal equilibrium between the fluid and the porous medium exist. The density
of buoyancy in the momentum equation is solved on the basis of the Boussinesq model. The
thermophysical properties of the flow are assumed as constants. The viscous dissipation, and
radiation effects are all inclusive and significant in the Brinkman-Forchheimer model.

The following equations are adopted to model the problem stated:

∂u

∂x
+

∂v

∂y
= 0 (1)

ρ
(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ∇2u− µϵ+

K
u− Fϵ+

2

√
K

|V |u− σβ2
0

ϵρ
u (2)

ρ
(∂v
∂t

+ u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ∇2v − µϵ+

K
v − Fϵ+

2

√
K

|V |v + gβ(T − Tc) (3)

4



  Volume 6 | Issue 4 | 299

Here the governing equations (1)-(4) represent the continuity equation, momentum equation in x and y coordinates and the energy 
equation. We consider (u,v) as dimensional velocity related components along the (x,y) Cartesian coordinates. p is the pressure and T the 
local temperature. The density, dynamic viscosity, specific heat, dimensionless time, and thermal conduction are taken as ρ,µ,cρ,t and k 
respectively. The radiations terms are  and       where K′ represents absorption coefficient and σ∗ 

the Stefan-Boltzmann constant. Using expansion of Taylor series on T4 about Tc and dropping high order terms we

have      The magnetic field is considered a         where β0 are the constants
impose externally on the magnet and σ is taken as electrically conductive   

represents permeability of the cavity, d is the mean particle diameter, ϵ the porosity. F =
is the form drag constant. The norm of the velocity vector taken as |V | =

represents the coefficient for thermal expansion and g represents the gravitational acceleration.

The viscous dissipation ϕ represents

Equation 6 shows the dimensionless parameters
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Figure 1: The Magnetic Direction, adiabatic process and definitions on the walls
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2.1 Vorticity formulation
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The vortocity (ω) will then be represented as
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2.2 Dimensionless boundary conditions

Initial values
u = v = θ = 0 for t = 0 0 ≤ x, y ≤ H.
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3 Entropy Generation

Entropy generation is the process through which a system’s entropy rises over time. It is a
measure of a system’s irreversibility. Entropy is connected to the conversion of usable energy
into waste or heat and happens in a variety of physical, chemical, and thermodynamic processes.
The effect of entropy is frequently related with the second rule of thermodynamics, which
states that in ideal circumstances, the total entropy of an isolated system always tends to grow
or remain constant. Heat transmission across temperature gradients, fluid friction, chemical
reactions, and viscous dissipation processes all contribute to generation of entropy. Eq.(19) to
Eq.(21) are the governing equations of entropy with magnet incorporated.
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3. Entropy Generation
Entropy generation is the process through which a system’s entropy rises over time. It is a measure of a system’s irreversibility. Entropy 
is connected to the conversion of usable energy into waste or heat and happens in a variety of physical, chemical, and thermodynamic 
processes. The effect of entropy is frequently related with the second rule of thermodynamics, which states that in ideal circumstances, 
the total entropy of an isolated system always tends to grow or remain constant. Heat transmission across temperature gradients, fluid 
friction, chemical reactions, and viscous dissipation processes all contribute to generation of entropy. Eq.(19) to Eq.(21) are the governing 
equations of entropy with magnet incorporated.

Since total entropy is the sum of entropy cause by heat and fluid friction (ST = SH + SF ), Therefore

We apply the dimensionless equation Eq.(6) to the governing equations (19) to (21) to obtained equations (22) to (24)

Since total entropy is the sum of entropy cause by heat and fluid friction (ST = SH + SF ),
Therefore

ST =
k

T 2
c

(∇T )2 − 1

T 2
c

[∂qr
∂x

+
∂qr
∂y

]
+

σβ2
0

ϵTc

u2 +
µ

Tc

ϕ+
µ

KTc

|V |2 (21)

We apply the dimensionless equation Eq.(6) to the governing equations (19) to (21) to
obtained equations (22) to (24)

SH =
(
1 +

4

3
Rd

)[(∂θ
∂x

)2

+
(∂θ
∂y

)2]
+Ha2ĒcU2 (22)

SF = ĒcΦ + γĒc|V|2 (23)

ST =
(
1 +

4

3
Rd

)[(∂θ
∂x

)2

+
(∂θ
∂y

)2]
+ ĒcΦ + γĒc|V|2 +Ha2ĒcU2 (24)

where ∆θ = Th−Tc

Tc
the dimensionless temperature difference, Ēc = PrEc

∆θ
is the modified

Eckert, Φ is the dimensionless viscous dissipation |V| =
√
U2 + V 2. We consider (∆T )2 as[(

∂T
∂x

)2

+
(

∂T
∂y

)2]
.

The Nusselt number is used to measure the ability of a fluid layer to transfer heat more
effectively through convection or conduction. The Nusselt’s number, a dimensionless quantity,
is used to represent heat transfer as seen Eq.(25).

Nu = −
(
1 +

4

3
Rd

)∂θ
∂x

∣∣∣
x=0

(25)

Th average nusselts number is also given in Eq.(26) as

Nuavg =

∫ 1

0

Nudy (26)

4 Method of Solution

The solutions to the numerical study implemented includes combining buoyancy obtained from
Eq.(9) together with Eq.(8) to derive the stream function in Eq.(11). The boundary condition
in Eq.(18) where as well applied to the model formulation. The stream function was solved by
the successive over relaxation (SOR) with a tolerance of 10−5. A uniform grid reference of H

was adopted where h =
H

J − 1
and J(= I) which represents the maximum grid along the (x, y)

axis. The parameter (ϖ) representing relaxation and (ϱ) represents the infinitesimal change as
the iterations progress

ϖ = 2
[1−√

1− ϱ

ϱ

]
(27)

where

ϱ =
[cos

( π

i− 1

)
+ cos

( π

j − 1

)

2

]
(28)
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The Nusselt number is used to measure the ability of a fluid layer to transfer heat more effectively through convection or conduction. 
The Nusselt’s number, a dimensionless quantity, is used to represent heat transfer as seen Eq.(25).

4. Method of Solution
The solutions to the numerical study implemented includes combining buoyancy obtained from Eq.(9) together with Eq.(8) to derive 
the stream function in Eq.(11). The boundary condition in Eq.(18) where as well applied to the model formulation. The stream function 
was solved by the successive over relaxation (SOR) with a tolerance of 10−5. A uniform grid reference of H was adopted where 
and J(= I) which represents the maximum grid along the (x,y) axis. The parameter (ϖ) representing relaxation and (ϱ) represents the 
infinitesimal change as the iterations progress

The equation for the discretize iterative procedure is given in Eq.(29)
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We apply the dimensionless equation Eq.(6) to the governing equations (19) to (21) to
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The Nusselt number is used to measure the ability of a fluid layer to transfer heat more
effectively through convection or conduction. The Nusselt’s number, a dimensionless quantity,
is used to represent heat transfer as seen Eq.(25).
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Th average nusselts number is also given in Eq.(26) as
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4 Method of Solution

The solutions to the numerical study implemented includes combining buoyancy obtained from
Eq.(9) together with Eq.(8) to derive the stream function in Eq.(11). The boundary condition
in Eq.(18) where as well applied to the model formulation. The stream function was solved by
the successive over relaxation (SOR) with a tolerance of 10−5. A uniform grid reference of H

was adopted where h =
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J − 1
and J(= I) which represents the maximum grid along the (x, y)
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The equation for the discretize iterative procedure is given in Eq.(29)

ψk+1
(i,j = ψk

(i,j +
ϖ

4

[
ψk
(i+1,j) + ψk+1

(i−1,j) + ψk
(i,j+1) + 4ψk+1

(i,j−1) − ψk
(i,j) − h2ωk

(i,j)

]
(29)

The SOR is repeated between k and k+1 until the iteration reach the desired tolerance level
and ω is the vorticity formulation as defined earlier. The new vorticity values at every iteration
will be determine by alternative implicit method (ADI). For transient, diffusion, and source
components, the ADI technique applies forward time central space descretization, whereas the
ADI method is changed for convective terms. We use H = 1 for the entire calculation. The
ADI approach is unconditionally stable. However, the stability of vorticity at the implicit wall
borderies, like other implicit approaches, needs a constraint, say ∆t is taken as time step, and
is defined in Eq.(30) as

∆t ≤ 1

2χ
( 2

h2

)
+

|u|+ |v|
h

(30)

where χ is the coefficient of diffusion term of the equations (transport). However, this time
step is restricted for the solid wall boundaries to obtained Eq.(31)

∆t ≤ h2

4χ
(31)

Now the convergence criteria adopted for the model is given in Eq.(32)

∣∣∣
Υm+1

(i,j) −Υm
(i,j)

Υm
(i,j)

∣∣∣ ≤ 10−6 (32)

where m denotes the number of time steps and (i, j) denotes a grid point on the coordinate
axes. Υ denotes the energy in the system (Saleem et al. [27]).

To validate the proposed code for analyzing entropy generation and fluid flows with an
imposed magnetic fields in the porous medium. We compared the Grashof number obtained
from present work to results by Geridonmez et al. [2]. Table 1 indicates the comparison for
Ha = 0, 50, 100, Gr = 2× 104, 2× 105 at Pr = 0.7. The percentage errors between present and
Geridonmez et al. [2] indicate minimal difference guaranteeing the validation of the numerical
code adopted. Figure 2 indicates the grid independent study for 31 × 31, 41 × 41, 51 × 51,
71 × 71,81 × 81, 91 × 91 which were compared to the grid adopted for the paper 61 × 61
for fixed parameters of Ra = 5 × 106, Rd = 2, Ec = 10−6, P r = 0.7, γ = Γ = 0.75, Ha = 0
using vertical velocity at vertical mid plane and horizontal velocity at horizontal mid plane to
ensure the accuracy of the results obtained. The reduction in the error calculated solidifies the
assumption of the grid independence as shown in figure 2.
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To validate the proposed code for analyzing entropy generation and fluid flows with an imposed magnetic field in the porous medium. 
We compared the Grashof number obtained from present work to results by Geridonmez et al. [2]. Table 1 indicates the comparison for 
Ha = 0,50,100, Gr = 2×104,2×105 at Pr = 0.7. The percentage errors between present and Geridonmez et al. indicate minimal difference 
guaranteeing the validation of the numerical code adopted [2]. Figure 2 indicates the grid independent study for 31 × 31, 41 × 41, 51 × 
51, 71 × 71,81 × 81, 91 × 91 which were compared to the grid adopted for the paper 61 × 61 for fixed parameters of Ra = 5 × 106,Rd = 
2,Ec = 10−6,Pr = 0.7,γ = Γ = 0.75,Ha = 0 using vertical velocity at vertical mid plane and horizontal velocity at horizontal mid plane to 
ensure the accuracy of the results obtained. The reduction in the error calculated solidifies the assumption of the grid independence as 
shown in figure 2.

Gr Ha Present [2] (%)Error =

∣∣∣Grlargest −Grsmallest

∣∣∣
Grlargest

× 100

2× 104 0 2.5564 2.5310 0.99
50 1.0872 1.0777 0.8
100 1.0092 1.0069 0.2

2× 105 0 5.1233 5.0762 0.9
50 2.6590 2.6369 0.8
100 1.4492 1.4405 0.6

Table 1: Comparison between Grashof number for present work and Geridonmez et al. [2] for
Pr = 0.7

a b

Figure 2: a) Vertical velocity at vertical mid plane, b) Horizontal velocity at horizontal mid
plane for Ra = 5× 106, Rd = 2, Ec = 10−6, P r = 0.7, γ = Γ = 0.75, Ha = 0

5 Results and Discussion

The numerical results shows the effect of factors affecting natural convection fluid flows in
a saturated porous square cavity with thermal radiation, viscous dissipation, and an applied
magnetic field. The controlling parameter for the numerical study is giving as follows: the
Rayleigh number (103 ≤ Ra ≤ 106), Eckert number (10−6, 10−5, 5×10−5) , Forchheimer number
(0 ≤ Γ ≤ 10), inverse Darcy (0 ≤ γ ≤ 10), radiation parameter (0 ≤ Rd ≤ 10), Prandtl number
(Pr = 0.7, 1, 7, 10) and Hartmann number (0 ≤ Ha ≤ 30). Figures (3-12) shows a study of
streamlines, isotherms, isolines of entropy production, local and average Nusselt numbers, and
their effects on fluid flow for various dimensionless parameters.

5.1 Streamlines, Isotherms and Isolines of Entropy

Figure 3 presence streamlines, isotherms and total entropy for different Hartmann (Ha) numbers
with parameters Ra = 105, P r = 7, Rd = 3, Ec = 10−6, γ = Γ = 0.75. In the absences of
magnetic field convective core cells are uniformly distribution showing an intensification of
convective heat transfer. As Ha increase the streamlines become distorted showing a reduction
in the flow rate due to the retarding impact of the Lorentz force. The effects of which could be
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of which could be notice from the values of maximum stream 
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function which changes from −4.5 to −1.5 as Ha changes from 0 to 
30. In addition at Ha = 30 the streamlines are displaced along the 
vertical heated wall. Isotherms depict the temperature distribution 
and aid in the visualisation of heat transmission patterns. Isotherm 
behaviour can change in the presence of differing Ha number. 
Higher Hartmann values often restrict fluid mobility due to the 
magnetic field’s dominant impact. As a result, the isotherms become 
more uniform and nearly parallel, suggesting less convective heat 
transmission as Ha increases. Total entropy is equally affected by 
the changes in Hartmann number. The thickness of the thermal 
boundary layer decrease as Ha increase. Consequently the entropy 
generation decrease along the vertical wall as Ha grows.

Higher radiation values shows that radiative heat transfer is more 
dominant. Figure 4 shows effect of different radiation parameters 
for Ra = 105,Pr = 7,Ha = 30,Ec = 10−6, and γ = Γ = 0.75. From figure 
4, the streamlines are non-uniformly displaced along the heated 
wall which shows a dominant form of convection when radiation 
flux is absence. However as radiation increase the streamlines 
becomes more uniform with smooth circular core in the middle of 
the cavity. Enhancing radiation, leads to the intensification of the 
flow rate as the value of the maximum stream function changes 
from −1.2 to −1.7 when Rd changes from 0 to 10. For isotherms, in 
the absences of radiation the thermal fields clustered along the left 
wall. As radiation increases the isotherms are distribution evenly 
within the cavity. This is because temperature distribution is 
altered by radiative exchanges between left wall and interior of the 
cavity. In addition, a nearly thermal stratification is observed for 
the isotherms at Rd = 10, this shows the dominance of conductive 
heat transfer at high Rd. The concentration of isotherms around the 

vicinity of the vertical walls leads to increase in entropy generation 
as Rd is enhanced (see figure 4).

Figure 5 shows the effect of different Rayleigh number on 
streamlines , isotherms and isolines of total entropy generation 
at Ra = 105,Pr = 7,Ha = 30,Ec = 10−6,γ = Γ = 0.75. Streamlines 
appears uniform and more compact at Ra = 103. At low Ra number 
conduction is the dominant form of heat transfer. The formation 
of minor convective cell cores are observed at Ra = 103. As Ra 
increases convection intensifies due to the buoyancy induce force. 
Increase in Ra changes the formation of the streamlines from 
a single convective cell core to a double convective cell core 
regime as depicted in figure 5. The flow strength also increases 
as the Ra increases. The isotherms also appears parallel at Ra = 
103, which shows a thermal stratification at low Ra number and 
rapidly change form as Ra changes from 103 to 106. The isotherms 
becomes more distorted as Ra increase due to stronger buoyancy-
driven force within the cavity. Rayleigh number has a great impact 
on the entropy generation. These effects are seen in figure 5. As 
Ra increase the entropy generation of the medium significant 
increases, this is due to dominance of the convective heat transfer.

5.2 Velocity, Total Entropy and Local Nusselt Number
Figure 6 presents the horizontal velocity at the vertical mid plane, 
total entropy at vertical mid plane and local Nusselt number for 
different Ha values. From figure 6(a) the horizontal velocity at 
the vertical mid plane approaches zero. This is attributed to the 
interaction of the fluid flow structure and temperature difference 
which leads to an enhancement of the convective heat
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Figure 3: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra =
105, P r = 7.0, Rd = 3, Ec = 10−6, γ = Γ = 0.75 for (a) Ha = 0 (b) Ha = 10 and (c) Ha = 30

transfer. Higher velocities can cause more mixing and fluid agitation, which can contribute to
higher irreversibilities and entropy generation. Flow velocity influences flow patterns which in
turn influences total entropy generation. The total entropy as presented in figure 6(b) is seen
to decrease as Ha increase along the walls of the cavity, with less impact as it moves away from
the wall. Total entropy’s particular behaviour is determined by the Hartmann number, as well
as the flow and heat transfer properties. Higher Nusselt numbers, on the other hand, usually
imply improved heat transmission. The flow velocity and temperature gradients, all have an
effect on the local Nusselt number. Figure 6 (c) shows that higher Hartmann numbers tend to
inhibit flow, resulting in lower local Nusselt numbers due to less convective heat transfer.

Figure 7 shows the horizontal velocity at the vertical mid plane, total entropy at vertical mid
plane and local Nusselt number for different Radiation values. Figure 7(a) indicates a smooth
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Figure 3: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra = 105,Pr = 7.0,Rd = 3,Ec = 10−6,γ = Γ = 0.75 
for (a) Ha = 0 (b) Ha = 10 and (c) Ha = 30

transfer. Higher velocities can cause more mixing and fluid agitation, which can contribute to higher irreversibility’s and entropy 
generation. Flow velocity influences flow patterns which in turn influences total entropy generation. The total entropy as presented 
in figure 6(b) is seen to decrease as Ha increase along the walls of the cavity, with less impact as it moves away from the wall. Total 
entropy’s particular behaviour is determined by the Hartmann number, as well as the flow and heat transfer properties. Higher Nusselt 
numbers, on the other hand, usually imply improved heat transmission. The flow velocity and temperature gradients, all have an effect 
on the local Nusselt number. Figure 6 (c) shows that higher Hartmann numbers tend to inhibit flow, resulting in lower local Nusselt 
numbers due to less convective heat transfer.

Figure 7 shows the horizontal velocity at the vertical mid plane, total entropy at vertical mid plane and local Nusselt number for different 
Radiation values. Figure 7(a) indicates a smooth
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Figure 4: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra =
105, P r = 7.0, Ha = 30, Ec = 10−6, γ = Γ = 0.75 for (a) Rd = 0 (b) Rd = 5 and (c) Rd = 10

flow movements towards zero for the vertical velocity. This is as a result of radiation affecting
the velocity profile indirectly by changing the temperature distribution of the fluid, which
in turn affects the density and viscosity of the fluid, thereby influencing the flow behaviour.
Figure 7(b) depicts the distribution with respect to the total entropy generation profile which
combines both the effect of heat transfers and fluid friction as Rd varies. Entropy generation
could be observed to possessed greater impact along the walls as Rd changes positively. Local
Nusselt number reduce as Rd increase (see figure 7(c)) and this could be attributed to the
reduction in the convective heat transfer.

Figure 8 depicted the horizontal velocity at the vertical mid plane, total entropy at vertical
mid plane and local Nusselt number for different Rayleigh (Ra) values. The Rayleigh number
determines the amplitude and distribution of vertical velocities. When the Rayleigh number
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flow movements towards zero for the vertical velocity. This is as a result of radiation affecting the velocity profile indirectly by changing 
the temperature distribution of the fluid, which in turn affects the density and viscosity of the fluid, thereby influencing the flow 
behaviour. Figure 7(b) depicts the distribution with respect to the total entropy generation profile which combines both the effect of heat 
transfers and fluid friction as Rd varies. Entropy generation could be observed to possessed greater impact along the walls as Rd changes 
positively. Local Nusselt number reduce as Rd increase (see figure 7(c)) and this could be attributed to the reduction in the convective 
heat transfer.

Figure 8 depicted the horizontal velocity at the vertical mid plane, total entropy at vertical mid plane and local Nusselt number for 
different Rayleigh (Ra) values. The Rayleigh number determines the amplitude and distribution of vertical velocities. When the Rayleigh 
number 
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Figure 5: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Rd =
3, P r = 1.0, Ha = 30, Ec = 10−6, γ = 0.25,Γ = 0.5 for (a) Ra = 103 (b) Ra = 105 and (c)
Ra = 106

grows, the buoyancy forces get stronger, causing vertical velocities to increase. Higher Rayleigh
numbers result in improved convective heat transfer, resulting in greater upward or downward
flow velocities depending on the temperature gradient as presented in figure 8(a). Convective
heat transfer becomes more prominent as the Rayleigh number increases, resulting in improved
mixing and heat exchange. This can cause changes in the temperature distribution and the
generation of entropy in the flow. We could observed in figure 8(b) that the effect of entropy
is generally along the walls of the cavity. The Nusselt number (Nu) is a dimensionless metric
that describes the rate of convective heat transport in a fluid. The Rayleigh number has a large
influence on the Nusselt number in buoyancy-driven flows. As the Rayleigh number grows,
convective heat transmission takes precedence over conductive heat transfer. This causes the
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Figure 6: (a) Horizontal velocity along the vertical mid plane, (b) Total Entropy at the vertical mid plane and (c) Local Nusselt number 
at horizontal mid plane

Figure 7: (a) Horizontal velocity along the vertical mid plane, (b) Total Entropy at the vertical mid plane and (c) Local Nusselt number 
at horizontal mid plane

Figure 8: (a) Horizontal velocity along the vertical mid plane, (b) Total Entropy at the vertical mid plane and (c) Local Nusselt number 
at horizontal mid plane

5.3 Effect of Time Variation on Maximum Stream Function, 
Average Nusselt Number and Total Entropy Generation
Figure 9 presence the maximum stream function, average Nusselt 
number and total entropy generation against time for different 
Radiation values. The maximum stream function in time dependent 
flows can alter as the flow patterns change with time. Figure 9(a) 
shows that as Rd increase the maximum stream function increase 
and the patterns display a smooth movement over time. The 
uniform nature of the flow pattern over time solidifies the stability 

assumption of the scheme. Figure 9(b-c) shows the average Nusselt 
number and total entropy as time evolves. As radiation increase the 
changes in both cases shows an insignificant effect but maintains 
the uniform flow.

Figure 10 presence the maximum stream function, average Nusselt 
number and total entropy generation against time for different 
Hartmann values. In time-dependent flows, the maximum 

Nusselt number to rise as in figure 8(c). Higher Rayleigh numbers correspond to more efficient
heat transport and bigger Nusselt numbers.
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Figure 7: (a) Horizontal velocity along the vertical mid plane, (b) Total Entropy at the vertical
mid plane and (c) Local Nusselt number at horizontal mid plane
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Figure 9 presence the maximum stream function, average nusselt number and total entropy
generation against time for different Radiation values. The maximum stream function in time-
dependent flows can alter as the flow patterns change with time. Figure 9(a) shows that as Rd
increase the maximum stream function increase and the patterns display a smooth movement
over time. The uniform nature of the flow pattern over time solidifies the stability assumption of
the scheme. Figure 9(b-c) shows the average Nusselt number and total entropy as time evolves.
As radiation increase the changes in both cases shows an insignificant effect but maintains the
uniform flow.
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over time. The uniform nature of the flow pattern over time solidifies the stability assumption of
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Figure 8: (a) Horizontal velocity along the vertical mid plane, (b) Total Entropy at the vertical
mid plane and (c) Local Nusselt number at horizontal mid plane

stream function can fluctuate as the flow patterns change over time. The maximum stream
function decreases and maintained a smooth pattern over time as Ha increases (see figure
10(a)). However a steady flow pattern is observed as time evolves. An insignificant change for
different Ha values has been observed for both average Nusselt number and total entropy as
time evolves (see figure 10(b-c)).

Figure 11 presence the maximum stream function, average nusselt number and total en-
tropy generation against time for different Rayleigh values. The buoyancy forces get greater as
the Rayleigh number increases in the flow pattern over time. The maximum stream function
increases as Ra increases. Figure 11 (a) shows that the flow pattern maintains a steady phe-
nomena with the stream function as time evolved. The Rayleigh number impact the evolution
of the average Nusselt number and total entropy as time passes in buoyancy-driven flows. When
the flow begins or when the temperature distribution changes, both the Nuavg and ST exhibit
an insignificant change and a uniform flow pattern exits (see figure 11(b-c)).

a b c

Figure 9: (a)Maximum stream function (b) Average Nusselt number and (c) Total entropy

5.4 Effect of Form and Viscous drag

The effect of the form and viscous drag forces is presented in figure 12. As the Forchheimer
and inverse Darcy increases average Nusselt number increase (see figure 12(a)), while total
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stream function can fluctuate as the flow patterns change over time. 
The maximum stream function decreases and maintained a smooth 
pattern over time as Ha increases (see figure 10(a)). However a 
steady flow pattern is observed as time evolves. An insignificant 
change for different Ha values has been observed for both average 
Nusselt number and total entropy as time evolves (see figure 10(b-
c)).

Figure 11 presence the maximum stream function, average nusselt 
number and total entropy generation against time for different 

Rayleigh values. The buoyancy forces get greater as the Rayleigh 
number increases in the flow pattern over time. The maximum 
stream function increases as Ra increases. Figure 11 (a) shows 
that the flow pattern maintains a steady phenomenon with the 
stream function as time evolved. The Rayleigh number impact the 
evolution of the average Nusselt number and total entropy as time 
passes in buoyancy-driven flows. When the flow begins or when 
the temperature distribution changes, both the Nuavg and ST exhibit 
an insignificant change and a uniform flow pattern exits (see figure 
11(b-c)).
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function decreases and maintained a smooth pattern over time as Ha increases (see figure
10(a)). However a steady flow pattern is observed as time evolves. An insignificant change for
different Ha values has been observed for both average Nusselt number and total entropy as
time evolves (see figure 10(b-c)).
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increases as Ra increases. Figure 11 (a) shows that the flow pattern maintains a steady phe-
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the flow begins or when the temperature distribution changes, both the Nuavg and ST exhibit
an insignificant change and a uniform flow pattern exits (see figure 11(b-c)).
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The effect of the form and viscous drag forces is presented in figure 12. As the Forchheimer
and inverse Darcy increases average Nusselt number increase (see figure 12(a)), while total
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Figure 11: (a)Maximum stream function (b) Average Nusselt number and (c) Total entropy

entropy and the maximum stream function diminished for different Rd values diminishes (see
figure 12(b-c)). The factors affecting average Nusselt number, total entropy and maximum
stream function for different Rd values is attributed to the following: A higher emissivity
indicates a greater radiative heat transfer. Considering Forchheimer flow resistance and inverse
darcy, an increase in emissivity will result in increased heat transfer and reduced temperature
gradients within the system. As a result, the temperature-driven entropy formation associated
with natural convection will be reduced. More radiation is absorbed with higher absorptivity,
resulting in enhanced heat transmission. Higher absorptivity improves heat transmission and
change the temperature distribution in the presence of Forchheimer flow resistance. As a result,
the creation of entropy may be affected, thereby lowering temperature-driven irreversibilities.
When Forchheimer flow resistance is taken into account, scattering and reflection can affect
heat transfer patterns and temperature gradients. These temperature distribution variations
can have an effect on entropy formation by altering the irreversibilities associated with natural
convection. By slowing the flow of fluid around the item, form drag can restrict the maximum
stream function. As a result, in the presence of strong form drag, the maximum flow rate and
hence the maximum stream function will be reduced. Increased viscous drag is caused by higher
viscosity or bigger velocity gradients. Viscous drag has a direct effect on flow and can lower
maximum stream function by releasing energy as heat. This drag force resists fluid motion and
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Figure 11: (a)Maximum stream function (b) Average Nusselt number and (c) Total entropy

entropy and the maximum stream function diminished for different 
Rd values diminishes (see figure 12(b-c)). The factors affecting 
average Nusselt number, total entropy and maximum stream 
function for different Rd values is attributed to the following: 
A higher emissivity indicates a greater radiative heat transfer. 
Considering Forchheimer flow resistance and inverse darcy, an 
increase in emissivity will result in increased heat transfer and 
reduced temperature gradients within the system. As a result, the 
temperature-driven entropy formation associated with natural 
convection will be reduced. More radiation is absorbed with higher 
absorptivity, resulting in enhanced heat transmission. Higher 
absorptivity improves heat transmission and change the temperature 
distribution in the presence of Forchheimer flow resistance. As a 
result, the creation of entropy may be affected, thereby lowering 

temperature-driven irreversibility’s. When Forchheimer flow 
resistance is taken into account, scattering and reflection can affect 
heat transfer patterns and temperature gradients. These temperature 
distribution variations can have an effect on entropy formation by 
altering the irreversibility’s associated with natural convection. By 
slowing the flow of fluid around the item, form drag can restrict the 
maximum stream function. As a result, in the presence of strong 
form drag, the maximum flow rate and hence the maximum stream 
function will be reduced. Increased viscous drag is caused by 
higher viscosity or bigger velocity gradients. Viscous drag has a 
direct effect on flow and can lower maximum stream function by 
releasing energy as heat. This drag force resists fluid motion and 
restricts the maximum flow rate.

Figure 12: (a) Average Nusselt Number at the left wall (b) Total entropy and (c) Maximum stream function
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entropy and the maximum stream function diminished for different Rd values diminishes (see
figure 12(b-c)). The factors affecting average Nusselt number, total entropy and maximum
stream function for different Rd values is attributed to the following: A higher emissivity
indicates a greater radiative heat transfer. Considering Forchheimer flow resistance and inverse
darcy, an increase in emissivity will result in increased heat transfer and reduced temperature
gradients within the system. As a result, the temperature-driven entropy formation associated
with natural convection will be reduced. More radiation is absorbed with higher absorptivity,
resulting in enhanced heat transmission. Higher absorptivity improves heat transmission and
change the temperature distribution in the presence of Forchheimer flow resistance. As a result,
the creation of entropy may be affected, thereby lowering temperature-driven irreversibilities.
When Forchheimer flow resistance is taken into account, scattering and reflection can affect
heat transfer patterns and temperature gradients. These temperature distribution variations
can have an effect on entropy formation by altering the irreversibilities associated with natural
convection. By slowing the flow of fluid around the item, form drag can restrict the maximum
stream function. As a result, in the presence of strong form drag, the maximum flow rate and
hence the maximum stream function will be reduced. Increased viscous drag is caused by higher
viscosity or bigger velocity gradients. Viscous drag has a direct effect on flow and can lower
maximum stream function by releasing energy as heat. This drag force resists fluid motion and
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restricts the maximum flow rate.
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Figure 12: (a) Average Nusselt Number at the left wall (b) Total entropy and (c) Maximum
stream function

6 Conclusions

The investigation of the magnetic effect, Darcy-Forchheimer flows, natural convection, porous
medium, and entropy generation has expanded our understanding of fluid flow and heat transfer
phenomena. These findings contribute to the advancement of various engineering disciplines,
offering opportunities for improved energy efficiency and sustainable development. The in-
clusion of the radiation effect and the magnetic term in both energy and entropy generation
equation has resulted to better analysis of the flow phenomena. The results shown that when
Hartmann grows, the streamlines get deformed, causing the flow rate to drop owing to the
Lorentz force’s retarding impact. The flow rate increases as the radiation level rises. Increases
in the Rayleigh number considerably increase the medium’s entropy generation. Higher veloci-
ties can cause more mixing and fluid agitation, resulting in higher irreversibilities and entropy
formation. As time passes, the maximum stream function, average Nusselt number, and total
entropy all shows a consistent uniform flow pattern. As Forchheimer and inverse Darcy rise, so
does the average Nusselt number, while total entropy and maximum stream function fall.
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6 Conclusions
The investigation of the magnetic effect, Darcy-Forchheimer 
flows, natural convection, porous medium, and entropy generation 
has expanded our understanding of fluid flow and heat transfer 
phenomena. These findings contribute to the advancement 
of various engineering disciplines, offering opportunities for 
improved energy efficiency and sustainable development. The 
inclusion of the radiation effect and the magnetic term in both 
energy and entropy generation equation has resulted to better 
analysis of the flow phenomena. The results shown that when 
Hartmann grows, the streamlines get deformed, causing the flow 
rate to drop owing to the Lorentz force’s retarding impact. The flow 
rate increases as the radiation level rises. Increases in the Rayleigh 
number considerably increase the medium’s entropy generation. 
Higher velocities can cause more mixing and fluid agitation, 
resulting in higher irreversibility’s and entropy formation. As time 
passes, the maximum stream function, average Nusselt number, 
and total entropy all shows a consistent uniform flow pattern. As 
Forchheimer and inverse Darcy rise, so does the average Nusselt 
number, while total entropy and maximum stream function fall.
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