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Abstract
The purpose of the investigation is to analyze the effect of fin length and position in terms of rotational angle on heat transmission 
and entropy generation. Different parameters such as Prandtl numbers, Hartmann numbers, Rayleigh numbers, and particle volume 
fractions are used to analyze nanofluid laminar flow behavior and temperature distribution. The fin has a significant impact on 
both the isotherm and the streamlines. Findings revealed that increasing the rotational angle of a spinning heat exchanger might 
result in more consistent temperature distribution along isotherms; larger fins, on the other hand, frequently provide greater heat 
dissipation due to increased surface area. Furthermore, when Rayleigh numbers increase, so does the temperature distribution 
between the fins and the surrounding fluid. The presence of a magnetic field affects fluid dynamics and contributes to the generation 
of entropy. Higher Prandtl numbers can result in the enhancement heat transfer phenomena and the generation of entropy.
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1. Introduction
Fins are characterized as expanded surfaces affixed to the 
enclosure's walls to improve heat transmission. They improve the 
available surface area for heat exchange between the fluid and 
its surroundings. The researchers have recently focused on the 
influence of fin attachment angle, thickness, and depth of fins on 
heat transfer processes [1, 2]. Tayebs et al.  investigated the effects 
of magnetic fields and fin geometry on the thermo-economic 
performance and entropy generation of natural convective flow 
in a nanofluid-filled circular enclosure [3]. Ye et al.  investigated 
arrow-shaped fins that affect the melting performance of thermal 
heat energy storage units. For improved heat transmission, a heat 
exchanger with wavy-shaped fins and elliptical tubes was used 
and the results obtained prove that fins and elliptic tubes could 

significantly affect heat transmission [4-6].

Flows in general are affected by the movement of their particles. 
These effects might be noticed generally in fluid square cavity 
situations with many interior obstacles. This necessitates the use 
of a proper numerical method that accounts for the size, mobility, 
location, and position of items on flows. Dimensionless parameters 
are useful tools for analyzing fluid flow issues. Muhammad et 
al. studied dimensionless quantities and a homotopic optimal 
procedure was applied to his mathematical model [7]. The results 
presented showed a general increase in skin friction and Nusselt 
number. Ganesh et al.  conducted a numerical incompressible 
flow of water on viscous ohmic dissipation in a boundary layer 
approximation [8]. The studies reveal that suction parameters and 
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local inertia coefficient provide unique solutions. The effect of 
skin friction, Nusselt number, and temperature was found to be 
in conformity with the benchmark. Hossain et al. investigated the 
effect of drag ratio which has a significant impact only if there 
exists a reduction in the flow composition [9]. Abu-Nada et al. 
confirmed that the average Nusselt number has a greater impact 
on viscosity than the thermal conductivity model. Khanafer et. 
al.  discuss a group of different parameters which were used to 
investigate the general heat transfer effect on a two-dimensional 
(2D) enclosure [11].

The study of the interaction of magnetic fields with electrically 
conductive fluids is known as Magnetohydrodynamics (MHD). 
Bio-medical applications and detective systems of magnetic 
effects have recently attracted interest in the field of fluid 
mechanics. Kuwahata et al. observed a sensitive cavity shape 
magnetic sensor characterized for detection ability. A numerical 
simulation was conducted and exposed a wide range of magnetic 
null points on the cavity problems [12]. The authors reveals that 
a strong gradient of magnetic field reduces to approximately 
zero for cavity shape magnets. The problems suggest the 
application of strong magnetic sensors for accurate detection in 
all fields of biomedical application. Geridonmez et al. demonstrate 
spontaneous convection in a porosity-filled square cavity under a 
partial magnetic field [13]. Heat transfer rate is usually influenced 
by magnetic field radiation and joules heating. Dutta et al. 
investigated the numerical simulation of magnetohydrodynamic 
buoyancy induce convection in a quadrantal hallow filled with a 
nanofluid [14]. MHD natural convection on enclosures has arouse 
the curiosity of many scientists in recent decades since it occurs in 
a variety of technological applications such as the nuclear reactors 
and liquid metal cooling [15-21].

Entropy which is generally classified as an irreversible process has 
recently attracted interest from researchers in the field of fluid flows. 
Baytas observed that local entropy generation was a significant 
determinant for the angle of inclination [22]. Baytas also studied 
the reduction of entropy generation for different situations using 
thermodynamics. Shah et al. investigated a conducting electrical 
nano-fluids with entropy optimization events [23, 24]. The authors 
reveal the inverse relationship between the given Bejan number 
and permeability, the impact of Brownian motion on nano-fluids, 
and a strong application of entropy in engineering and technology. 
Saleem et al.  and Alzahrani et al. studied entropy generation and 
significant results were obtained [25, 26]. The authors concluded 

that the temperature gradient is the main determinant of entropy 
generation.

Natural convection significantly impacts the temperature ratio 
contribution to the resistance of inertia on surface radiation. 
Natural convection for thermo-capillary force and Newtonian flow 
on a cavity problem was an area of concern. The effect of buoyancy 
which is characterized by a rise and fall in an enclosed path was 
crucial in the movement of the fluid. Stampolidis et al. show a 
significant difference between dynamic viscosity enhancement 
and thermal conductivity was found to be useful [27]. The authors 
discussed the error, stability, and consistency of different methods 
in line with the results obtained. Ho et al.  examines the effect of 
shear stress and strains and thermal conductivity of fluids on natural 
convection [28]. Mahmoodi et al. investigated free convection on 
heat transfer processes in a square hallow filled with a nanofluid. 
The inclusion of the adiabatic square block in the cavity alters the 
temperature gradients and flow patterns [29]. 

The primary objective of this research is to look at the impact of fin 
length and position in terms of rotational angle on heat transmission 
and entropy generation using nanofluids. Different dimensionless 
parameters will be used to analyze flow behavior and temperature 
distribution. The mathematical formulation, entropy generation, 
code validation, results and discussion will be the thematic areas 
of our research studies. Incorporating the magnetic effect as well 
as analysis the entropy generation effects on nanofluids where key 
to our numerical simulation and results interpretation.

2. Mathematical Formulation
2.1 Statement of Problem
The flow is considered two-dimensional, steady state, uniform, 
incompressible and laminar. The problem of natural convection 
and entropy generation in a 2D square cavity of length (L = 1) is 
considered. The cavity has a circular shaped tube at the center with 
a fixed radius r = 0.1. Four similar fins of length l/2 and width w 
lie at the center of the cavity placed perpendicular to each other. 
The width of the fin is taken as w = 0.02 while its length lies in the 
range between 0.2≤l≤0.5. The rotational angle is varied between 
00≤α≤900. Figure 1 is a schematic representation of the problem 
statement. The magnetic field with a strength B0 was applied on 
the left vertical wall towards the horizontal direction. The right 
wall is under the influence of constant higher temperature (Th) and 
the left wall is under the influence of constant cooled temperature 
(Tc). The top and bottom of the enclosure are assumed adiabatic. 
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2.2. Governing equations in dimensional form
The governing equations for dimensionless forms in nanofluids 
generally contain mass, momentum, and energy conservation 
equations, which are stated in dimensionless form using 
suitable scaling factors. These dimensionless equations are then 

numerically solved using appropriate numerical methods to get 
solutions for velocity, pressure, temperature, and other variables 
in the nanofluid flow. Equation (1) to (4) represents the governing 
equations for the nanofluid problem [11, 14, 32, 33].
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of nanoscale suspensions, which makes them appealing for a variety of engineering applications. 
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the impacts on heat transfer, fluid flow, and other important phenomena. Equation (5) to (10) 

shows the nanofluid equations for our problem [14, 33]. 
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where ϕ represents the nanoparticle volume fraction in the base fluid, and the subscripts f, mix, and s reflect the parameters of the base 
fluid, nanofluid, and nanoparticles, respectively.

2.3  Dimensionless Variables
In non-dimensional expression, the controlling equation are change to dimensionless form by the dimensionless parameters. The 
following non-dimensional variables are considered for the problem [11]:
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represent thermal diffusivity for nanofluid and base fluid respectively. The dimensionless 

temperature and pressure are indicated by   and  ̅. The non-dimensional parameters Pr, Ra, and 

Ha represent the base fluid's Prandtl number, Rayleigh number of thermal expansion, and 

Hartmann number, respectively. 

3. Entropy generation in dimensional form 

The development of entropy during the flow of a nanofluid, which is a combination of a base 

fluid (typically a liquid) and nanoparticles with nanoscale dimensions, is referred to as entropy 

generation in nanofluids. The presence of nanoparticles in a fluid can alter its thermodynamic 

and transport characteristics, resulting in changes in entropy generation. Several parameters can 

impact entropy formation in nanofluids, including nanoparticle concentration, particle size, fluid 

flow velocity, and temperature gradient. The inclusion of nanoparticles can modify heat 

transmission and fluid flow behavior influencing entropy formation. Entropy generation will be 

obtained from entropy due to heat, fluid friction and magnetic effect. Equation (16) to (18) 

defines entropy generation for heat, fluid friction and magnet respectively [33]. Similarly, Table 

1 shows the physical properties for fluids and nanoparticles of water and copper.  
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magnetic effect. Equation (16) to (18) defines entropy generation 
for heat, fluid friction and magnet respectively [33]. Similarly, 
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Applying dimensionless forms defined in Eq. (11) to Eq. (16) to (18), then we obtained the 

dimensionless form for entropy due to heat, friction and magnet as presented in Eq. (19) to (21),   
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Equation (23) is the Bejan number    ̅  is a dimensionless quantity in thermodynamics and heat 

transfer that quantifies the relative significance of convective    ̅  and conductive    ̅  heat 

transfer in a system. It is frequently related to the creation of entropy.  
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The Brinkman number expresses the relevance of viscous dissipation in conductive heat 

transmission inside a porous material. A high Brinkman number indicates that viscous 

dissipation is more important than conductive heat transmission, whereas a low Brinkman 

number indicates that conductive heat transfer is more important and hence enhances entropy 

generation. Equation (24) is the Brinkman number and considered 410                   
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The initial and boundary conditions are given as in Khanafer et al [11] and Charreh et al. [31]. 
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Applying dimensionless forms defined in Eq. (11) to Eq. (16) to (18), then we obtained the dimensionless form for entropy due to heat, 
friction and magnet as presented in Eq. (19) to (21),
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Equation (23) is the Bejan number (S̅B) is a dimensionless quantity in thermodynamics and heat transfer that quantifies the relative 
significance of convective (S̅h) and conductive (S̅t)  heat transfer in a system. It is frequently related to the creation of entropy.
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The initial and boundary conditions are given as in Khanafer et al [11] and Charreh et al. [31]. 

Initial values 

The Brinkman number expresses the relevance of viscous 
dissipation in conductive heat transmission inside a porous material. 
A high Brinkman number indicates that viscous dissipation is 
more important than conductive heat transmission, whereas a low 

Brinkman number indicates that conductive heat transfer is more 
important and hence enhances entropy generation. Equation (24) 
is the Brinkman number and considered  η = 10-4

The initial and boundary conditions are given as in Khanafer et al [11] and Charreh et al. [31].
Initial values
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4. Solution methodology and grid independence study 

In this research paper, the numerical method explored is the finite element method (FEM) 

applied to the nanofluid cavity problem with obstacles. The FEM involves discretizing the 

complex domain into smaller elements, such as quadrilaterals, and approximating the solution 

using interpolation functions known Abbas et al. [30]. The governing partial differential 

equations (PDEs) for fluid dynamics and heat transfer are transformed into their weak form and 

integrated over each element to create a global system of algebraic equations. Boundary 

conditions are imposed to obtain a unique solution. By incorporating nanofluid properties and 

obstacle modeling, the method allows for the analysis of flow behavior and heat transfer 

characteristics within the cavity. The numerical results provide insights into the behavior of 

nanofluids in the presence of obstacles and contribute to a deeper understanding of this complex 

problem.  The grid study was made on local Nusselt number on the left cavity wall at Pr = 6.2, 

Ra = 106, 0.02  , Ha = 25, and 410   as in Fig 2. The first has merely a circular cylinder in 

the center, whereas the second has fins of length l/2 connected to the cylinder, as illustrated in 

fig. 3. For each number of grid elements chosen, the local and average Nusselt number was 

computed. Table 2 shows an insignificant change at both level 4 and 5. Hence the need for 
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4. Solution Methodology and Grid Independence Study
In this research paper, the numerical method explored is the finite 
element method (FEM) applied to the nanofluid cavity problem 
with obstacles. The FEM involves discretizing the complex domain 
into smaller elements, such as quadrilaterals, and approximating 
the solution using interpolation functions known Abbas et al. 
[30]. The governing partial differential equations (PDEs) for fluid 
dynamics and heat transfer are transformed into their weak form 
and integrated over each element to create a global system of 
algebraic equations. Boundary conditions are imposed to obtain a 
unique solution. By incorporating nanofluid properties and obstacle 
modeling, the method allows for the analysis of flow behavior and 
heat transfer characteristics within the cavity. The numerical results 
provide insights into the behavior of nanofluids in the presence of 

obstacles and contribute to a deeper understanding of this complex 
problem. The grid study was made on local Nusselt number on 
the left cavity wall at Pr = 6.2, Ra = 106, ϕ = 0.02 , Ha = 25, and 
η = 10-4  as in Fig 2. The first has merely a circular cylinder in the 
center, whereas the second has fins of length l/2 connected to the 
cylinder, as illustrated in fig. 3. For each number of grid elements 
chosen, the local and average Nusselt number was computed. 
Table 2 shows an insignificant change at both level 4 and 5. Hence 
the need for adopting level 4 for the remaining computation. The 
grid independence analysis assures that the computational results 
obtained from our results are resilient and not greatly impacted 
by grid spacing, hence improving the study's dependability and 
correctness. It ensures that the heat transfer increases seen are real, 
not artifacts of the numerical discretization procedure. 
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 No fin (l = 0) with fin (l = 0.5) 

S.no No. E Dof Nuavg No. E Dof Nuavg 

1 1020 2224 6.9996 1358 2980 7.0788 

2 2240 4776 8.0445 2356 5088 8.0855 

3 4336 9048 8.1495 4338 9148 8.1906 

4 8390 17452 8.2633 8230 17260 8.3066 

5 14048 28904 8.2605 13560 28088 8.3038 
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Fig. 3. Grid representation at same coarser level (a) no fin and (b) with fin. 

4.1. Code validation  

The validated numerical scheme is compared to the findings by Dutta et al. [14] and Mahmoodi 

et al. [29]. The validation method verifies the correctness and reliability of the established 

numerical scheme by analyzing the agreement between the current results and the findings 

provided in the papers mentioned above. The current results are observed to closely match as in 

fig. 4. The scheme's validity is confirmed by the numerical results presented in Table 3. The 

difference between the present results and Dutta et al. [14] shows a minimal error which 

guarantees the accuracy of the adopted scheme.  
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4.1. Code Validation 
The validated numerical scheme is compared to the findings by 
Dutta et al. [14] and Mahmoodi et al. [29]. The validation method 
verifies the correctness and reliability of the established numerical 
scheme by analyzing the agreement between the current results 
and the findings provided in the papers mentioned above. The 

current results are observed to closely match as in fig. 4. The 
scheme's validity is confirmed by the numerical results presented 
in Table 3. The difference between the present results and Dutta et 
al. [14] shows a minimal error which guarantees the accuracy of 
the adopted scheme. 
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Fig 4. comparison between present results (first rom) and Mahmoodi et al. [29] (second row) for 

streamlines and isotherms for Ra = 106, Pr = 6.8 and AR = 0.6. 

 

Table. 3. Comparison results of averaged Nusselt number at the hot bottom wall of the cavity at 

                  0.05                                     which compares the 

difference between the presents and Dutta et al. [14] in absolute terms. 

Ha Dutta et al. [14] Present results       

         

0 11.10 11.175 0.075 

20 10.62 10.664 0.044 

40 9.770 9.7053 0.065 

60 8.855 8.6437 0.21 

80 8.003 7.667 0.34 

100 7.277 6.8369 0.44 

 

5. Results and discussions 

In this section, we will give a detail description of two-dimensional natural convection flow in a 

square cavity with four fins and a circular cylinder inside it. The major study encircles the effect 

of fin length, fin position in terms of rotational angle, Hartmann number, Prandtl number, Nano 

particles volume fraction and Rayleigh number. The flow parameters will be investigated in the 

range as,          with step size of 150, l is varied from 0 to 0.5 with increment of 0.02, Ra 

lies in the range           , Pr = (0.7, 6.2, 25), 0 100Ha   and 0 0.1  . The fluid is 

considered as a homogenous mixture of copper nano particles and incompressible. Simulation is 
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Figure 4: comparison between present results (first rom) and Mahmoodi et al. [29] (second row) for streamlines and isotherms for Ra 
= 106, Pr = 6.8 and AR = 0.6.

Table 3: Comparison results of averaged Nusselt number at the hot bottom wall of the cavity at Pr = 6.2,Ra = 106, ϕ = 0.05 using 
the relation |Hanew-Ha[14] | which compares the difference between the presents and Dutta et al. [14] in absolute terms.

5. Results and Discussions
In this section, we will give a detail description of two-dimensional 
natural convection flow in a square cavity with four fins and a 
circular cylinder inside it. The major study encircles the effect 
of fin length, fin position in terms of rotational angle, Hartmann 
number, Prandtl number, Nano particles volume fraction and 
Rayleigh number. The flow parameters will be investigated in the 

range as, 00≤α≤750 with step size of 150, l is varied from 0 to 0.5 
with increment of 0.02, Ra lies in the range 102≤Ra≤108, Pr = (0.7, 
6.2, 25), 0 ≤ Ha ≤ 100 and 0 ≤ ϕ ≤ . The fluid is considered as a 
homogenous mixture of copper nano particles and incompressible. 
Simulation is performed to examine flow pattern, heat convection 
and irreversibility in proposed problem. The computed results are 
shown in the form of figures and tables.
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Figure 5 shows the rotational angle between 00≤α≤750 on 
streamlines and isotherms, results indicates that when the rotating 
angle is increased, the streamlines become more curved, resulting 
to more shift in the flow direction. Reduced rotational angle, on the 
other hand, results in fewer curved streamlines and a smoother shift 
in the flow direction. Higher rotational angles produce stronger 
vortices, resulting in tighter and more concentrated circular flow 
patterns. Vortices may be weaker or less pronounced at lower 
rotational angles. Flow separation happens when a flow detaches 
from a surface or an item, resulting in recirculated zones. Higher 
rotational angles encourage flow separation and the creation of 
recirculation zones along streamlines.

Similarly for isotherms as indicated in Fig. 5, Higher rotating 
angles facilitate heat redistribution and mixing, resulting in a 

more homogenous temperature distribution along the isotherms. 
Lower rotational angles may limit mixing and cause localized 
temperature fluctuations. By increasing the rotating angle, the 
thickness of the thermal boundary layers is reduced, resulting in 
quicker heat transfer and more rapid temperature fluctuations along 
the isotherms. Increasing the rotational angle of a fins on the heat 
exchanger can result in a more equal distribution of temperature 
along isotherms. Reducing the rotational angle, on the other hand, 
may result in temperature gradients and unequal heat transmission. 
Table 4 shows the average Nusselt numbers and entropy when the 
fin rotates from α = 00  and α = 750. The Nusselt number increases 
with rotation up to 600 and decreases with rotation to 750. A similar 
phenomenon exists for entropy owing to heat and magnetism, 
and a continuous increment was seen for entropy due to viscous 
friction.
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Fig 5. Effects of rotational angle (a) 00  , (b) 030  , (c) 060   (d) 075  on streamlines 
and isotherms for Pr = 6.2, Ra = 106, 0.02  , Ha = 25, and 410   

. 

 

Table 4. The Nuavg, hS , fS  and mS  values for various   using Pr = 6.2, Ra = 106, 0.02  , Ha 

= 25, and 410   
. 

 



Volume 1 | Issue 4 | 212Eng OA, 2023

 

 

030       

060       

075       

Fig 5. Effects of rotational angle (a) 00  , (b) 030  , (c) 060   (d) 075  on streamlines 
and isotherms for Pr = 6.2, Ra = 106, 0.02  , Ha = 25, and 410   

. 

 

Table 4. The Nuavg, hS , fS  and mS  values for various   using Pr = 6.2, Ra = 106, 0.02  , Ha 

= 25, and 410   
. 

 

 

 

030       

060       

075       

Fig 5. Effects of rotational angle (a) 00  , (b) 030  , (c) 060   (d) 075  on streamlines 
and isotherms for Pr = 6.2, Ra = 106, 0.02  , Ha = 25, and 410   

. 

 

Table 4. The Nuavg, hS , fS  and mS  values for various   using Pr = 6.2, Ra = 106, 0.02  , Ha 

= 25, and 410   
. 

 

 

 

030       

060       

075       

Fig 5. Effects of rotational angle (a) 00  , (b) 030  , (c) 060   (d) 075  on streamlines 
and isotherms for Pr = 6.2, Ra = 106, 0.02  , Ha = 25, and 410   

. 

 

Table 4. The Nuavg, hS , fS  and mS  values for various   using Pr = 6.2, Ra = 106, 0.02  , Ha 

= 25, and 410   
. 

 

 

 

030       

060       

075       

Fig 5. Effects of rotational angle (a) 00  , (b) 030  , (c) 060   (d) 075  on streamlines 
and isotherms for Pr = 6.2, Ra = 106, 0.02  , Ha = 25, and 410   

. 

 

Table 4. The Nuavg, hS , fS  and mS  values for various   using Pr = 6.2, Ra = 106, 0.02  , Ha 

= 25, and 410   
. 

 

Figure 5:

 

 

  Nuavg hS  fS  mS  

00 8.3057 8.6512 231.5 141.15 

150 8.3071 8.6503 230.75 141.8 

300 8.3166 8.6594 229.38 142.43 

450 8.3293 8.6761 228.55 142.14 

600 8.3332 8.6781 229.92 141 

750 8.3191 8.6642 231.24 140.73 

 

For streamlines in general, a longer fin has a higher surface area for heat transmission. This is 

presented in Fig. 6 which shows the effects of fin length on streamlines and isotherms, the rows 

indicate no fin, l = 15w and l = 25w respectively.  Because of the larger surface area, more fluid 

particles encounter the fin, resulting in improved convective heat transmission. As a result, the 

streamlines tend to bend more around the fin, resulting in a bigger boundary layer and increased 

flow resistance. Similarly, a shorter fin, on the other hand, has a reduced surface area for heat 

transmission. As a result, convective heat transmission is decreased, and the boundary layer is 

smaller. As a result, streamlines travel through the fin with less deviation, resulting in decreased 

flow resistance.  

For isotherms, a longer fin will cause a greater surface area available for heat transmission with a 

longer fin. This results in better heat dissipation and a more equal temperature distribution over 

the length of the fin. As a result, isotherms are more regularly distributed and parallel to the 

surface of the fin, indicating a more efficient cooling process. Similarly, the accessible surface 

area for heat transmission reduces when the fin length is lowered. This can result in greater 

temperatures near the fin's base, closer to the heat source, and less uniform temperature 

distribution over the length of the fin. As a result, the isotherms may become more distorted and 

deviate from their parallel arrangement, suggesting decreased cooling effectiveness. While larger 

fins typically provide better heat dissipation due to higher surface area, there is a practical limit 

to fin length. Excessively long fins might cause additional problems such as greater pressure 

drop, higher production costs, or structural limits. As a result, optimizing fin length entails a 

variety of criteria and trade-offs based on the unique application and needs. Table 5 shows the 

impacts of altering fin length on Average Nusselt and entropy generation, and it is possible to see 

that when fin length varies from        , both average Nusselt number and entropy rise, 

Table 4: The Nuavg,      ,      and      values for various α using Pr = 6.2, Ra = 106, ϕ= 0.02, Ha = 25, and η = 10-4
hS fS mS

For streamlines in general, a longer fin has a higher surface area 
for heat transmission. This is presented in Fig. 6 which shows the 
effects of fin length on streamlines and isotherms, the rows indicate 
no fin, l = 15w and l = 25w respectively. Because of the larger 
surface area, more fluid particles encounter the fin, resulting in 
improved convective heat transmission. As a result, the streamlines 
tend to bend more around the fin, resulting in a bigger boundary 
layer and increased flow resistance. Similarly, a shorter fin, on the 
other hand, has a reduced surface area for heat transmission. As a 
result, convective heat transmission is decreased, and the boundary 
layer is smaller. As a result, streamlines travel through the fin with 
less deviation, resulting in decreased flow resistance. 

For isotherms, a longer fin will cause a greater surface area 
available for heat transmission with a longer fin. This results in 
better heat dissipation and a more equal temperature distribution 
over the length of the fin. As a result, isotherms are more regularly 
distributed and parallel to the surface of the fin, indicating a more 
efficient cooling process. Similarly, the accessible surface area for 
heat transmission reduces when the fin length is lowered. This can 
result in greater temperatures near the fin's base, closer to the heat 

source, and less uniform temperature distribution over the length 
of the fin. As a result, the isotherms may become more distorted 
and deviate from their parallel arrangement, suggesting decreased 
cooling effectiveness. While larger fins typically provide better 
heat dissipation due to higher surface area, there is a practical 
limit to fin length. Excessively long fins might cause additional 
problems such as greater pressure drop, higher production costs, 
or structural limits. As a result, optimizing fin length entails a 
variety of criteria and trade-offs based on the unique application 
and needs. Table 5 shows the impacts of altering fin length on 
Average Nusselt and entropy generation, and it is possible to see 
that when fin length varies from 0≤l≤0.5, both average Nusselt 
number and entropy rise, although at a slow rate. This is because 
the surface area accessible for heat transmission increases as the fin 
length increases. This increased surface area can lead to improved 
convective heat transmission. As a result, as fin length increases, 
so does the average Nusselt number. Increasing the length of the 
fin may cause more flow disturbances and interactions between 
the fin and the surrounding fluid. These modifications can enhance 
the system's complexity and disorder, potentially leading to higher 
entropy creation.
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          Streamlines                               Isothermal lines 

(a)  

(b)  

(c)  

Figure 6: Effects of fin length on streamlines and isotherms, (a) first row no fin (b) second row l = 15w and (c) last row l = 25w for Pr 
= 6.2, Ra = 106, ϕ = 0.02, α = 00, Ha = 25, and η = 10-4
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Table 5. The Nuavg, hS , fS  and mS  values by varying the fin length for Pr = 6.2, Ra = 106,

0.02  , 00  , Ha = 25, and 410   
. 

 Nuavg hS  fS  mS  

No fin 8.2633 8.4986 226.06 142.41 

l = 0.22 8.2646 8.5079 226.31 142.49 

l = 0.24 8.2653 8.5159 226.45 142.53 

l = 0.26 8.2649 8.5252 226.69 142.55 

l = 0.28 8.2682 8.5341 226.96 142.58 

l = 0.3 8.2696 8.5445 227.2 142.55 

l = 0.32 8.2758 8.5539 227.46 142.55 

l = 0.34 8.2776 8.5645 227.75 142.49 

l = 0.36 8.2802 8.5755 228.07 142.42 

l = 0.38 8.2838 8.5871 228.37 142.31 

l = 0.4 8.2878 8.5969 228.77 142.21 

l = 0.42 8.2924 8.6074 229.2 142.08 

l = 0.44 8.2944 8.6192 229.69 141.88 

l = 0.46 8.2999 8.6297 230.21 141.67 

l = 0.48 8.3016 8.6406 230.8 141.42 

l = 0.5 8.3057 8.6512 231.5 141.15 

 

Figure 7 shows flow pattern might vary as Ra rises and the effects of Ra on streamlines and 

isotherms, Ra = 102, 106, 108.  Lower Ra values may result in a primarily laminar flow with 

smooth and well-defined streamlines. Higher Ra levels frequently result in higher flow velocities 

and better mixing. With higher intermingling of fluid packages, the streamlines may display 

Table 5: The Nuavg,      ,      and      values by varying the fin length for  Pr = 6.2, Ra = 106, ϕ= 0.02, α = 00 , Ha = 25, and η = 10-4
hS fS mS

Figure 7 shows flow pattern might vary as Ra rises and the effects 
of Ra on streamlines and isotherms, Ra = 102, 106, 108. Lower Ra 
values may result in a primarily laminar flow with smooth and 
well-defined streamlines. Higher Ra levels frequently result in 
higher flow velocities and better mixing. With higher intermingling 
of fluid packages, the streamlines may display more complicated 
patterns, facilitating better mixing of heat or mass within the flow. 
The creation of vortices becomes more noticeable with higher Ra 
levels. Vortices may cause swirling motion and fluid packages 
to follow complicated trajectories, resulting in more complex 
streamlines with loops and eddies.

Figure 7 further shows that for isotherms of Ra influences the 
temperature distribution inside a fluid. The temperature differences 
between the fins and the surrounding fluid grow increasingly 
apparent as Ra rises. The slopes of the isotherms tend to be steeper, 
suggesting greater temperature variations over the flow field. Ra 

influences the thickness of thermal boundary layers around the 
fins. Because of enhanced convective heat transmission, higher 
Ra values result in thinner boundary layers, which later result 
in quicker heat transfer rates and faster temperature shifts along 
isotherms. Ra can be increased to facilitate heat dissipation from 
the fins. The isotherms around the fins spread out further, indicating 
improved heat transmission and a greater region of effect. This 
aids in heat dissipation and sustaining lower temperatures in 
the system. Table 6 shows how the Rayleigh number affects the 
average Nusselt number, and entropy due to heat, viscosity, and 
magnetism. As Ra varies, there has been a general rise in Nusselt 
number and entropy, this is because higher Ra numbers imply 
stronger buoyancy-driven flows, resulting in improved convective 
heat transfer which forces the Nusselt number to increase. Entropy 
tends to rise when heat transfer is in place, and the system evolves 
toward a more disordered state.
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Ra Nuavg hS  fS  mS  

10 0.8477 0.88604 2.16E-07 4.25E-07 

102 0.84776 0.88609 2.16E-05 4.25E-05 

103 0.85247 0.89094 0.002152 0.004238 

104 1.1752 1.2274 0.18836 0.35419 

105 3.5024 3.6541 7.7608 10.278 

106 8.3057 8.6512 231.5 141.15 

107 16.882 17.621 5549.4 1273 

108 30.661 32.704 1.06E+05 8818.8 

 

 

The magnetohydrodynamic effect, also known as the Hartmann effect, is the influence of a 

magnetic field on the flow of an electrically conducting fluid. The Hartmann effect can influence 

several parameters in heat transmission, including the average Nusselt number and entropy 

production. Table 7 shows the effect of Hartmann on the fluid flow. At      the effect on 

entropy due to magnet is also negligeable. However, as Ha starts to increase both average 

Nusselt number and entropy at all levels tends to reduce. This is because Ha effect can affect the 

convective heat transfer properties, causing the Nusselt number to vary. The flow behavior of the 

conducting fluid can be changed in the presence of a magnetic field, resulting in changing heat 

transfer rates and, as a result, influencing the Nusselt number. The irreversible development of 

entropy caused by temperature changes inside a system is referred to as entropy generation 

owing to heat transfer. When there is a temperature differential in a fluid, heat transmission 

happens, and entropy is produced. The presence of a magnetic field can change temperature 

distribution and heat transmission properties, hence impacting heat-induced entropy production. 

The Hartmann effect can inhibit fluid velocity in some instances, modifying the temperature 

profile and diminishing temperature gradients. This decrease in temperature gradients has the 

potential to reduce entropy formation owing to heat transfer.  The Hartmann effect has the 

potential to modify fluid flow properties such as velocity profiles and pressure distributions, 

hence influencing entropy formation owing to fluid friction. Fluid mobility can be changed in the 

presence of a magnetic field, resulting in changes in flow patterns and pressure losses. As a 

result, the Hartmann effect can alter the entropy production caused by fluid friction. The 

Table 6: Effects of Ra on  Nuavg,      ,      and      for Pr = 6.2, l=25w,  ϕ= 0.02, α = 00 , Ha = 25, and η = 10-4
hS fS mS

The magnetohydrodynamic effect, also known as the Hartmann 
effect, is the influence of a magnetic field on the flow of an 
electrically conducting fluid. The Hartmann effect can influence 
several parameters in heat transmission, including the average 
Nusselt number and entropy production. Table 7 shows the effect 
of Hartmann on the fluid flow. At Ha=0 the effect on entropy due to 
magnet is also negligeable. However, as Ha starts to increase both 
average Nusselt number and entropy at all levels tends to reduce. 
This is because Ha effect can affect the convective heat transfer 
properties, causing the Nusselt number to vary. The flow behavior 
of the conducting fluid can be changed in the presence of a magnetic 
field, resulting in changing heat transfer rates and, as a result, 
influencing the Nusselt number. The irreversible development of 
entropy caused by temperature changes inside a system is referred 
to as entropy generation owing to heat transfer. When there is a 
temperature differential in a fluid, heat transmission happens, 
and entropy is produced. The presence of a magnetic field can 
change temperature distribution and heat transmission properties, 
hence impacting heat-induced entropy production. The Hartmann 
effect can inhibit fluid velocity in some instances, modifying the 
temperature profile and diminishing temperature gradients. This 
decrease in temperature gradients has the potential to reduce 
entropy formation owing to heat transfer. The Hartmann effect 
has the potential to modify fluid flow properties such as velocity 
profiles and pressure distributions, hence influencing entropy 
formation owing to fluid friction. Fluid mobility can be changed 
in the presence of a magnetic field, resulting in changes in flow 
patterns and pressure losses. As a result, the Hartmann effect can 
alter the entropy production caused by fluid friction. The magnitude 
of this alteration is determined by elements such as magnetic field 
intensity, fluid characteristics, and geometrical configuration. This 
entropy creation is caused by the magnet's loss of magnetic energy 
into heat because of the fluid's electrical conductivity. As a result 
of the interaction between the magnetic field and the conducting 
fluid, the Hartmann effect can alter the entropy production caused 

by the magnet. The presence of a magnetic field affects fluid 
dynamics and produces extra dissipative processes that contribute 
to the generation of entropy.

Dissipation influences convective heat transport inside a system, 
which in turn influences the average Nusselt number. Table 8 
presence the dissipation effect with respect to average Nusselt 
number and entropy due to heat, friction, and magnet. As dissipation 
increase from 0 to 0.1 the average Nusselt number and entropy due 
to heat are on the increase, while entropy due to fiction and magnet 
decreases rapidly. This is because energy losses in fluid flow are 
increased by dissipative processes such as viscous friction. These 
losses lower the convective heat transfer coefficient (h) and change 
the temperature distribution, influencing the average Nusselt 
number (Nu). Higher degrees of dissipation, in general, tend to 
increase convective heat transfer and hence the average Nusselt 
number. Dissipation adds to the creation of entropy in a system 
owing to heat transmission. Temperature gradients are formed as 
mechanical energy is turned into thermal energy, resulting in heat 
transfer and entropy creation. Heat-induced dissipation-related 
entropy formation happens via a variety of methods, including 
viscous dissipation and thermal conduction. As more mechanical 
energy is transformed into thermal energy, the temperature gradients 
and heat transport within the system are amplified. Because of fluid 
friction, these energy losses appear as heat, resulting in increased 
entropy generation. Higher degrees of dissipation amplify energy 
losses, resulting in higher entropy formation due to fluid friction. 
The creation of dissipation-related entropy in this scenario results 
from the conversion of magnetic energy into thermal energy inside 
the fluid. Magnetic energy is wasted, and entropy is formed while 
the conducting fluid undergoes resistive heating. Higher degrees 
of dissipation, such as enhanced electrical conductivity or stronger 
magnetic fields, might intensify the dissipation-related entropy 
production associated with the magnetic field-fluid interaction.
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The Prandtl number affects convective heat transmission by 
altering the thickness of the boundary layer and temperature 
gradients. Larger Prandtl numbers suggest a larger ratio of 
momentum diffusivity to thermal diffusivity, implying that heat 
is more easily transferred than fluid motion. Table 9 presents the 
effects of Prandtl on average Nusselt number and entropy due to 
heat, friction, and magnet. As Prandtl number changes from gas 
to water to argon, the effect on average Nusselt number, entropy 
due to heat, friction, and magnet all tends to increase. This is 
because smaller thermal boundary layer and faster heat transfer 
rates, which increases the average Nusselt number. The Prandtl 
number influences entropy formation due to heat transport as 
well. Heat transfer happens when temperature gradients exist in a 
fluid, resulting in entropy formation. The Prandtl number impacts 
the temperature distribution and consequently the development 
of entropy due to heat. Greater Prandtl number imply greater 
thermal diffusivity in comparison to momentum diffusivity. Heat is 

transmitted more effectively than fluid motion, resulting in lower 
temperature gradients and decreased entropy formation owing 
to heat transmission. fluid friction leads to the development of 
entropy. The Prandtl number influences flow properties such as 
velocity profiles and pressure distributions, which in turn impact 
entropy formation owing to fluid friction. Higher Prandtl values 
imply higher viscosity in comparison to thermal diffusivity, which 
results in increased fluid friction. This results in increased entropy 
formation owing to fluid friction. The Prandtl number can also 
influence the creation of entropy owing to the interaction of a 
magnetic field and a conducting fluid. The development of entropy 
results from the dissipation of magnetic energy into heat because 
of the fluid's electrical conductivity. The Prandtl number affects 
flow and thermal properties, which in turn affect dissipation and 
entropy production. Higher Prandtl numbers can result in more 
heat conduction relative to fluid velocity, which can result in 
increased entropy creation owing to the magnet.

Table 7: Effects of Ha on  Nuavg,      ,      and      for Pr = 6.2, l=25w,  ϕ= 0.02, α = 00 , Ha = 25, and η = 10-4
hS fS mS
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Table 7. Effects of Ha on Nuavg, hS , fS  and mS  for Pr = 6.2, l=0, 0.02  , 00   and 410 

. 

Ha Nuavg hS  fS  mS  

0 9.5004 9.8922 392.85 0 

10 9.2714 9.6545 353.02 36.803 

20 8.6796 9.0397 271.71 108.39 

30 7.9086 8.2383 195.49 168.21 

40 7.1059 7.4036 138.21 204.3 

50 6.3543 6.6216 98.349 220.77 

60 5.6866 5.9266 71.234 224.32 

70 5.1078 5.324 52.762 220.23 
 

 

80 4.6104 4.8061 40.015 212.01 

90 4.1833 4.3612 31.058 201.79 

100 3.8153 3.9777 24.637 190.81 

 

Table 8. Effects of   on Nuavg, hS , fS  and mS  for Pr = 6.2, l=0, Ha = 25, 00   and 410  . 

  Nuavg hS  fS  mS  

0 8.2353 8.5771 239.26 147.28 

0.01 8.2712 8.6148 235.28 144.15 

0.02 8.3057 8.6512 231.5 141.15 

0.03 8.3389 8.6862 227.92 138.28 

0.04 8.3709 8.7199 224.52 135.52 

0.05 8.4017 8.7524 221.29 132.87 

0.06 8.4315 8.7839 218.22 130.32 

0.07 8.4603 8.8143 215.31 127.87 

0.08 8.4882 8.8439 212.54 125.5 

0.09 8.5153 8.8725 209.92 123.22 

0.1 8.5415 8.9003 207.43 121.01 

 

 

 

Table 9. Effects of Pr on Nuavg, hS , fS  and mS  for l=0, 0.02  , 00  , Ha = 25, and 410 

. 

Pr Nuavg hS  fS  mS  

0.7 8.1077 8.45 220.55 125.51 

6.2 8.3057 8.6512 231.5 141.15 

25 8.3152 8.6604 232.45 142.51 

 

 

6. Conclusion 
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Table 8: Effects of ϕ on  Nuavg,      ,      and      for Pr = 6.2, l=0,  α = 00 , Ha = 25, and η = 10-4
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6. Conclusion 

6. Conclusion
The findings of the study have important practical implications for 
the design and optimization of heat transfer systems. The research 
advances our understanding of the fundamental principles that 
drive heat transport and entropy generation for obstacles with fins, 
allowing for greater thermal efficiency and energy conservation 
in a variety of engineering applications. The application of 
various Hartmann numbers, Rayleigh numbers, and particle 
volume fractions adds to our understanding of flow behavior and 
temperature distribution in relation to fin characteristics, paving 
the way for more efficient and sustainable thermal management 
solutions. From the findings the following results were discovered: 
Higher rotational angles encourage flow separation and the 
creation of recirculation zones along streamlines. Increasing the 
length of the fin causes more flow disturbances and interactions 
between the fin and the surrounding fluid that results to higher 
heat transfer and entropy generation. Higher Ra values result in 
thinner boundary layers, which result in quicker heat transfer rates 
and faster temperature shifts along isotherms. The presence of a 
magnetic field affects fluid dynamics and produces extra dissipative 

processes that contribute to the generation of entropy. Higher 
degrees of dissipation, such as enhanced electrical conductivity 
or stronger magnetic fields, might intensify the dissipation-
related entropy production associated with the magnetic field-
fluid interaction. Higher Prandtl numbers can result in more heat 
conduction relative to fluid velocity, which can result in increased 
entropy generation owing to the magnet.
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