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Abstract
The study seeks to presents numerically the heat transfer phenomenon using natural convection in porous media. A square enclosure 
(cavity) filled with a porous medium simulated through Lattice Boltzmann Method which was used to analysed its effect on Fluid 
flows. The Darcy Forcheimer model will be adopted to show transfer of heat on the porous media. Magnetic effect is considered by 
including a magnetic field in they-momentum equation. The effects by various dimensionless parameters on generation of entropy 
are efficiently analyzed. Results from the investigations show that the Darcy-Forcheimer and magnetic effect both have relevant 
impact on entropy in a porous medium. The Eckert number affects the energy conversion and dissipation mechanisms, which in
turns affect the rate of entropy generation.

Keywords: Lattice Boltzmann Method, Entropy Generation, Magnetohydrodynamics, Thermal Radiation.Future Prospects.

1 Introduction
Lattice Boltzmann Method (LBM) described as a recent technique 
for numerical simulations has proven to be accurate and efficient 
for ascertaining the effects of heat transfer on porous media. 
LBM is easy to create and parallelize, making it computationally 
efficient. Its lattice structure facilitates the simulation of complex 
fluid behaviours such as multiphase flows and fluid-structure 
interactions. Haghshenas et al [1]. presents a simulation study on 
an openended square cavity filled with porous medium using LBM 
on natural convection [2]. Venkatadri and B´eg shows an LBM for 
thermo-magnetic cavity problem in a porous system for natural 
convection. The authors present a comprehensive analysis of the 
numerical results, including flow patterns and thermal distribution 
for different values of magnetic field strength, porosity, and 
Rayleigh number. Yang et al [3]. proposed a unified LBM for 
solving partial differential equations. Yong et al [4].  studied LBM 
approach for determining function slope in relation to control 
parameters.

Magnetic effect can also play significant role on transfer of heat for 
a porous media, particularly in magnetohydrodynamics, magnetic 
refrigeration, and magnetic drug targeting. Including a magnetic 
field in the momentum equation can enhance or suppress fluid 
flows in porous medium. Geridonmez et al [5]. presents a natural 
convection in a square cavity filled with porosity on a partial 
magnetic field. Mahmoudi and Ahmed studied a scale analysis on 
porous medium in the presence of magnet for natural convection 
[6]. The aim of the investigation is to analysed the physical 
mechanisms that govern fluid flows on magnetic fields for a porous 
system. Jamshed et al [7]. shows that the inclusion of magnetic 
fields can improve heat transfer performance while decreasing 
system entropy generation. Tayebs et al [8]. give a thorough 
investigation of the effects of magnetic fields and fin geometry 
on the thermo-economic performance and entropy generation of 
natural convective flow in a fluid’s circular enclosure. The work 
has crucial implications for building sustainable energy systems, 
demonstrating the potential of magnetic fields to improve natural 
convection heat transfer efficiency in such systems.
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equations. Yong et al. [4] studied LBM approach for determining function slope in relation to
control parameters.

Magnetic effect can also play significant role on transfer of heat for a porous media, partic-
ularly in magnetohydrodynamics, magnetic refrigeration, and magnetic drug targeting. Includ-
ing a magnetic field in the momentum equation can enhance or suppress fluid flows in porous
medium. Geridonmez et al. [5] presents a natural convection in a square cavity filled with
porosity on a partial magnetic field. Mahmoudi and Ahmed [6] studied a scale analysis on
porous medium in the presence of magnet for natural convection. The aim of the investigation
is to analysed the physical mechanisms that govern fluid flows on magnetic fields for a porous
system. Jamshed et al. [7] shows that the inclusion of magnetic fields can improve heat trans-
fer performance while decreasing system entropy generation. Tayebs et al. [8] give a thorough
investigation of the effects of magnetic fields and fin geometry on the thermo-economic perfor-
mance and entropy generation of natural convective flow in a fluids circular enclosure. The work
has crucial implications for building sustainable energy systems, demonstrating the potential
of magnetic fields to improve natural convection heat transfer efficiency in such systems.

Nomenclature
u velocity along x component ρ density
v velocity along y component µ dynamic viscosity
x x component CP specific heat
y y component k Thermal conductivity
p Pressure K permeability of the porous media
T local temperature d mean particle diameter
ϵ porosity F form drag constant
β Thermal expansion coefficient g gravitational acceleration
|V | velocity vector σ∗ Stefan-Boltzmann constant
k′ absorption coefficient Th hot area at the boundary
Tc cold area at the boundary ω vortocity
ψ stream function ν Kinematic viscosity
Ra Rayleigh number γ inverse Darcy number
Γ Forchheimer Number Gr Grashof Number
Da Darcy number Rd radiation parameter
Ec Eckert number Nu Local Nusselt number

Nuavg Average Nusselt number α Thermal diffusivity
θ Dimensionless Temperature Φ Viscous dissipation
SH Entropy due to heat SF Entropy due to fluid friction
ST Total Entropy ∆θ Temparature Difference
qrx Radiation flux with respect to x qry Radiation flux with respect to y
qr Thermal Radiation t̄ Dimensionless time
τf relaxation time for velocity τg relaxation time for temperature

f eq
i (x, t) equilibrium for velocity geqi (x, t) equilibrium for temperature
fi(x, t) distribution for temperature at time t gi(x, t) distribution for velocity at time t
u microscopic velocity cs speed of sound
ci speed of lattice particles △ x lattice space
ci speed of lattice particles △ t lattice space
wi weight function

2

Darcy Forchheimer commonly describe the transfer of momentum 
in porous media. It takesinto account the viscous drag forces 
exerted by some solid matrix on fluid flow. Fluid dynamics and 
heat transfer has create valuable contribution in recent findings, 
and it may have potential applications in various fields, including 
biomedical engineering and renewable energy. Rasool et al 
[9]. presents a numerical investigation of Darcy Forchheimer 
relation with Casson fluid magnetohydrodynamic nanofluid 
flow in a non-linear surface characterize by stretching. The 
authors aim to investigate the effect of various parameters like 
Casson, magnetic field and non-dimensional parameters on heat 
transfer characteristics in nanofluid. The paper provides valuable 
contribution on fluid dynamics and heat transfer for nanofluids 
under the effect of magnetic fields, and it may have potential 
applications in various fields, including propulsion and power 
systems. Loganathan et al [10]. aim to analyze the heat transfer 
and entropy generation in the presence of Darcy-Forchheimer 
porous media.

Entropy generation is a key topic in several scientific and technical 
domains, including thermodynamics, fluid mechanics, and 
information theory. It measures the irreversible and chaotic quality 
of processes and systems, representing total energy deterioration 
and loss of order. Shah et al [11]. investigates optimization of 
entropy in Darcy-Forchheimer magnetohydrodynamic flow with 
Joule heating and viscous dissipation. Hayat et al [12]. present an 
analysis of the numerical results, including effects of parameters 
on transfer of heat phenomena, as well as entropy generation. The 
authors also optimize the system for minimum entropy generation 
and discuss the significance of the results in understanding fluid 
dynamics and heat transfer chemical reactive Darcy-Forchheimer 
flow with magnetic field. The work presents a numerical 
investigation of the impact of entropy generation on the magnetic 
field in a square cavity filled with a binary mixture fluid subjected 
to thermosolutal convection. The paper employs computational 
tools to simulate the fluid and magnetic field behaviour, taking 
into consideration issues such as heat transfer and solute transport. 
The paper provides valuable insights into the effects of slip on 
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entropy generation in MHD flows, highlighting the potential 
for slip to reduce entropy generation in such systems [13, 14]. 
Consequently, Saleem et al [15]. discuss entropy generation in a 
marangoni flow and heat transfer process due to its irreversibility 
natural process, as stated on the second law of thermodynamics. 
Many factors of recent research have contributed greatly to the 
change in entropy, among which includes fluid flow friction, heat 
transfer mechanisms and process. Since entropy concentrate on 
how much thermal energy or heat is lost per temperature, we could 
observe its wide range of practical application on boiling water, 
popcorn making and ice melting [16-19]. Furthermore, Alzahrani 
et al [20]. aim to optimize the entropy generation of the fluid flows 
by applying a rotating disk. The study presents a comprehensive 
analysis of the numerical results, including some effects of various 
parameters such as magnetic field and bioconvection on fluid flow. 
Jawad et al. also worked on a similar area of study [21]. 

Natural convection for heat transfer Phenomena in a porous 
system has received numerous attention in recent years due to it’s 
importance in various engineering applications, like geothermal 
energy extraction, underground heat storage, and building 
insulation. Numerical methods are essential tools to study such 

phenomena since analytical solutions are often not available. In 
this paper, the LBM is used to simulate heat transfer of natural 
convection in cavity filled with a porosity. Darcy-Forcheimer 
model and magnetic effect are included in the momentum equation 
and energy equations so as to assess the effect on the entropy 
generation. The results of this study will provide insights into the 
behavior of natural convection through a porous media and help 
analysed the massive effect of magnet on a porous media for heat 
transfer.

2 Mathematical Formulation
In the presence of an applied magnetic field, the flow is considered 
unsteady, laminar, and incompressible natural convection in a 
cavity filled with porous medium. The geometry of the problem 
is shown in Figure 1. The top and bottom walls are adiabatic, with 
the left wall considered hot (Th) and the right wall considered 
cold (Tc). The porous medium is isotropic and homogeneous. The 
Boussinesq model was buoyancy on the momentum equation, 
the thermophysical characteristics of the flow are assumed as 
constants. The magnetic field, viscous dissipation, and radiation 
effects are all inclusive and significant in the model.

2 Mathematical formulation

In the presence of an applied magnetic field, the flow is considered unsteady, laminar, and
incompressible natural convection in a cavity filled with porous medium. The geometry of
the problem is shown in Figure 1. The top and bottom walls are adiabatic, with the left wall
considered hot (Th) and the right wall considered cold (Tc). The porous medium is isotropic and
homogeneous. The Boussinesq model was buoyancy on the momentum equation, the thermo-
physical characteristics of the flow are assumed as constants. The magnetic field, viscous
dissipation, and radiation effects are all inclusive and significant in the model.
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Figure 1: The Magnetic Direction, adiabatic process and definitions on the walls

Equation (1)-(4) presents the conservation of mass, momemtum and energy equation for a
2D cavity problem.
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where (u, v) are considered dimensional velocity related to components along the (x, y)
Cartesian coordinate. p is the pressure, T the local temperature. The density (ρ), dynamic
viscosity (µ), specific heat (cρ), time in dimensional form t , and thermal conduction (k). The
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Equation (1)-(4) presents the conservation of mass, momemtum and energy equation for a 2D cavity problem.
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incompressible natural convection in a cavity filled with porous medium. The geometry of
the problem is shown in Figure 1. The top and bottom walls are adiabatic, with the left wall
considered hot (Th) and the right wall considered cold (Tc). The porous medium is isotropic and
homogeneous. The Boussinesq model was buoyancy on the momentum equation, the thermo-
physical characteristics of the flow are assumed as constants. The magnetic field, viscous
dissipation, and radiation effects are all inclusive and significant in the model.
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where (u, v) are considered dimensional velocity related to components along the (x, y)
Cartesian coordinate. p is the pressure, T the local temperature. The density (ρ), dynamic
viscosity (µ), specific heat (cρ), time in dimensional form t , and thermal conduction (k). The

4radiations terms in both x and y are given as qrx = − 4σ∗

3K′
∂T 4

∂x
and qry = − 4σ∗

3K′
∂T 4

∂y
, where

K ′ represents absorption coefficient and σ∗ the Stefan-Boltzmann constant. Using expansion
of Taylor series on T 4 about Tc and dropping high order terms we have T 4 ≈ 4TT 3

c − 3T 4
c .

The magnetic field is given as
σβ2

0

ϵρ
, where σ and β0 are the constant impose externally on the

magnet. K =
d2ϵ3

(150[(1− ϵ)]2
is the permeability of the porous system, with d being the mean

particle diameter, the porosity ϵ is classified as the fraction of entire volume in void space.

F =
(1.75(1− ϵ))

(dϵ3)
is the form drag constant, the constant

F√
K

is the Forchheimer number.

The norm of the velocity vector |V | =
√
u2 + v2, β represents thermal expansion (coefficient)

and g represents gravitational acceleration.
The viscous dissipation ϕ is express as

ϕ = 2
[(∂u

∂x

)2

+
(∂v
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)2]
+
(∂v
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+
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)2

(5)

Equation 6 shows the dimensionless parameters
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ν

H
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l
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l2
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p (6)

We apply the dimensionless parameter given in Eq.(6) to the the governing equation from
Eq.(1)-(4) to obtained Eq.(7)-(10).

∂U

∂X
+

∂V

∂Y
= 0 (7)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+∇2U − γU − Γ|V |U −Ha2U (8)

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+∇2V − γV − Γ|V |V +Grθ (9)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

1

Pr

(
1 +

4

3
Rd

)
∇2θ + γEc|V |2 + EcΦ +Ha2EcU2 (10)

where Ra =
l3gβ(Th − Tc)

αν
represents the Rayleigh, γ =

l2ϵ+

K
indicates the inverse darcy,

Γ =
l2Fϵ+

2

√
K

is the form drag or Forchheimer, Gr =
Ra

Pr
and Pr = ν

α
are the Grashof and

Prandtl. Da =
K

l2
, Ec =

ν2

cρ(Th − Tc)l2
, Ha2 =

σβ2
0 l

2

ϵµ
and Rd = 4σ∗T 3

c

kK′ represents Darcy,

Eckert, Hartmann and Radiation respectively and ∇2θ =
[∂2θ

∂x2
+

∂2θ

∂y2

]

5



Volume 1 | Issue 2 | 79Eng OA, 2023

radiations terms in both x and y are given as qrx = − 4σ∗

3K′
∂T 4

∂x
and qry = − 4σ∗

3K′
∂T 4

∂y
, where

K ′ represents absorption coefficient and σ∗ the Stefan-Boltzmann constant. Using expansion
of Taylor series on T 4 about Tc and dropping high order terms we have T 4 ≈ 4TT 3

c − 3T 4
c .

The magnetic field is given as
σβ2

0

ϵρ
, where σ and β0 are the constant impose externally on the

magnet. K =
d2ϵ3

(150[(1− ϵ)]2
is the permeability of the porous system, with d being the mean

particle diameter, the porosity ϵ is classified as the fraction of entire volume in void space.

F =
(1.75(1− ϵ))

(dϵ3)
is the form drag constant, the constant

F√
K

is the Forchheimer number.

The norm of the velocity vector |V | =
√
u2 + v2, β represents thermal expansion (coefficient)

and g represents gravitational acceleration.
The viscous dissipation ϕ is express as

ϕ = 2
[(∂u

∂x

)2

+
(∂v
∂y

)2]
+
(∂v
∂x

+
∂u

∂y

)2

(5)

Equation 6 shows the dimensionless parameters

X =
x

l
, Y =

y

l
, τ =

ν

l2
t, θ =

T − Tc

Th − Tc

, u =
ν

H
U, v =

ν

l
V, P =

l2

ρν2
p (6)

We apply the dimensionless parameter given in Eq.(6) to the the governing equation from
Eq.(1)-(4) to obtained Eq.(7)-(10).

∂U

∂X
+

∂V

∂Y
= 0 (7)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+∇2U − γU − Γ|V |U −Ha2U (8)

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+∇2V − γV − Γ|V |V +Grθ (9)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

1

Pr

(
1 +

4

3
Rd

)
∇2θ + γEc|V |2 + EcΦ +Ha2EcU2 (10)

where Ra =
l3gβ(Th − Tc)

αν
represents the Rayleigh, γ =

l2ϵ+

K
indicates the inverse darcy,

Γ =
l2Fϵ+

2

√
K

is the form drag or Forchheimer, Gr =
Ra

Pr
and Pr = ν

α
are the Grashof and

Prandtl. Da =
K

l2
, Ec =

ν2

cρ(Th − Tc)l2
, Ha2 =

σβ2
0 l

2

ϵµ
and Rd = 4σ∗T 3

c

kK′ represents Darcy,

Eckert, Hartmann and Radiation respectively and ∇2θ =
[∂2θ

∂x2
+

∂2θ

∂y2

]

5

3 Entropy Generation
Entropy generation is the process through which a system’s entropy rises over time. It is a measure of a system’s irreversibility. Entropy 
is connected to the conversion of usable energy into waste or heat and happens in a variety of physical, chemical, and thermodynamic 
processes. The effect of entropy is frequently related with the second rule of thermodynamics, which states that in ideal circumstances, 
the total entropy of an isolated system always tends to grow or remain constant. Heat transmission across temperature gradients, fluid 
friction, chemical reactions, and viscous dissipation processes all contribute to generation of Entropy. Eq.(11) to Eq.(13) are the governing 
equations of entropy with magnet incorporated.

3 Entropy Generation

Entropy generation is the process through which a system’s entropy rises over time. It is a
measure of a system’s irreversibility. Entropy is connected to the conversion of usable energy
into waste or heat and happens in a variety of physical, chemical, and thermodynamic processes.
The effect of entropy is frequently related with the second rule of thermodynamics, which
states that in ideal circumstances, the total entropy of an isolated system always tends to grow
or remain constant. Heat transmission across temperature gradients, fluid friction, chemical
reactions, and viscous dissipation processes all contribute to generation of Entropy. Eq.(11) to
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Since total entropy is the sum of entropy due to heat and entropy due fluid friction (ST =
SH + SF ), Then
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we apply the dimensionless equation Eq.(6) to Equation (11-13) to obtained to Equation
(14- 16)
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+
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where ∆θ = Th−Tc

Tc
the dimensionless temperature difference, Ēc = PrEc

∆θ
is the modified

Eckert, Φ is the dimensionless viscous dissipation |V| =
√
U2 + V 2. We consider (∆T )2 as[(

∂T
∂x

)2

+
(

∂T
∂y

)2]

3.0.1 Dimensionless boundary conditions

Initial values
u = v = θ = 0 for t = 0 0 ≤ x, y ≤ H.

on the left wall

x = 0, ψ = 0, θ = 1, ω = −∂2ψ

∂x2

on the right wall

x = 1, ψ = 0, θ = 0, ω = −∂2ψ

∂x2

on the top and bottom wall on the wall

6
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3.0.1 Dimensionlessz Boundary Conditions

ψ = 0, ω = −∂2ψ

∂y2
,

∂θ

∂y
= 0 (17)

The Nusselt number is used to measure if a fluid layer can transfer heat more effectively
through convection or conduction. Nusselt’s number, a dimensionless quantity, is used to
represent heat transmission is in Eq.18.
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Th average nusselts number is also given as
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4 Lattice Boltzmann Method Formulation

The LBM which uses the mesoscopic numerical approach will be applied in simulating the fluid
flow. The Chapman-Enskog expansion was applied and we consider the two-dimensional with
nine velocities model (D2Q9) to simulate the flow. The distribution function from the Lattice
Boltzmann equation in terms of the velocities, u = (u, v) and temperature θ from Eq.(10)-(14)
is express as

fi(x+ ci △ t, t+ △ t) = (1− 1

τf
)fi(x, t) +

1

τf
f eq
i (x, t)+ △ t · Fi, (20)

gi(x+ ck △ t, t+ △ t) =
(
1− 1

τg

)
gi(x, t) +

1

τg
geqi (x, t)+ △ t ·Gi, (21)

For i = 1, 2, ......8.
1

τf
and

1

τg
are the relaxation time for the velocity and temperature, fk(x, t), and gk(x, t)

classified as the distribution function for the temperature and velocity at time t. Similarly,
f eq
k (x, t), and geqk (x, t) the equilibrium for the velocity (u, v) and temperature (θ). The external
forces on the velocity and temperature distribution functions are △ t·Fk and △ t·Gk respectively.
The macroscopic velocity u = (u, v) and temperature θ, with the density per node, ρ are defined
as

8∑
k=0

fk =
8∑

k=0

f eq
k = ρ,

8∑
k=0

fkck = ρu,
8∑

k=0

gk =
8∑

k=0

geqk = θ. (22)

The relaxation times in relation to the velocity and temperature are

ν = c2s △ t
(
τf −

1

2

)
, (23)

α = c2s △ t
(
τg −

1

2

)
, (24)

where α = i
ρcρ

is the thermal diffusivity, cs = c√
3
the speed of sound and c = △x

△t lattice

particles speed, △ x, the lattice space △ t the time steps.
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where ci is the discrete velocities, u = (u, v) velocities on the x and y direction, and the
weight function is wi. The discrete velocities and the weight function for a D2Q9 model is
defined as;

ci =




(0, 0) for k = 0

c

cos


(k − 1)π

2


,

sin


(k − 1)π

2


for i = 1, 2, 3, 4

c
√
2

cos


(2k − 1)π

2


,

sin


(2k − 1)π

2


for i = 5, 6, 7, 8

(27)

wi =




4
9

for i = 0,
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1
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for i = 5, 6, 7, 8.

(28)

4.1 Boundary condition for the LBM

For the adiabatic walls, the distribution functions remain unchanged at the boundary nodes.
while Th and Tc representing the vertical boundaries can Mathematically be expressed as:

fi(x, y) = fi(x, y − 1) for the top wall

fi(x, y) = fi(x, y + 1) for the bottom wall

fi(x, y) = f eq
i (ρ, ux = 0, uy, T = Th = 1) for the left wall

fi(x, y) = f eq
i (ρ, ux = 0, uy, T = Tc = 0) for the right wall (29)
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Gr Ha Present [20] error[20]
2× 104 0 2.5611 2.5665 0.0054

50 1.0982 1.0995 0.0013
100 1.0199 1.0222 0.0023

2× 105 0 5.0913 5.0932 0.0019
50 2.6740 2.6791 0.0051
100 1.4588 1.4605 0.0017

Table 1: Comparison between Nusselt number for present work and Sheikholeslami et al. [20]
for Pr = 0.7

where fi represents the distribution function for velocity direction i at position (x, y). Here,
f eq
i represents the equilibrium distribution function for velocity direction i, which depends on
the local macroscopic variables at the boundary nodes, such as density (ρ), velocity components
(ux, uy), and temperature (T ). Setting ux = 0 ensures that the flow is perpendicular to the
boundary.

5 Code Validation

we compare present results with Sheikholeslami et al. [20] for Gr = 2 × 104, 2 × 105 for Ha
values of 0, 50, 100 and results obtained as presented by in Table 1 shows insignificant error for
nusselt numbers obtained at different categories to validate the numerical code. Temperature
at horizontal mid plane and vertical velocity at vertical mid plane were used to ascertain grid
independence for grids of 31 × 31, 41 × 41, 51 × 51, 61 × 61, 71 × 71,81 × 81, 91 × 91 for
Ra = 5× 106,Rd = 2,Ec = 10−6,Pr = 0.7, γ = Γ = 0.75,Ha = 0. Figure 3 presents the graphs
of the grid independent study adopted.
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Figure 3: A) Temperature at vertical mid plane, B)Vertical velocity at vertical mid plane for
Ra = 5× 106,Rd = 2,Ec = 10−6,Pr = 0.7, γ = Γ = 0.75,Ha = 0
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Figure 3: A) Temperature at vertical mid plane, B)Vertical velocity at vertical mid plane for Ra = 5 × 106, Rd = 2, Ec = 10−6, Pr = 0.7, 
γ = Γ = 0.75, Ha = 0

6 Results and Conclusion
The effect of Hartmann, Eckert, viscous, and drag forces on 
streamlines, isotherms, isolines of entropy, time, average and local 
Nusselt, velocity and maximum streamlines are discussed. The 
controlling parameter for the investigation include the Grashof 
(103 ≤ Gr ≤ 106), the Eckert number (10−6, 10−5, 5 × 10−5), the 
Forchheimer number (0 ≤ Γ ≤ 10), inverse Darcy Eckert number 
(10−6, 10−5, 5 × 10−5), the Forchheimer number (0 ≤ Γ ≤ 10), 
inverse Darcy (0 ≤ γ ≤ 10), radiation parameter (0 ≤ Rd ≤ 10), 
Prandtl number Pr (0.7, 1.0, 7.0, 10) and Hartmann number (103 
≤ Gr ≤ 106). Figure (3-9) shows the results of the effects of the of 
dimensionless variables on the fluid flow.

6.1 Effect of Eckert Number
The Eckert number largely controls energy conversion in the 

flow, whereas the Hartmann number governs magnetic field 
behaviour. Figure 4 shows Streamlines (ψ), Isotherms (θ) and 
Isolines of Total Entropy Generation ST at Ra = 105, Pr = 7.0, 
Ha = 30, Ec = 10−6, γ = Γ = 0.75 for different Eckert number. 
Figure 4 shows that streamlines cluster together more as Eckert 
increases, isotherms appears thesame except for very high Ec 
which moves the isotherms to the left wall and entropy generation 
also potraying a similar phenomenum as the isotherms. This 
behaviour on the fluid is because an increased Eckert numbers 
are often associated with increased kinetic energy contributions, 
which can affect flow dynamics and streamline shape. A greater 
Eckert number indicates that kinetic energy contributes more than 
thermal energy. This can improve convective heat transfer and 
mixing efficiency, influencing temperature gradients and isotherm 
contours. The existence of a magnetic field, as represented by the 
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Hartmann number, may also change heat transport properties and 
temperature distribution. The Eckert number influences the energy 
conversion and dissipation mechanisms, which in turn influences 
the rate of entropy generation.

Figure 5 shows Vertical velocity along the horizontal mid plane, 
Total Entropy at the Horizontal mid plane , Local Nusselt number 
at vertical mid plane for different Ec numbers. The Eckert number 
affects energy conversion and, as a result, velocity distribution in 
the flow. Figure 5 shows a convergences at zero after numerous 
fluid frictions interaction, total entropy is higher as Ec increases 
and local Nusselt number degrease as Ec is on the rise. The fluid 
behavior is because kinetic energy dominates flow behaviour, this 
can result in greater fluid velocities. The Eckert number influences 
the energy conversion and dissipation processes, which can alter 
the system’s total entropy. Higher Eckert numbers frequently 
correspond to increased entropy formation as a result of improved 
mixing and dissipation. The existence of a magnetic field, as 
denoted by the Hartmann number, might complicate the process of 
generating entropy. Magnetic fields can influence flow behaviour 
and modify energy transfer pathways, possibly altering total 
entropy. The Eckert number influences convective heat transfer 
through influencing flow dynamics, temperature gradients, and 
mixing. A higher Eckert number, implying a greater input of kinetic 
energy, might improve convective heat transport and, as a result, 

raise the local Nusselt number. The existence of a magnetic field, 
indicated by the Hartmann number, on the other hand, might affect 
the heat transport properties and change the local Nusselt number.

Similarly Figure 5 also indicates, Maximum stream function, 
Average Nusselt number and Total entropy with respect to time. 
All the variables considered tends to move smoothly as time 
evolves. The is as a result of the laminar assumptions mentions 
above. The maximum stream function represents the domain’s 
maximum value for the stream function. The Eckert number 
influences energy conversion and flow dynamics, which in turn 
impact velocity distribution and streamline patterns. Increased 
Eckert numbers are frequently associated with increased fluid 
velocities and enhanced mixing, which might affect the maximum 
stream function. The average Nusselt number is the sum of all the 
local Nusselt values on a particular surface. The Eckert number 
affects convective heat transfer through influencing energy 
conversion and flow parameters. As a result, greater Eckert 
numbers may raise the average Nusselt number. Higher Eckert 
numbers frequently correspond to increased entropy generation as 
a result of improved mixing and dissipation. The total entropy of 
the system may rise or decrease over time, based on the balance 
of energy inputs, dissipation, and any heat transfer activities that 
occur in the system.

and streamline patterns. Increased Eckert numbers are frequently associated with increased
fluid velocities and enhanced mixing, which might affect the maximum stream function. The
average Nusselt number is the sum of all the local Nusselt values on a particular surface. The
Eckert number affects convective heat transfer through influencing energy conversion and flow
parameters. As a result, greater Eckert numbers may raise the average Nusselt number. Higher
Eckert numbers frequently correspond to increased entropy generation as a result of improved
mixing and dissipation. The total entropy of the system may rise or decrease over time, based
on the balance of energy inputs, dissipation, and any heat transfer activities that occur in the
system.
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Figure 4: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra =
105,Pr = 7.0,Ha = 30,Ec = 10−6, γ = Γ = 0.75 for (A) Ec = 10−6 (B) Ec = 10−5 and (C)
Ec = 5× 10−5
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Figure 4: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra = 105, Pr = 7.0, Ha = 30, Ec = 10−6, γ = Γ = 
0.75 for (A) Ec = 10−6 (B) Ec = 10−5 and (C) Ec = 5 × 10−5
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Figure 5: A) Vertical velocity along the horizontal mid plane, B) Total Entropy at the Horizontal
mid plane C) Local Nusselt number at vertical mid plane D)Maximum stream function E)
Average Nusselt number and F) Total entropy

6.2 Effect of Hartmann Number

The Hartmann effect tends to restrict conductive fluid mobility perpendicular to magnetic
field lines. As a result, the streamlines become increasingly aligned with the direction of
the magnetic field. Figure 6 presents Streamlines (ψ), Isotherms (θ) and Isolines of Total
Entropy Generation ST at Ra = 106,Pr = 0.7,Ha = 30,Ec = 10−6, γ = Γ = 0.75 for different
hartmann numbers. The streamlines, isotherms, isolines of entropy tends to appear symmetric
due to dominance of the inertia effect as hartmann increase. This alignment causes the fluid to
flow following the lines of the magnetic field, resulting in the construction of channel-like flow
patterns. Isotherms are lines in a fluid that link places of equal temperature. The existence of
the Hartmann effect changes the temperature distribution in the conductive fluid. Cross-field
fluid motion suppression restricts mixing and can cause temperature fluctuations along the
magnetic field direction. This phenomenon has the potential to deviate from the usual pattern
of isotherms found in the absence of a magnetic field. Isolines of entropy are lines that link
places with equal entropy, which is a measure of a system’s unpredictability. By changing fluid
flow and temperature patterns, the Hartmann effect can influence the distribution of entropy in
a conductive fluid. Suppression of cross-field motion and changes in temperature distribution
can cause aberrations from the normal pattern of entropy isolines found in the absence of a
magnetic field.
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Figure 5: A) Vertical velocity along the horizontal mid plane, B) Total Entropy at the Horizontal mid plane C) Local Nusselt number at 
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6.2 Effect of Hartmann Number
The Hartmann effect tends to restrict conductive fluid mobility 
perpendicular to magnetic field lines. As a result, the streamlines 
become increasingly aligned with the direction of the magnetic 
field. Figure 6 presents Streamlines (ψ), Isotherms (θ) and Isolines 
of Total Entropy Generation ST at Ra = 106, Pr = 0.7, Ha = 30, Ec = 
10−6, γ = Γ = 0.75 for different hartmann numbers. The streamlines, 
isotherms, isolines of entropy tends to appear symmetric due 
to dominance of the inertia effect as hartmann increase. This 
alignment causes the fluid to flow following the lines of the 
magnetic field, resulting in the construction of channel-like flow 
patterns. Isotherms are lines in a fluid that link places of equal 
temperature. The existence of the Hartmann effect changes the 
temperature distribution in the conductive fluid. Cross-field fluid 
motion suppression restricts mixing and can cause temperature 
fluctuations along the magnetic field direction. This phenomenon 
has the potential to deviate from the usual pattern of isotherms 
found in the absence of a magnetic field. Isolines of entropy are 
lines that link places with equal entropy, which is a measure of a 
system’s unpredictability. By changing fluid flow and temperature 
patterns, the Hartmann effect can influence the distribution of 
entropy in a conductive fluid. Suppression of cross-field motion 
and changes in temperature distribution can cause aberrations 
from the normal pattern of entropy isolines found in the absence 
of a magnetic field.

Figure 7 indicates Vertical velocity along the horizontal mid plane, 
Total Entropy at the Horizontal mid plane and Local Nusselt number 
at vertical mid plane. Figure 7 depicts a convergence at zero after 
several fluid friction interactions, overall entropy increasing as Ha 
increases, and local Nusselt number decreasing as Ec increases. 
The local Nusselt number describes the rate of convective heat 
transport in a fluid at a specific place. By influencing fluid flow 
and temperature distribution, the Hartmann effect can change the 
Nusselt number. Because the Hartmann effect inhibits cross-field 
fluid motion, it can diminish convective heat transfer, resulting in a 
lower local Nusselt number than in the absence of a magnetic field. 
A magnetic field perpendicular to the fluid flow can have an effect 
on the velocity distribution in a conductive fluid. The Hartmann 
effect dampens fluid velocity perpendicular to magnetic field lines. 
As a result of this suppression, cross-field velocities are lowered 
and the velocity component parallel to the magnetic field direction 
increases. By modifying fluid flow and temperature patterns, the 
Hartmann effect changes the distribution of entropy. Suppressing 
cross-field fluid motion can restrict mixing and introduce entropy 
fluctuations along the magnetic field direction. This phenomenon 
can cause departures from the usual total entropy pattern seen in 
the absence of a magnetic field. 

Figure 7 shows Maximum stream function, Average Nusselt 
number and Total entropy with respect to time. As time passes, all 
of the variables evaluated tend to move smoothly. Which solidifies 
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the laminar assumption. The Hartmann effect causes fluid flow to 
align with the direction of the magnetic field, resulting in channel-
like flow patterns. The maximal stream function may grow with 
time as the fluid gets more aligned with the magnetic field. The 
average Nusselt number denotes the average rate of convective heat 
transfer in a fluid. The Hartmann effect can minimise convective 
heat transfer by decreasing cross-field fluid motion. The average 
Nusselt number may decline with time as the Hartmann effect 
becomes more powerful. The Hartmann effect can change total 
entropy by changing the fluid flow and temperature distribution. 
The total entropy may alter over time owing to variations in fluid 
motion and temperature patterns generated by the Hartmann effect.

6.3 Effect of Grashof Number
In natural convection, the Grashof number influences the flow 
pattern and the creation of streamlines. Figure 8 shows the effect 
of different Grashof numbers for on Streamlines , Isotherms and 
Isolines of Total Entropy Generation at Ra = 105, Pr = 7.0, Ha = 30, 

Ec = 10−6, γ = Γ = 0.75 A higher Grashof number indicates stronger 
buoyant forces and more prominent flow patterns. The flow 
becomes increasingly chaotic as the Grashof number grows, and 
the streamlines can display complicated and irregular behaviour. 
When compared to low Grashof number flows, the flow may 
form many vortices and eddies, resulting in a more complicated 
flow pattern. Isotherms are temperature-constant lines in the flow 
field. The Grashof number determines the form and distribution 
of isotherms in natural convection. A higher Grashof value results 
in increased buoyancy and greater heat transfer. As a result, 
the isotherms are more widely separated, suggesting a greater 
temperature differential between neighbouring isotherms. As the 
temperature gradient steepens, the flow may develop more distinct 
thermal boundary layers. Furthermore, plume formation and 
temperature stratification can influence the shape and orientation 
of isotherms in the flow. Entropy isolines in the flow field represent 
areas of constant entropy. In general, the Grashof number has no 
direct effect on 
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Figure 6: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra =
106,Pr = 0.7,Ha = 30,Ec = 10−6, γ = Γ = 0.75 for (A) Ha = 0 (B) Ha = 30 and (C) Ha = 60

the isolines of entropy. Changes in temperature distribution caused by the Grashof number, on
the other hand, can have an indirect effect on the isolines of entropy. Entropy isolines may be
more tightly spaced in areas with a strong temperature gradient and buoyancy-induced flow,
whereas they may be more widely spread in areas with a smaller temperature difference and
less convective motion.

Figure 9 indicates Vertical velocity along the horizontal mid plane, Total Entropy at the
Horizontal mid plane and Local Nusselt number at vertical mid plane. The buoyancy forces get
greater as the Grashof number increases, resulting to an increase in vertical velocities. Higher
Grashof numbers result in improved convective heat transfer, resulting in greater upward or
downhill flow velocities depending on the temperature gradient. Particularly in places with
considerable temperature variations, the flow may display more violent motion and more vertical
mixing. The exact relationship between the Grashof number and vertical velocity is determined
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Figure 6: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Ra = 106, Pr = 0.7, Ha = 30, Ec = 10−6, γ = Γ = 
0.75 for (A) Ha = 0 (B) Ha = 30 and (C) Ha = 60
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the isolines of entropy. Changes in temperature distribution caused 
by the Grashof number, on the other hand, can have an indirect 
effect on the isolines of entropy. Entropy isolines may be more 
tightly spaced in areas with a strong temperature gradient and 
buoyancy-induced flow, whereas they may be more widely spread 
in areas with a smaller temperature difference and less convective 
motion.

Figure 9 indicates Vertical velocity along the horizontal mid 
plane, Total Entropy at the Horizontal mid plane and Local 

Nusselt number at vertical mid plane. The buoyancy forces get 
greater as the Grashof number increases, resulting to an increase 
in vertical velocities. Higher Grashof numbers result in improved 
convective heat transfer, resulting in greater upward or downhill 
flow velocities depending on the temperature gradient. Particularly 
in places with considerable temperature variations, the flow may 
display more violent motion and more vertical mixing. The exact 
relationship between the Grashof number and vertical velocity is 
determined 
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Figure 7: A) Vertical velocity along the horizontal mid plane, B) Total Entropy at the Horizontal
mid plane C) Local Nusselt number at vertical mid plane D)Maximum stream function E)
Average Nusselt number and F) Total entropy

by the flow design and boundary conditions. total entropy is a measure of overall disorder or
unpredictability. Changes in the Grashof number can impact the distribution and behaviour
of entropy in buoyancy-driven flows. Convective heat transfer becomes more prominent as the
Grashof number increases, resulting in improved mixing and heat exchange. This can cause
changes in the temperature distribution and the production of entropy in the flow. The specific
influence of the Grashof number on total entropy is determined on the flow circumstances
and the fluid’s thermodynamic parameters. Nusselt number (Nu) is a dimensionless quantity
that describes the rate of convective heat transport in a fluid. It denotes the proportion of
convective to conductive heat transfer. The Grashof number has a substantial influence on
the Nusselt number in buoyancy-driven flows. As the Grashof number grows, convective heat
transmission takes precedence over conductive heat transfer. This causes the Nusselt number
to rise. Higher Grashof numbers correspond to more efficient heat transmission and higher
Nusselt numbers. The link between the Grashof and Nusselt numbers is determined by the
flow conditions, geometry, and boundary conditions.

Figure 9 shows Maximum stream function, Average Nusselt number and Total entropy with
respect to time. The Grashof number can impact the creation and evolution of the streamlines
over time. When the flow begins or the temperature gradient changes, the streamlines may shift
and create a new flow pattern. The buoyancy forces get greater as the Grashof number increases,
resulting in more substantial changes in the flow pattern over time. The flow may display
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Figure 7: A) Vertical velocity along the horizontal mid plane, B) Total Entropy at the Horizontal mid plane C) Local Nusselt number at 
vertical mid plane D)Maximum stream function E) Average Nusselt number and F) Total entropy

by the flow design and boundary conditions. total entropy is 
a measure of overall disorder or unpredictability. Changes in 
the Grashof number can impact the distribution and behavior 
of entropy in buoyancy-driven flows. Convective heat transfer 
becomes more prominent as the Grashof number increases, 
resulting in improved mixing and heat exchange. This can cause 
changes in the temperature distribution and the production of 
entropy in the flow. The specific influence of the Grashof number 
on total entropy is determined on the flow circumstances and 
the fluid’s thermodynamic parameters. Nusselt number (Nu) is a 
dimensionless quantity that describes the rate of convective heat 
transport in a fluid. It denotes the proportion of convective to 
conductive heat transfer. The Grashof number has a substantial 
influence on the Nusselt number in buoyancy-driven flows. As 
the Grashof number grows, convective heat transmission takes 

precedence over conductive heat transfer. This causes the Nusselt 
number to rise. Higher Grashof numbers correspond to more 
efficient heat transmission and higher Nusselt numbers. The link 
between the Grashof and Nusselt numbers is determined by the 
flow conditions, geometry, and boundary conditions.

Figure 9 shows Maximum stream function, Average Nusselt 
number and Total entropy with respect to time. The Grashof 
number can impact the creation and evolution of the streamlines 
over time. When the flow begins or the temperature gradient 
changes, the streamlines may shift and create a new flow pattern. 
The buoyancy forces get greater as the Grashof number increases, 
resulting in more substantial changes in the flow pattern over time. 
The flow may display complicated behaviour, such as vortices 
forming and dissolving, changes in flow recirculation zones, and 
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changes in overall flow structure. The average Nusselt number 
describes the rate of convective heat transfer in a fluid system. 
The Grashof number can influence the evolution of the average 
Nusselt number as time passes in buoyancy-driven flows. When 
the flow begins or the temperature distribution changes, the 
convective heat transfer and hence the average Nusselt number 
may exhibit transitory behaviour. As time passes, the flow settles 
into a more steady-state state in which the average Nusselt number 
approaches a somewhat constant value. The development of the 
average Nusselt number through time is determined by the flow 
parameters, geometry, and boundary conditions. total entropy is 
a measure of overall disorder or unpredictability. In buoyancy-
driven flows, the Grashof number can impact the evolution of total 
entropy over time. When the flow begins or when the temperature 
distribution changes, the entropy distribution may alter and exhibit 
transitory behaviour. Convective heat transfer and mixing in the 
flow can cause changes in the entropy distribution as time passes. 
The particular evolution of total entropy over time is determined 
by the flow circumstances, fluid thermodynamic parameters, and 
the level of mixing and heat exchange.

7 Conclusion
The purpose of this study was to evaluate natural convection 
combining the Lattice Boltzmann Method (LBM) with the Darcy-

Forchheimer model to analyse entropy generation in the presence 
of a partial magnetic influence. Several major discoveries have 
been gained through extensive numerical simulations and analysis, 
shedding light on the intricate interplay between fluid flow, heat 
transfer, and entropy generation in magnetic convection systems. 
The results show that the Darcy-Forchheimer model helps to 
predicts the velocity and total entropy in the natural convection 
process. The addition of a partial magnetic effect caused 
considerable changes in the fluid flow and heat transfer properties, 
resulting in large changes in the entropy generation distribution 
throughout the system. The system’s irreversibility was shown 
to be influenced by a number of parameters, such as Hartmann, 
Eckert number, and the strength of the magnetic field. The effect of 
the form and viscous drag number on the generation of entropy was 
also looked at, and the results showed a shift from predominantly 
thermal irreversibility to increasingly fluid frictional losses. 
These findings add to a better understanding of the fundamental 
mechanisms that drive natural convection with a partial magnetic 
impact, and they give useful insights to the application of heat 
transfer systems in the presence of magnetic fields. The LBM, 
in combination with the Darcy-Forchheimer model, is a strong 
instrument for modelling and analysing such complicated events, 
providing its computationally efficient and accurate approach [22].
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Figure 8: Streamlines (ψ), Isotherms (θ) and Isolines of Total Entropy Generation ST at Rd =
3,Pr = 1.0,Ha = 30,Ec = 10−6, γ = 0.25,Γ = 0.5 for (A) Gr = 103 (B) Gr = 105 and (C)
Gr = 106
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Figure 9: A) Vertical velocity along the horizontal mid plane, B) Total Entropy at the Horizontal
mid plane C) Local Nusselt number at vertical mid plane D)Maximum stream function E)
Average Nusselt number and F) Total entropy
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