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Abstract
The overlapping coefficients are defined as the measures of similarity and agreement between two or more 
distributions. Estimation of the well-known overlapping coefficient; Matusita ρ under normal distributions is the 
main aim of this paper. Given that we have two independent random samples each following a normal distribution, 
a new method is proposed to estimate ρ without using any assumptions about the equality of the location or 
scale parameters. Three numerical integration methods are suggested and used to achieve our main objective. 
The maximum likelihood estimation method is used to estimate the interesting parameters. The properties of 
the resulting estimators are investigated and compared with some corresponding estimators that have been 
developed in the literature by using the simulation method. The simulation results show the effectiveness of the 
proposed technique over the existing ones for almost all considered cases in this study.
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Introduction
There are three well known overlapping (OVL) coefficients, name-
ly Matusita (1955) coefficient (ρ), Morisita (1959) coefficient (λ) 
and Weitzman (1970) coefficient (Δ). These coefficients measure 
the similarity or agreement between two distributions which are 
very useful and used in several applications such as a measure of 
distinctness clusters (Sneath, 1977); reliability analysis (Dhaker et 
al., 2019) and the goodness of fit test for two independent distribu-
tions [1]. In this paper we interest with the Matusita coefficient ρ. 
Given that we have two continuous probability density functions f1 
(x) and f2 (x), the formula of ρ is defined as follow: 

Computing the overlapping coefficient ρ between two densities 
gives an idea about the degree of similarity or closeness of the two 
phenomena that follow these densities. It should be noticed that 
the values of above overlapping measures is bounded by [0,1]. 
If the value of ρ is closed to zero, this indicates no common area 
between the two densities .On the other hand, if its value is close to 

1, this indicates complete matching of the two densities. 

In general, there are two methods used for OVL estimation, the 
parametric method and the nonparametric method. A known prob-
ability density functions with unknown parameter(s) Ө is the as-
sumption of parametric method. The unknown parameters Ө can 
be estimated by any rigorous statistical point estimation methods 
like the method of moments or the maximum likelihood (ML) esti-
mation method. Unlike the parametric method, the nonparametric 
method does not require any assumptions about the shape or the 
formula of the underlying statistical distributions (see for example, 
[1, 2]). The parametric method has been considered by many au-
thors to estimate the various OVL coefficients. Inman and Bradly 
derived the ML estimator of Weitzman coefficient measure (Δ) un-
der the assumption that the two densities are normal with different 
means and equal variances [3]. Mulekar and Mishra addressed the 
problem of estimation OVL coefficients in the case of two normal 
densities with equal means but different variances [4]. Mulekar 
and Mishra compared the confidence intervals for the overlapping 
coefficients using re-sampling technique, namely, Jacknife, boot-
strap and transformation methods under the normal densities with 
equal means [5]. Reiser and Faraggi constructed generalized confi-
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1. Introduction 

There are three well known overlapping (OVL) coefficients, namely Matusita (1955) 
coefficient (ρ), Morisita (1959) coefficient (λ) and Weitzman (1970) coefficient (Δ). 
These coefficients measure the similarity or agreement between two distributions 
which are very useful and used in several applications such as a measure of 
distinctness clusters (Sneath, 1977); reliability analysis (Dhaker et al., 2019) and the 
goodness of fit test for two independent distributions (Al-Odat et al., 2021). In this 
paper we interest with the Matusita  coefficient 𝜌𝜌. Given that we have two continuous 
probability density functions 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥), the formula of 𝜌𝜌 is defined as follow:  

𝜌𝜌 = ∫ √𝑓𝑓1(𝑥𝑥)𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 . 

Computing the overlapping coefficient 𝜌𝜌 between two densities gives an idea about 
the degree of similarity or closeness of the two phenomena that follow these densities. 
It should be noticed that the values of above overlapping measures is bounded by [0, 
1]. If the value of 𝜌𝜌 is closed to zero, this indicates no common area between the two 
densities .On the other hand, if its value is close to 1, this indicates complete matching 
of the two densities.  

In general, there are two methods used for OVL estimation, the parametric method 
and the nonparametric method. A known probability density functions with unknown 
parameter(s) Ө is the assumption of parametric method. The unknown parameters Ө 
can be estimated by any rigorous statistical point estimation methods like the method 
of moments or the maximum likelihood (ML) estimation method. Unlike the 
parametric method, the nonparametric method does not require any assumptions about 
the shape or the formula of the underlying statistical distributions (see for example, 
Eidous and Al-Talafheh, 2020 and Al-Odat et al., 2021). 

The parametric method has been considered by many authors to estimate the various 
OVL coefficients. Inman and Bradly (1989) derived the ML estimator of Weitzman 
coefficient measure (Δ) under the assumption that the two densities are normal with 
different means and equal variances. Mulekar and Mishra (1994) addressed the 
problem of estimation OVL coefficients in the case of two normal densities with 
equal means but different variances. Mulekar and Mishra (2000) compared the 
confidence intervals for the overlapping coefficients using re-sampling technique, 
namely, Jacknife, bootstrap and transformation methods under the normal densities 
with equal means. Reiser and Faraggi (1999) constructed generalized confidence 
intervals for the OVL of two normal distributions with equal variances. The problem 
of estimating the OVL coefficients for other densities have been addressed in the 
literature. For example, see Madhuri et al. (2001); Al-Saleh and Samawi (2007); Al-
Saidy et al. (2005); Samawi and Al-Saleh (2008); Chaubey et al. (2008); Mulekar and 
Fukasawa (2010) and Helu and Samawi (2011). 

As pointed out above, the studies that used the normal distributions assumed either the 
means of two distributions or the variances of the two distributions are equal. This 
assumption is necessary to determine the closed form of the OVL coefficient that we 
interest to estimate it. Without this assumption, the researcher cannot find a formula 
for the parameter to be estimated and therefore the researcher cannot perform the 
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dence intervals for the OVL of two normal distributions with equal 
variances [6]. The problem of estimating the OVL coefficients for 
other densities have been addressed in the literature. For example, 
see [7, 8, 9, 10, 11, 12, 13].

As pointed out above, the studies that used the normal distribu-
tions assumed either the means of two distributions or the varianc-
es of the two distributions are equal. This assumption is necessary 
to determine the closed form of the OVL coefficient that we inter-
est to estimate it. Without this assumption, the researcher cannot 
find a formula for the parameter to be estimated and therefore the 
researcher cannot perform the estimation process. To overcome 
this problem, recently, Eidous and Al-Daradkeh suggested a new 
method to estimate [14]. Their technique depends basically on the 
writing the integral in the formula of ρ as expected value of some 
functions and then estimate this expected value by using the meth-
od of moments. Despite that, their method leads to a new estimator 

for ρ with good properties obtained by simulation technique, we 
expect that there is a scope of improvements. In this paper, another 
new technique based on the numerical integration methods is sug-
gested to estimate ρ under the normal distribution. This suggested 
technique leads to three new estimators for ρ, which will compare 
via simulation method with the estimator obtained by Eidous and 
Al-Daradkeh [14]. 

Estimation of ρ Under the Normal Distributions
Let X1 and X2 be two independent random variables such that 
Xi~N(μi,σi

2 ),i=1,2. On one hand, if μ1=μ2=(μ, say) then Mulekar 
and Mishra derived the value of ρ, which is given by [4],
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estimation process. To overcome this problem, recently, Eidous and Al-Daradkeh 
(2022) suggested a new method to estimate  . Their technique depends basically on 
the writing the integral in the formula of 𝜌𝜌 as expected value of some functions and 
then estimate this expected value by using the method of moments. Despite that their 
method leads to a new estimator for 𝜌𝜌 with good properties obtained by simulation 
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2. Estimation of 𝝆𝝆 Under the Normal Distributions 

Let 𝑋𝑋1 and 𝑋𝑋2 be two independent random variables such that 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖, 𝜎𝜎𝑖𝑖
2), 𝑖𝑖 = 1, 2. 

On one hand, if 𝜇𝜇1 = 𝜇𝜇2 = (𝜇𝜇, say) then Mulekar and Mishra (1994) derived the 
value of 𝜌𝜌, which is given by, 

𝜌𝜌 =  √ 2𝐶𝐶
1 + 𝐶𝐶2 

where  𝐶𝐶 = σ1 𝜎𝜎2 ⁄ . To estimate 𝜌𝜌, let (𝑋𝑋11,𝑋𝑋12, … . 𝑋𝑋1𝑛𝑛1) and (𝑋𝑋21,𝑋𝑋22, … . 𝑋𝑋2𝑛𝑛2) be 
two independent random samples taken from 𝑁𝑁(𝜇𝜇, 𝜎𝜎1

2) and 𝑁𝑁(𝜇𝜇, 𝜎𝜎2
2) respectively. The 

ML estimators of 𝜇𝜇,  𝜎𝜎1
2 and 𝜎𝜎2

2  are �̂�𝜇 = ∑ 𝑋𝑋1𝑖𝑖+𝑛𝑛1
𝑖𝑖=1 ∑ 𝑋𝑋2𝑖𝑖

𝑛𝑛2
𝑖𝑖=1

𝑛𝑛1+𝑛𝑛2
, �̂�𝜎1

2 =  ∑ (𝑋𝑋1𝑖𝑖−�̂�𝜇)2𝑛𝑛1
𝑖𝑖=1

𝑛𝑛1
  and  �̂�𝜎2

2 =

 ∑ (𝑋𝑋2𝑖𝑖−�̂�𝜇)2𝑛𝑛2
𝑖𝑖=1

𝑛𝑛2
  respectively. Therefore and by using the invariance property, the ML 

estimator of 𝜌𝜌 is (Mulekar and Mishra,1994), 

𝜌𝜌 =  √ 2�̂�𝐶
1 + �̂�𝐶2 

Where �̂�𝐶 = �̂�𝜎1  �̂�𝜎2 ⁄ . On the other hand, if  𝜎𝜎1 = 𝜎𝜎2 = (𝜎𝜎, say) then the formula of 𝜌𝜌 
is  given by, 

𝜌𝜌 = 𝑒𝑒−(𝜇𝜇1−𝜇𝜇2)2/(8𝜎𝜎2). 
The ML estimator of 𝜌𝜌 is, 

�̂�𝜌  = 𝑒𝑒−(�̂�𝜇1−�̂�𝜇2)2/(8�̂�𝜎2), 
 

Where  �̂�𝜇1 = �̅�𝑋1 , �̂�𝜇2 = �̅�𝑋2 and �̂�𝜎2 = ∑ (𝑋𝑋1𝑖𝑖−�̅�𝑋1)2+𝑛𝑛1
𝑖𝑖=1 ∑ (𝑋𝑋2𝑖𝑖−�̅�𝑋2)2𝑛𝑛2

𝑖𝑖=1
𝑛𝑛1+𝑛𝑛2

  are the ML estimators 
of 𝜇𝜇1, 𝜇𝜇2 and 𝜎𝜎2 respectively. 

Eidous and Al-Daradkeh (2022) expressed the formula of 𝜌𝜌 as follows, 

𝜌𝜌𝐸𝐸𝐸𝐸 = 1
2 [𝐸𝐸 (𝑓𝑓2(𝑋𝑋1)

𝑓𝑓1(𝑋𝑋1))
1
2

+ 𝐸𝐸 (𝑓𝑓1(𝑋𝑋2)
𝑓𝑓2(𝑋𝑋2))

1
2
] 

They gave the following estimator for 𝜌𝜌 under two normal distributions without using 
any assumptions about the equality of their means or variances, 
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2) and 𝑁𝑁(𝜇𝜇, 𝜎𝜎2
2) respectively. The 

ML estimators of 𝜇𝜇,  𝜎𝜎1
2 and 𝜎𝜎2

2  are �̂�𝜇 = ∑ 𝑋𝑋1𝑖𝑖+𝑛𝑛1
𝑖𝑖=1 ∑ 𝑋𝑋2𝑖𝑖
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𝑛𝑛1+𝑛𝑛2
, �̂�𝜎1
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 ∑ (𝑋𝑋2𝑖𝑖−�̂�𝜇)2𝑛𝑛2
𝑖𝑖=1

𝑛𝑛2
  respectively. Therefore and by using the invariance property, the ML 

estimator of 𝜌𝜌 is (Mulekar and Mishra,1994), 

𝜌𝜌 =  √ 2�̂�𝐶
1 + �̂�𝐶2 

Where �̂�𝐶 = �̂�𝜎1  �̂�𝜎2 ⁄ . On the other hand, if  𝜎𝜎1 = 𝜎𝜎2 = (𝜎𝜎, say) then the formula of 𝜌𝜌 
is  given by, 

𝜌𝜌 = 𝑒𝑒−(𝜇𝜇1−𝜇𝜇2)2/(8𝜎𝜎2). 
The ML estimator of 𝜌𝜌 is, 

�̂�𝜌  = 𝑒𝑒−(�̂�𝜇1−�̂�𝜇2)2/(8�̂�𝜎2), 
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  are the ML estimators 
of 𝜇𝜇1, 𝜇𝜇2 and 𝜎𝜎2 respectively. 

Eidous and Al-Daradkeh (2022) expressed the formula of 𝜌𝜌 as follows, 
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2

+ 𝐸𝐸 (𝑓𝑓1(𝑋𝑋2)
𝑓𝑓2(𝑋𝑋2))

1
2
] 

They gave the following estimator for 𝜌𝜌 under two normal distributions without using 
any assumptions about the equality of their means or variances, 
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�̂�𝜌𝐸𝐸𝐸𝐸 = 1
2 [ 1

𝑛𝑛1
∑ (𝑓𝑓2̂(𝑋𝑋1𝑖𝑖)

𝑓𝑓1̂(𝑋𝑋1𝑖𝑖))
1/2𝑛𝑛1

𝑖𝑖=1
+ 1

𝑛𝑛2
∑ (𝑓𝑓1̂(𝑋𝑋2𝑖𝑖)

𝑓𝑓2̂(𝑋𝑋2𝑖𝑖))
1/2𝑛𝑛2

𝑖𝑖=1
], 

Where 𝑓𝑓1̂ = 𝑁𝑁(�̂�𝜇1, �̂�𝜎1
2) and 𝑓𝑓2̂ = 𝑁𝑁(�̂�𝜇2, �̂�𝜎2

2). Also, �̂�𝜇1 = �̅�𝑋1 , �̂�𝜇2 = �̅�𝑋2, �̂�𝜎1
2 =

 ∑ (𝑋𝑋1𝑖𝑖 − �̅�𝑋1 )2𝑛𝑛1
𝑖𝑖=1 /𝑛𝑛1 and �̂�𝜎2

2 =  ∑ (𝑋𝑋2𝑖𝑖 − �̅�𝑋2)2𝑛𝑛2
𝑖𝑖=1 /𝑛𝑛2 are the ML estimators of 

𝜇𝜇1, 𝜇𝜇2, 𝜎𝜎1  
2 and 𝜎𝜎2

2 respectively. 

 3. New Approximation Expressions for Matusita 𝝆𝝆  

In this section, we give a new approximation expression for the Matusita coefficient 𝜌𝜌 
under the two normal distributions without using any assumptions about their 
parameters. Let 𝑢𝑢(𝑥𝑥) = √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1

2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2
2) then, 

                                                      𝜌𝜌 = ∫ √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2

2)𝑑𝑑𝑥𝑥
∞

−∞
 

                                                           = ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 

Let 𝐺𝐺(𝑥𝑥) be any continuous increasing function in 𝑥𝑥 and consider the transformation 
𝑦𝑦 = 𝐺𝐺(𝑥𝑥), then 𝑥𝑥 = 𝐺𝐺−1(𝑦𝑦) = (𝑤𝑤(𝑦𝑦), 𝑠𝑠𝑠𝑠𝑦𝑦). Therefore, 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
𝐺𝐺(∞)

𝐺𝐺(−∞)
 

In particular, we interest the case where 𝐺𝐺(𝑥𝑥) is a continuous cumulative distribution 
function. In this case, 𝐺𝐺(−∞) = 0 and  𝐺𝐺(∞) = 1 and 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
1

0
. 

To approximate the last integral, the interval [0,1] is divided into 𝑘𝑘 subintervals each 
of length 1/𝑘𝑘 as follows, 

0 = 𝑦𝑦0 <  𝑦𝑦1 <  𝑦𝑦2 <  … < 𝑦𝑦𝑘𝑘 = 1 , 

Now, we consider the three numerical integrals rules; trapezoidal, Simpson 1/3 and 
Simpson 3/8 (Atkinson, 1989), which are briefly is given as the following:   

For more simplicity, let ℎ1(𝑦𝑦) = √𝑓𝑓1(𝑤𝑤(𝑦𝑦); 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑤𝑤(𝑦𝑦); 𝜇𝜇2, 𝜎𝜎2

2)𝑤𝑤′(𝑦𝑦), then 𝜌𝜌 =
∫ ℎ1(𝑦𝑦) 𝑑𝑑𝑦𝑦1

0  can be approximated by using the three interested numerical integral 
rules as given below, 

 The approximation of 𝜌𝜌 by using the trapezoidal rule (denoted by 𝜌𝜌1 ) is  
                  𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 1

2𝑘𝑘 [ℎ1(0) + 2 ∑ ℎ1(𝑦𝑦𝑗𝑗)𝑘𝑘−1
𝑗𝑗=1 +ℎ1(1)]. 

 The approximation of 𝜌𝜌 by using the Simpson 1/3 rule (denoted by 𝜌𝜌2 ) is  
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𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
1

0
. 

To approximate the last integral, the interval [0,1] is divided into 𝑘𝑘 subintervals each 
of length 1/𝑘𝑘 as follows, 

0 = 𝑦𝑦0 <  𝑦𝑦1 <  𝑦𝑦2 <  … < 𝑦𝑦𝑘𝑘 = 1 , 

Now, we consider the three numerical integrals rules; trapezoidal, Simpson 1/3 and 
Simpson 3/8 (Atkinson, 1989), which are briefly is given as the following:   

For more simplicity, let ℎ1(𝑦𝑦) = √𝑓𝑓1(𝑤𝑤(𝑦𝑦); 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑤𝑤(𝑦𝑦); 𝜇𝜇2, 𝜎𝜎2

2)𝑤𝑤′(𝑦𝑦), then 𝜌𝜌 =
∫ ℎ1(𝑦𝑦) 𝑑𝑑𝑦𝑦1

0  can be approximated by using the three interested numerical integral 
rules as given below, 

 The approximation of 𝜌𝜌 by using the trapezoidal rule (denoted by 𝜌𝜌1 ) is  
                  𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 1

2𝑘𝑘 [ℎ1(0) + 2 ∑ ℎ1(𝑦𝑦𝑗𝑗)𝑘𝑘−1
𝑗𝑗=1 +ℎ1(1)]. 

 The approximation of 𝜌𝜌 by using the Simpson 1/3 rule (denoted by 𝜌𝜌2 ) is  

New Approximation Expressions for Matusita ρ 
In this section, we give a new approximation expression for the Matusita coefficient ρ under the two normal distributions without using 
any assumptions about their parameters. Let u(x)=√(f1 (x;μ1,σ1

2 ) f2 (x;μ2,σ2
2 ) then,
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�̂�𝜌𝐸𝐸𝐸𝐸 = 1
2 [ 1

𝑛𝑛1
∑ (𝑓𝑓2̂(𝑋𝑋1𝑖𝑖)

𝑓𝑓1̂(𝑋𝑋1𝑖𝑖))
1/2𝑛𝑛1

𝑖𝑖=1
+ 1

𝑛𝑛2
∑ (𝑓𝑓1̂(𝑋𝑋2𝑖𝑖)

𝑓𝑓2̂(𝑋𝑋2𝑖𝑖))
1/2𝑛𝑛2

𝑖𝑖=1
], 

Where 𝑓𝑓1̂ = 𝑁𝑁(�̂�𝜇1, �̂�𝜎1
2) and 𝑓𝑓2̂ = 𝑁𝑁(�̂�𝜇2, �̂�𝜎2

2). Also, �̂�𝜇1 = �̅�𝑋1 , �̂�𝜇2 = �̅�𝑋2, �̂�𝜎1
2 =

 ∑ (𝑋𝑋1𝑖𝑖 − �̅�𝑋1 )2𝑛𝑛1
𝑖𝑖=1 /𝑛𝑛1 and �̂�𝜎2

2 =  ∑ (𝑋𝑋2𝑖𝑖 − �̅�𝑋2)2𝑛𝑛2
𝑖𝑖=1 /𝑛𝑛2 are the ML estimators of 

𝜇𝜇1, 𝜇𝜇2, 𝜎𝜎1  
2 and 𝜎𝜎2

2 respectively. 

 3. New Approximation Expressions for Matusita 𝝆𝝆  

In this section, we give a new approximation expression for the Matusita coefficient 𝜌𝜌 
under the two normal distributions without using any assumptions about their 
parameters. Let 𝑢𝑢(𝑥𝑥) = √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1

2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2
2) then, 

                                                      𝜌𝜌 = ∫ √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2

2)𝑑𝑑𝑥𝑥
∞

−∞
 

                                                           = ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 

Let 𝐺𝐺(𝑥𝑥) be any continuous increasing function in 𝑥𝑥 and consider the transformation 
𝑦𝑦 = 𝐺𝐺(𝑥𝑥), then 𝑥𝑥 = 𝐺𝐺−1(𝑦𝑦) = (𝑤𝑤(𝑦𝑦), 𝑠𝑠𝑠𝑠𝑦𝑦). Therefore, 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
𝐺𝐺(∞)

𝐺𝐺(−∞)
 

In particular, we interest the case where 𝐺𝐺(𝑥𝑥) is a continuous cumulative distribution 
function. In this case, 𝐺𝐺(−∞) = 0 and  𝐺𝐺(∞) = 1 and 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
1

0
. 

To approximate the last integral, the interval [0,1] is divided into 𝑘𝑘 subintervals each 
of length 1/𝑘𝑘 as follows, 

0 = 𝑦𝑦0 <  𝑦𝑦1 <  𝑦𝑦2 <  … < 𝑦𝑦𝑘𝑘 = 1 , 

Now, we consider the three numerical integrals rules; trapezoidal, Simpson 1/3 and 
Simpson 3/8 (Atkinson, 1989), which are briefly is given as the following:   

For more simplicity, let ℎ1(𝑦𝑦) = √𝑓𝑓1(𝑤𝑤(𝑦𝑦); 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑤𝑤(𝑦𝑦); 𝜇𝜇2, 𝜎𝜎2

2)𝑤𝑤′(𝑦𝑦), then 𝜌𝜌 =
∫ ℎ1(𝑦𝑦) 𝑑𝑑𝑦𝑦1

0  can be approximated by using the three interested numerical integral 
rules as given below, 

 The approximation of 𝜌𝜌 by using the trapezoidal rule (denoted by 𝜌𝜌1 ) is  
                  𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 1

2𝑘𝑘 [ℎ1(0) + 2 ∑ ℎ1(𝑦𝑦𝑗𝑗)𝑘𝑘−1
𝑗𝑗=1 +ℎ1(1)]. 

 The approximation of 𝜌𝜌 by using the Simpson 1/3 rule (denoted by 𝜌𝜌2 ) is  

Let G(x) be any continuous increasing function in x and consider the transformation y=G(x), then x=G-1 (y)=w(y),say). Therefore,

4 
 

�̂�𝜌𝐸𝐸𝐸𝐸 = 1
2 [ 1

𝑛𝑛1
∑ (𝑓𝑓2̂(𝑋𝑋1𝑖𝑖)

𝑓𝑓1̂(𝑋𝑋1𝑖𝑖))
1/2𝑛𝑛1

𝑖𝑖=1
+ 1

𝑛𝑛2
∑ (𝑓𝑓1̂(𝑋𝑋2𝑖𝑖)

𝑓𝑓2̂(𝑋𝑋2𝑖𝑖))
1/2𝑛𝑛2

𝑖𝑖=1
], 

Where 𝑓𝑓1̂ = 𝑁𝑁(�̂�𝜇1, �̂�𝜎1
2) and 𝑓𝑓2̂ = 𝑁𝑁(�̂�𝜇2, �̂�𝜎2

2). Also, �̂�𝜇1 = �̅�𝑋1 , �̂�𝜇2 = �̅�𝑋2, �̂�𝜎1
2 =

 ∑ (𝑋𝑋1𝑖𝑖 − �̅�𝑋1 )2𝑛𝑛1
𝑖𝑖=1 /𝑛𝑛1 and �̂�𝜎2

2 =  ∑ (𝑋𝑋2𝑖𝑖 − �̅�𝑋2)2𝑛𝑛2
𝑖𝑖=1 /𝑛𝑛2 are the ML estimators of 

𝜇𝜇1, 𝜇𝜇2, 𝜎𝜎1  
2 and 𝜎𝜎2

2 respectively. 

 3. New Approximation Expressions for Matusita 𝝆𝝆  

In this section, we give a new approximation expression for the Matusita coefficient 𝜌𝜌 
under the two normal distributions without using any assumptions about their 
parameters. Let 𝑢𝑢(𝑥𝑥) = √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1

2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2
2) then, 

                                                      𝜌𝜌 = ∫ √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2

2)𝑑𝑑𝑥𝑥
∞

−∞
 

                                                           = ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 

Let 𝐺𝐺(𝑥𝑥) be any continuous increasing function in 𝑥𝑥 and consider the transformation 
𝑦𝑦 = 𝐺𝐺(𝑥𝑥), then 𝑥𝑥 = 𝐺𝐺−1(𝑦𝑦) = (𝑤𝑤(𝑦𝑦), 𝑠𝑠𝑠𝑠𝑦𝑦). Therefore, 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
𝐺𝐺(∞)

𝐺𝐺(−∞)
 

In particular, we interest the case where 𝐺𝐺(𝑥𝑥) is a continuous cumulative distribution 
function. In this case, 𝐺𝐺(−∞) = 0 and  𝐺𝐺(∞) = 1 and 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
1

0
. 

To approximate the last integral, the interval [0,1] is divided into 𝑘𝑘 subintervals each 
of length 1/𝑘𝑘 as follows, 

0 = 𝑦𝑦0 <  𝑦𝑦1 <  𝑦𝑦2 <  … < 𝑦𝑦𝑘𝑘 = 1 , 

Now, we consider the three numerical integrals rules; trapezoidal, Simpson 1/3 and 
Simpson 3/8 (Atkinson, 1989), which are briefly is given as the following:   

For more simplicity, let ℎ1(𝑦𝑦) = √𝑓𝑓1(𝑤𝑤(𝑦𝑦); 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑤𝑤(𝑦𝑦); 𝜇𝜇2, 𝜎𝜎2

2)𝑤𝑤′(𝑦𝑦), then 𝜌𝜌 =
∫ ℎ1(𝑦𝑦) 𝑑𝑑𝑦𝑦1

0  can be approximated by using the three interested numerical integral 
rules as given below, 

 The approximation of 𝜌𝜌 by using the trapezoidal rule (denoted by 𝜌𝜌1 ) is  
                  𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 1

2𝑘𝑘 [ℎ1(0) + 2 ∑ ℎ1(𝑦𝑦𝑗𝑗)𝑘𝑘−1
𝑗𝑗=1 +ℎ1(1)]. 

 The approximation of 𝜌𝜌 by using the Simpson 1/3 rule (denoted by 𝜌𝜌2 ) is  

In particular, we interest the case where G(x) is a continuous cumulative distribution function. In this case, G(-∞)=0 and 
G(∞)=1 and

4 
 

�̂�𝜌𝐸𝐸𝐸𝐸 = 1
2 [ 1

𝑛𝑛1
∑ (𝑓𝑓2̂(𝑋𝑋1𝑖𝑖)

𝑓𝑓1̂(𝑋𝑋1𝑖𝑖))
1/2𝑛𝑛1

𝑖𝑖=1
+ 1

𝑛𝑛2
∑ (𝑓𝑓1̂(𝑋𝑋2𝑖𝑖)

𝑓𝑓2̂(𝑋𝑋2𝑖𝑖))
1/2𝑛𝑛2

𝑖𝑖=1
], 

Where 𝑓𝑓1̂ = 𝑁𝑁(�̂�𝜇1, �̂�𝜎1
2) and 𝑓𝑓2̂ = 𝑁𝑁(�̂�𝜇2, �̂�𝜎2

2). Also, �̂�𝜇1 = �̅�𝑋1 , �̂�𝜇2 = �̅�𝑋2, �̂�𝜎1
2 =

 ∑ (𝑋𝑋1𝑖𝑖 − �̅�𝑋1 )2𝑛𝑛1
𝑖𝑖=1 /𝑛𝑛1 and �̂�𝜎2

2 =  ∑ (𝑋𝑋2𝑖𝑖 − �̅�𝑋2)2𝑛𝑛2
𝑖𝑖=1 /𝑛𝑛2 are the ML estimators of 

𝜇𝜇1, 𝜇𝜇2, 𝜎𝜎1  
2 and 𝜎𝜎2

2 respectively. 

 3. New Approximation Expressions for Matusita 𝝆𝝆  

In this section, we give a new approximation expression for the Matusita coefficient 𝜌𝜌 
under the two normal distributions without using any assumptions about their 
parameters. Let 𝑢𝑢(𝑥𝑥) = √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1

2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2
2) then, 

                                                      𝜌𝜌 = ∫ √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2

2)𝑑𝑑𝑥𝑥
∞

−∞
 

                                                           = ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 

Let 𝐺𝐺(𝑥𝑥) be any continuous increasing function in 𝑥𝑥 and consider the transformation 
𝑦𝑦 = 𝐺𝐺(𝑥𝑥), then 𝑥𝑥 = 𝐺𝐺−1(𝑦𝑦) = (𝑤𝑤(𝑦𝑦), 𝑠𝑠𝑠𝑠𝑦𝑦). Therefore, 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
𝐺𝐺(∞)

𝐺𝐺(−∞)
 

In particular, we interest the case where 𝐺𝐺(𝑥𝑥) is a continuous cumulative distribution 
function. In this case, 𝐺𝐺(−∞) = 0 and  𝐺𝐺(∞) = 1 and 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
1

0
. 

To approximate the last integral, the interval [0,1] is divided into 𝑘𝑘 subintervals each 
of length 1/𝑘𝑘 as follows, 

0 = 𝑦𝑦0 <  𝑦𝑦1 <  𝑦𝑦2 <  … < 𝑦𝑦𝑘𝑘 = 1 , 

Now, we consider the three numerical integrals rules; trapezoidal, Simpson 1/3 and 
Simpson 3/8 (Atkinson, 1989), which are briefly is given as the following:   

For more simplicity, let ℎ1(𝑦𝑦) = √𝑓𝑓1(𝑤𝑤(𝑦𝑦); 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑤𝑤(𝑦𝑦); 𝜇𝜇2, 𝜎𝜎2

2)𝑤𝑤′(𝑦𝑦), then 𝜌𝜌 =
∫ ℎ1(𝑦𝑦) 𝑑𝑑𝑦𝑦1

0  can be approximated by using the three interested numerical integral 
rules as given below, 

 The approximation of 𝜌𝜌 by using the trapezoidal rule (denoted by 𝜌𝜌1 ) is  
                  𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 1

2𝑘𝑘 [ℎ1(0) + 2 ∑ ℎ1(𝑦𝑦𝑗𝑗)𝑘𝑘−1
𝑗𝑗=1 +ℎ1(1)]. 

 The approximation of 𝜌𝜌 by using the Simpson 1/3 rule (denoted by 𝜌𝜌2 ) is  

To approximate the last integral, the interval [0,1] is divided into k subintervals each of length 1/k as follows,
0=y0< y1< y2< …<yk=1 ,

Now, we consider the three numerical integrals rules; trapezoidal, Simpson 1/3 and Simpson 3/8, which are briefly is given as the fol-
lowing [15]: 
For more simplicity, let h1 (y)=√(f1 (w(y);μ1,σ1

2 ) f2 (w(y);μ2,σ2
2 )  w’(y), then ρ=∫0

1 h1 (y) dy can be approximated by using the three inter-
ested numerical integral rules as given below,
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𝑛𝑛1
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𝑛𝑛2
∑ (𝑓𝑓1̂(𝑋𝑋2𝑖𝑖)

𝑓𝑓2̂(𝑋𝑋2𝑖𝑖))
1/2𝑛𝑛2

𝑖𝑖=1
], 

Where 𝑓𝑓1̂ = 𝑁𝑁(�̂�𝜇1, �̂�𝜎1
2) and 𝑓𝑓2̂ = 𝑁𝑁(�̂�𝜇2, �̂�𝜎2

2). Also, �̂�𝜇1 = �̅�𝑋1 , �̂�𝜇2 = �̅�𝑋2, �̂�𝜎1
2 =

 ∑ (𝑋𝑋1𝑖𝑖 − �̅�𝑋1 )2𝑛𝑛1
𝑖𝑖=1 /𝑛𝑛1 and �̂�𝜎2

2 =  ∑ (𝑋𝑋2𝑖𝑖 − �̅�𝑋2)2𝑛𝑛2
𝑖𝑖=1 /𝑛𝑛2 are the ML estimators of 

𝜇𝜇1, 𝜇𝜇2, 𝜎𝜎1  
2 and 𝜎𝜎2

2 respectively. 

 3. New Approximation Expressions for Matusita 𝝆𝝆  

In this section, we give a new approximation expression for the Matusita coefficient 𝜌𝜌 
under the two normal distributions without using any assumptions about their 
parameters. Let 𝑢𝑢(𝑥𝑥) = √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1

2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2
2) then, 

                                                      𝜌𝜌 = ∫ √𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1
2)𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2

2)𝑑𝑑𝑥𝑥
∞

−∞
 

                                                           = ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞
 

Let 𝐺𝐺(𝑥𝑥) be any continuous increasing function in 𝑥𝑥 and consider the transformation 
𝑦𝑦 = 𝐺𝐺(𝑥𝑥), then 𝑥𝑥 = 𝐺𝐺−1(𝑦𝑦) = (𝑤𝑤(𝑦𝑦), 𝑠𝑠𝑠𝑠𝑦𝑦). Therefore, 

𝜌𝜌 = ∫ 𝑢𝑢(𝑤𝑤(𝑦𝑦))𝑤𝑤′(𝑦𝑦)𝑑𝑑𝑦𝑦
𝐺𝐺(∞)

𝐺𝐺(−∞)
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0
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 The approximation of 𝜌𝜌 by using the Simpson 1/3 rule (denoted by 𝜌𝜌2 ) is  
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]. 

 The approximation of 𝜌𝜌 by using the Simpson 3/8 rule (denoted by 𝜌𝜌3 ) is  
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3
8𝑘𝑘
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𝑘𝑘−1
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𝑗𝑗≠3𝑆𝑆

+ 2 ∑ ℎ1(𝑦𝑦3𝑗𝑗)
𝑘𝑘/3−1

𝑗𝑗=1
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,𝑚𝑚 ∈ 𝑁𝑁0 

4. Estimation of Matusita Measures and Practical Implementation 

Let 𝑓𝑓1(𝑥𝑥; �̂�𝜇1, �̂�𝜎1) and  𝑓𝑓2(𝑥𝑥; �̂�𝜇2, �̂�𝜎2   2 ) be the ML estimators of 𝑓𝑓1(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1   2 ) and 
𝑓𝑓2(𝑥𝑥; 𝜇𝜇2, 𝜎𝜎2   2 ) respectively. Also, let ℎ̂1(𝑦𝑦) =
 √𝑓𝑓1(𝑤𝑤(𝑦𝑦); �̂�𝜇1, �̂�𝜎12)𝑓𝑓2(𝑤𝑤(𝑦𝑦); �̂�𝜇2, �̂�𝜎22) 𝑑𝑑𝑤𝑤′(𝑦𝑦) then the proposed estimators of 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆,
𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 and 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 are given below: 

 Trapezoidal rule is 

ρ̂𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 =  
1
𝑘𝑘∑ ℎ̂1(𝑗𝑗/𝑘𝑘)
𝑘𝑘−1

𝑗𝑗=1
. 

 Simpson 1/3 rule is 

ρ̂𝑆𝑆𝑆𝑆𝑆𝑆1 =
1
3𝑘𝑘 [4∑ℎ̂1((2𝑗𝑗 − 1)/𝑘𝑘)

𝑘𝑘/2

𝑗𝑗=1
+ 2 ∑ ℎ̂1(2𝑗𝑗/𝑘𝑘)

𝑘𝑘/2−1

𝑗𝑗=1
]. 

 Simpson 3/8 rule is 

ρ̂𝑆𝑆𝑆𝑆𝑆𝑆2 =  
3
8𝑘𝑘
{ 
 
  
3 ∑ ℎ̂1(𝑗𝑗/𝑘𝑘)

𝑘𝑘−1

𝑗𝑗=1
𝑗𝑗≠3𝑆𝑆

+ 2 ∑ ℎ̂1(3𝑗𝑗/𝑘𝑘)
𝑘𝑘/3−1

𝑗𝑗=1
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,𝑚𝑚 ∈ 𝑁𝑁0 

To use the above three estimators in practice, two quantities are to be determined. 
The first one is the transformation 𝐺𝐺(𝑥𝑥) and hence 𝑤𝑤(𝑦𝑦). The second quantity is the 
number of partitions 𝑘𝑘. In this paper, our special interest is to take 𝐺𝐺 to be any 
continuous cumulative distribution function with support (−∞,∞). Let 𝑇𝑇 be a 
continuous random variable with cumulative distribution function 𝐺𝐺𝑇𝑇(𝑡𝑡) given by, 

𝐺𝐺𝑇𝑇(𝑥𝑥) = 1 −
1

(1 + 𝑒𝑒𝑥𝑥)α  , −∞ < 𝑥𝑥 < ∞,   α > 0.  

That is, 𝑇𝑇 has a generalized Logistic distribution with  𝑝𝑝𝑑𝑑𝑓𝑓,  

𝑔𝑔𝑇𝑇(𝑥𝑥) =   
α𝑒𝑒−αx

(1 + 𝑒𝑒𝑥𝑥)α+1  , −∞ < 𝑥𝑥 < ∞  , α > 0. 
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The first one is the transformation 𝐺𝐺(𝑥𝑥) and hence 𝑤𝑤(𝑦𝑦). The second quantity is the 
number of partitions 𝑘𝑘. In this paper, our special interest is to take 𝐺𝐺 to be any 
continuous cumulative distribution function with support (−∞,∞). Let 𝑇𝑇 be a 
continuous random variable with cumulative distribution function 𝐺𝐺𝑇𝑇(𝑡𝑡) given by, 

𝐺𝐺𝑇𝑇(𝑥𝑥) = 1 −
1

(1 + 𝑒𝑒𝑥𝑥)α  , −∞ < 𝑥𝑥 < ∞,   α > 0.  

That is, 𝑇𝑇 has a generalized Logistic distribution with  𝑝𝑝𝑑𝑑𝑓𝑓,  

𝑔𝑔𝑇𝑇(𝑥𝑥) =   
α𝑒𝑒−αx

(1 + 𝑒𝑒𝑥𝑥)α+1  , −∞ < 𝑥𝑥 < ∞  , α > 0. 

To use the above three estimators in practice, two quantities are to be determined. The first one is the transformation G(x) and hence 
w(y). The second quantity is the number of partitions k. In this paper, our special interest is to take G to be any continuous cumulative 
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The first one is the transformation 𝐺𝐺(𝑥𝑥) and hence 𝑤𝑤(𝑦𝑦). The second quantity is the 
number of partitions 𝑘𝑘. In this paper, our special interest is to take 𝐺𝐺 to be any 
continuous cumulative distribution function with support (−∞,∞). Let 𝑇𝑇 be a 
continuous random variable with cumulative distribution function 𝐺𝐺𝑇𝑇(𝑡𝑡) given by, 

𝐺𝐺𝑇𝑇(𝑥𝑥) = 1 −
1

(1 + 𝑒𝑒𝑥𝑥)α  , −∞ < 𝑥𝑥 < ∞,   α > 0.  

That is, 𝑇𝑇 has a generalized Logistic distribution with  𝑝𝑝𝑑𝑑𝑓𝑓,  
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In this case, y=1-(1+ex )-α with inverse transformation x=w(y)=
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In this case, 𝑦𝑦 = 1 − (1 + 𝑒𝑒𝑥𝑥)−α with inverse transformation 𝑥𝑥 = 𝑤𝑤(𝑦𝑦) =
𝑙𝑙𝑙𝑙 ((1 − 𝑦𝑦)−1

𝛼𝛼 − 1) and  𝑤𝑤′(𝑦𝑦) = 1
α(1−𝑦𝑦)(1−(1−𝑦𝑦)1 𝛼𝛼⁄ ) 𝑑𝑑𝑦𝑦. 

The parameter 𝛼𝛼 in the above transformation is under the user control. 
Mathematically, any choice of 𝛼𝛼 > 0 is possible. However, to study its practice effect 
on the performances of the proposed estimators, the two values 𝛼𝛼 = 0.5 and = 1.0 are 
considered in our simulation study in the next section. 

The second quantity that need to be determine is 𝑘𝑘. The results of simulation study in 
the next section are obtained based on the suggested choice 𝑘𝑘 = min{𝑙𝑙1, 𝑙𝑙2}.  

 5. Simulation Study and Results 

In this simulation study, the four estimators ρ̂𝐸𝐸𝐸𝐸, ρ̂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, ρ̂𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇1 and ρ̂𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇2 of 𝜌𝜌 are 
considered. The estimator that developed by Eidous and Al-Daradkeh (2022) is 
considered in this study for sake of comparison. Assume that we have two 
independent random samples 𝑥𝑥11, 𝑥𝑥12, … , 𝑥𝑥1𝑛𝑛1 of size 𝑙𝑙1 and 𝑥𝑥21, 𝑥𝑥22, … , 𝑥𝑥2𝑛𝑛2 of size 
𝑙𝑙2, where the two samples are generated from 𝑁𝑁(0, 1) and 𝑁𝑁(𝜇𝜇2, 𝜎𝜎2

2), (𝜇𝜇2, 𝜎𝜎2
2) =

(−0.2,1.1), (2.5,4), (3.5,1.5), (10,2.5) respectively. These selection values of 𝜇𝜇1, 𝜎𝜎1
2 

𝜇𝜇2, 𝜎𝜎2
2 are chosen to vary the exact values of 𝜌𝜌 between 0 and 1 

From each pair of distributions, 1000 samples of sizes (𝑙𝑙1, 𝑙𝑙2) =  (24,30), (54,54),
(96,180)  were simulated independently from the two normal distributions 𝑁𝑁(𝜇𝜇1, 𝜎𝜎1

2) 
and 𝑁𝑁(𝜇𝜇2, 𝜎𝜎2

2) with selected parameters given in Table (1).  

The empirical results given in Table (1) were calculated based on one thousand 
replications (𝑅𝑅 = 1000). For each estimator, we compute the relative bias (RB), 
relative root mean square error (RRMSE) and efficiency (EFF). These measures are 
defined as follows: 

Let 𝜃𝜃 be a specific estimator for a parameter 𝜃𝜃 (exact value), and let 𝜃𝜃(𝑗𝑗) be the 
observed value of 𝜃𝜃 based on iteration  𝑗𝑗, 𝑗𝑗 = 1, 2, … , 𝑅𝑅 = 1000,  then,  

𝑅𝑅𝑅𝑅 = �̂�𝐸(𝜃𝜃) − 𝜃𝜃
𝜃𝜃 , 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =
√𝑅𝑅𝑅𝑅�̂�𝐸(𝜃𝜃)

𝜃𝜃  

and the efficiency of the proposed estimator (Prop-Est) with respect to Eidous and Al-
Daradkeh (2022) estimator (ρ̂𝐸𝐸𝐸𝐸) is defined by, 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑅𝑅𝑅𝑅�̂�𝐸(ρ̂𝐸𝐸𝐸𝐸)
𝑅𝑅𝑅𝑅�̂�𝐸 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐸𝐸𝐸𝐸𝐸𝐸) , 

where �̂�𝐸(𝜃𝜃) = ∑ �̂�𝜃(𝑗𝑗)
𝑅𝑅
𝑗𝑗=1

𝑅𝑅  and  𝑅𝑅𝑅𝑅�̂�𝐸(𝜃𝜃) = ∑ (�̂�𝜃(𝑗𝑗)−𝜃𝜃 )2𝑅𝑅
𝑗𝑗=1

𝑅𝑅  . 

All simulation results are calculated by using Mathematica, Version 11. Based on the 
simulation results, which presented in Table (1), the general conclusions are: 

The parameter α in the above transformation is under the user control. Mathematically, any choice of α>0 is possible. However, to study 
its practice effect on the performances of the proposed estimators, the two values α=0.5 and =1.0 are considered in our simulation study 
in the next section. The second quantity that need to be determine is k. The results of simulation study in the next section are obtained 
based on the suggested choice k=min{n1,n2 }.

Simulation Study and Results
In this simulation study, the four estimators ρ̂

ED,ρ̂Trap,ρ̂simp1 and ρ̂simp2 of ρ are considered. The estimator that developed by Eidous 
and Al-Daradkeh is considered in this study for sake of comparison [14]. Assume that we have two independent random samples 
x11,x12,…,x1n1 ) of size n1 and x21,x22,…,x2n2 ) of size n2, where the two samples are generated from N(0,1) and N(μ2,σ2

2 ),(μ2,σ2
2 )=(-

0.2,1.1),(2.5,4),(3.5,1.5),(10,2.5) respectively. These selection values of μ1,σ1
2 μ2,σ2

2 are chosen to vary the exact values of ρ between 0 
and 1 From each pair of distributions, 1000 samples of sizes (n1,n2 )= (24,30), (54,54),(96,180)  were simulated independently from the 
two normal distributions N(μ1,σ1

2) and N(μ2,σ2
2) with selected parameters given in Table (1). 

The empirical results given in Table (1) were calculated based on one thousand replications (R=1000). For each estimator, we compute 
the relative bias (RB), relative root mean square error (RRMSE) and efficiency (EFF). These measures are defined as follows:

Let θ  be a specific estimator for a parameter θ (exact value), and let θ (j) be the observed value of θ  based on iteration j,j=1,2,…,R=1000, 
then,

̂ ̂ ̂ ̂
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In this case, 𝑦𝑦 = 1 − (1 + 𝑒𝑒𝑥𝑥)−α with inverse transformation 𝑥𝑥 = 𝑤𝑤(𝑦𝑦) =
𝑙𝑙𝑙𝑙 ((1 − 𝑦𝑦)−1

𝛼𝛼 − 1) and  𝑤𝑤′(𝑦𝑦) = 1
α(1−𝑦𝑦)(1−(1−𝑦𝑦)1 𝛼𝛼⁄ ) 𝑑𝑑𝑦𝑦. 

The parameter 𝛼𝛼 in the above transformation is under the user control. 
Mathematically, any choice of 𝛼𝛼 > 0 is possible. However, to study its practice effect 
on the performances of the proposed estimators, the two values 𝛼𝛼 = 0.5 and = 1.0 are 
considered in our simulation study in the next section. 

The second quantity that need to be determine is 𝑘𝑘. The results of simulation study in 
the next section are obtained based on the suggested choice 𝑘𝑘 = min{𝑙𝑙1, 𝑙𝑙2}.  

 5. Simulation Study and Results 

In this simulation study, the four estimators ρ̂𝐸𝐸𝐸𝐸, ρ̂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, ρ̂𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇1 and ρ̂𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇2 of 𝜌𝜌 are 
considered. The estimator that developed by Eidous and Al-Daradkeh (2022) is 
considered in this study for sake of comparison. Assume that we have two 
independent random samples 𝑥𝑥11, 𝑥𝑥12, … , 𝑥𝑥1𝑛𝑛1 of size 𝑙𝑙1 and 𝑥𝑥21, 𝑥𝑥22, … , 𝑥𝑥2𝑛𝑛2 of size 
𝑙𝑙2, where the two samples are generated from 𝑁𝑁(0, 1) and 𝑁𝑁(𝜇𝜇2, 𝜎𝜎2

2), (𝜇𝜇2, 𝜎𝜎2
2) =

(−0.2,1.1), (2.5,4), (3.5,1.5), (10,2.5) respectively. These selection values of 𝜇𝜇1, 𝜎𝜎1
2 

𝜇𝜇2, 𝜎𝜎2
2 are chosen to vary the exact values of 𝜌𝜌 between 0 and 1 

From each pair of distributions, 1000 samples of sizes (𝑙𝑙1, 𝑙𝑙2) =  (24,30), (54,54),
(96,180)  were simulated independently from the two normal distributions 𝑁𝑁(𝜇𝜇1, 𝜎𝜎1

2) 
and 𝑁𝑁(𝜇𝜇2, 𝜎𝜎2

2) with selected parameters given in Table (1).  

The empirical results given in Table (1) were calculated based on one thousand 
replications (𝑅𝑅 = 1000). For each estimator, we compute the relative bias (RB), 
relative root mean square error (RRMSE) and efficiency (EFF). These measures are 
defined as follows: 

Let 𝜃𝜃 be a specific estimator for a parameter 𝜃𝜃 (exact value), and let 𝜃𝜃(𝑗𝑗) be the 
observed value of 𝜃𝜃 based on iteration  𝑗𝑗, 𝑗𝑗 = 1, 2, … , 𝑅𝑅 = 1000,  then,  

𝑅𝑅𝑅𝑅 = �̂�𝐸(𝜃𝜃) − 𝜃𝜃
𝜃𝜃 , 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =
√𝑅𝑅𝑅𝑅�̂�𝐸(𝜃𝜃)

𝜃𝜃  

and the efficiency of the proposed estimator (Prop-Est) with respect to Eidous and Al-
Daradkeh (2022) estimator (ρ̂𝐸𝐸𝐸𝐸) is defined by, 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑅𝑅𝑅𝑅�̂�𝐸(ρ̂𝐸𝐸𝐸𝐸)
𝑅𝑅𝑅𝑅�̂�𝐸 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐸𝐸𝐸𝐸𝐸𝐸) , 

where �̂�𝐸(𝜃𝜃) = ∑ �̂�𝜃(𝑗𝑗)
𝑅𝑅
𝑗𝑗=1

𝑅𝑅  and  𝑅𝑅𝑅𝑅�̂�𝐸(𝜃𝜃) = ∑ (�̂�𝜃(𝑗𝑗)−𝜃𝜃 )2𝑅𝑅
𝑗𝑗=1

𝑅𝑅  . 

All simulation results are calculated by using Mathematica, Version 11. Based on the 
simulation results, which presented in Table (1), the general conclusions are: 

and the efficiency of the proposed estimator (Prop-Est) with respect to Eidous and Al-Daradkeh estimator (ρ̂ED) is defined by [14],
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In this case, 𝑦𝑦 = 1 − (1 + 𝑒𝑒𝑥𝑥)−α with inverse transformation 𝑥𝑥 = 𝑤𝑤(𝑦𝑦) =
𝑙𝑙𝑙𝑙 ((1 − 𝑦𝑦)−1

𝛼𝛼 − 1) and  𝑤𝑤′(𝑦𝑦) = 1
α(1−𝑦𝑦)(1−(1−𝑦𝑦)1 𝛼𝛼⁄ ) 𝑑𝑑𝑦𝑦. 

The parameter 𝛼𝛼 in the above transformation is under the user control. 
Mathematically, any choice of 𝛼𝛼 > 0 is possible. However, to study its practice effect 
on the performances of the proposed estimators, the two values 𝛼𝛼 = 0.5 and = 1.0 are 
considered in our simulation study in the next section. 

The second quantity that need to be determine is 𝑘𝑘. The results of simulation study in 
the next section are obtained based on the suggested choice 𝑘𝑘 = min{𝑙𝑙1, 𝑙𝑙2}.  

 5. Simulation Study and Results 

In this simulation study, the four estimators ρ̂𝐸𝐸𝐸𝐸, ρ̂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, ρ̂𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇1 and ρ̂𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇2 of 𝜌𝜌 are 
considered. The estimator that developed by Eidous and Al-Daradkeh (2022) is 
considered in this study for sake of comparison. Assume that we have two 
independent random samples 𝑥𝑥11, 𝑥𝑥12, … , 𝑥𝑥1𝑛𝑛1 of size 𝑙𝑙1 and 𝑥𝑥21, 𝑥𝑥22, … , 𝑥𝑥2𝑛𝑛2 of size 
𝑙𝑙2, where the two samples are generated from 𝑁𝑁(0, 1) and 𝑁𝑁(𝜇𝜇2, 𝜎𝜎2

2), (𝜇𝜇2, 𝜎𝜎2
2) =

(−0.2,1.1), (2.5,4), (3.5,1.5), (10,2.5) respectively. These selection values of 𝜇𝜇1, 𝜎𝜎1
2 

𝜇𝜇2, 𝜎𝜎2
2 are chosen to vary the exact values of 𝜌𝜌 between 0 and 1 

From each pair of distributions, 1000 samples of sizes (𝑙𝑙1, 𝑙𝑙2) =  (24,30), (54,54),
(96,180)  were simulated independently from the two normal distributions 𝑁𝑁(𝜇𝜇1, 𝜎𝜎1

2) 
and 𝑁𝑁(𝜇𝜇2, 𝜎𝜎2

2) with selected parameters given in Table (1).  

The empirical results given in Table (1) were calculated based on one thousand 
replications (𝑅𝑅 = 1000). For each estimator, we compute the relative bias (RB), 
relative root mean square error (RRMSE) and efficiency (EFF). These measures are 
defined as follows: 

Let 𝜃𝜃 be a specific estimator for a parameter 𝜃𝜃 (exact value), and let 𝜃𝜃(𝑗𝑗) be the 
observed value of 𝜃𝜃 based on iteration  𝑗𝑗, 𝑗𝑗 = 1, 2, … , 𝑅𝑅 = 1000,  then,  

𝑅𝑅𝑅𝑅 = �̂�𝐸(𝜃𝜃) − 𝜃𝜃
𝜃𝜃 , 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =
√𝑅𝑅𝑅𝑅�̂�𝐸(𝜃𝜃)

𝜃𝜃  

and the efficiency of the proposed estimator (Prop-Est) with respect to Eidous and Al-
Daradkeh (2022) estimator (ρ̂𝐸𝐸𝐸𝐸) is defined by, 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑅𝑅𝑅𝑅�̂�𝐸(ρ̂𝐸𝐸𝐸𝐸)
𝑅𝑅𝑅𝑅�̂�𝐸 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐸𝐸𝐸𝐸𝐸𝐸) , 

where �̂�𝐸(𝜃𝜃) = ∑ �̂�𝜃(𝑗𝑗)
𝑅𝑅
𝑗𝑗=1

𝑅𝑅  and  𝑅𝑅𝑅𝑅�̂�𝐸(𝜃𝜃) = ∑ (�̂�𝜃(𝑗𝑗)−𝜃𝜃 )2𝑅𝑅
𝑗𝑗=1

𝑅𝑅  . 

All simulation results are calculated by using Mathematica, Version 11. Based on the 
simulation results, which presented in Table (1), the general conclusions are: 

All simulation results are calculated by using Mathematica, Ver-
sion 11. Based on the simulation results, which presented in Table 
(1), the general conclusions are:
1. The values of |RB|s and RRMSE for all estimators of OVL 
measures decrease as the sample sizes increase. This result is very 
clear if we compare the values of |RB|s and RRMSE for the differ-
ent estimators when (n1,n2 )=(24,30) with their values when (n1,n2 
)=(96,180) in all Tables. This indicates that the various estimators 
are consistent estimators.

2. Regardless which OVL measure is to be estimated and for all 
simulated pair distributions, it is evidence that the proposed es-
timators are more efficient than the estimator ρ̂ED that suggested 
by Eidous and Al-Daradkeh in most considered cases [14]. This 
is clearly appear if one examines the corresponding values of 
RRMSE and EFF especially when the exact values of the OVL 
measure get small toward 0.

3. By comparing the performances of the proposed estimators of ρ 
together, it is clear that their performances are close to each other 
and their values are coincide for large sample sizes. This indicates 

that the three numerical integration rules; trapezoidal, Simpson 
1/3, and Simpson 3/8 rules give similar results in estimating the 
OVL measures ρ. In other words, the use of any one of these three 
rules gives the same results as the use of the other two rules in 
estimating ρ. 

4. By examining and comparing the results corresponding to the 
two transformations 1-(1+ex )-1 (i.e. α = 1) and 1-(1+ex )-1/2 (i.e. α = 
½), it appears that the proposed estimators are not sensitive to the 
transformation choice. At least and depending on the simulation 
results, the above two transformations work well in estimating the 
Matusita OVL measure ρ. 

Discussion
This paper has been suggested and developed a new technique for 
estimating the Matusita coefficient (measure) ρ under pair normal 
distributions without using any restrictions about the equality of 
any two parameters. In addition, the proposed technique in this 
paper can be used under different parametric distributions like ex-
ponential, Lomax distributions etc. The numerical results showed 
the effectiveness of this proposed technique.
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Table 1. The RB, RRMSE and EFF of the estimators 𝜌𝜌𝐸𝐸𝐸𝐸, 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 and  𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 when the data are 
simulated from pair normal distributions a) 𝑁𝑁(0,1) and 𝑁𝑁(−0.2,1.1) b) 𝑁𝑁(0,1) and 𝑁𝑁(2.5,4) c) 
𝑁𝑁(0,1) and 𝑁𝑁(3.5,1.5) and d) 𝑁𝑁(0,1) and 𝑁𝑁(10,2.5). 

a) The exact  𝜌𝜌 = 0.9932. 

α = 1/2 α = 1  
𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝑇𝑇𝑇𝑇 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝐸𝐸  (𝑛𝑛1, 𝑛𝑛2) 
-0.016 -0.017 -0.019 -0.020 -0.018 -0.019 -0.019 -0.020 RB 

(24, 30) 0.029 0.030 0.030 0.032 0.031 0.031 0.031 0.034 RRMSE 
1.230 1.200 1.150 1.000 1.180 1.170 1.170 1.000 EFF 
-0.008 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.010 RB 

(54, 54) 0.016 0.016 0.016 0.017 0.018 0.018 0.018 0.019 RRMSE 
1.140 1.130 1.130 1.000 1.100 1.100 1.100 1.000 EFF 
-0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 RB 

(96, 180) 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 RRMSE 
1.110 1.110 1.110 1.000 1.090 1.090 1.090 1.000 EFF 

b) The exact 𝜌𝜌 =0.6258. 

α = 1/2 α = 1  
𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝑇𝑇𝑇𝑇 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝐸𝐸  (𝑛𝑛1, 𝑛𝑛2) 
-0.017 -0.016 -0.023 -0.026 -0.017 -0.016 -0.022 -0.030 RB 

(24, 30) 0.092 0.092 0.092 0.130 0.093   0.093 0.092 0.137 RRMSE 
1.983 1.963 1.996 1.000 2.159 2.136 2.217 1.000 EFF 
-0.006 -0.006 -0.008 -0.012 -0.007 -0.007 -0.008 -0.014 RB 

(54, 54) 0.065 0.065 0.065 0.097 0.068 0.068 0.067 0.101 RRMSE 
2.230 2.230 2.250 1.000 2.190 2.190 2.220 1.000 EFF 
-0.004 -0.005 -0.005 -0.010 -0.001 -0.001 -0.002 -0.009 RB 

(96, 180) 0.042 0.042 0.042 0.064 0.042 0.042 0.042 0.063 RRMSE 
2.270 2.270 2.280 1.000 2.210 2.210 2.230 1.000 EFF 

c)  The exact 𝜌𝜌 = 0.3744. 

α = 1/2 α = 1  
𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝑇𝑇𝑇𝑇 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝐸𝐸  (𝑛𝑛1, 𝑛𝑛2) 

-0.043 -0.043 -0.044 -0.147 -0.080 -0.073 -0.105 -0.150 RB 
(24, 30) 0.376 0.376 0.374 0.431 0.354 0.354 0.353 0.419 RRMSE 

1.311 1.313 1.325 1.000 1.404 1.400 1.410 1.000 EFF 
-0.022 -0.022 -0.022 -0.076 -0.041 -0.040 -0.051 -0.101 RB 

(54, 54) 0.254 0.254 0.254 0.294 0.248 0.249 0.247 0.293 RRMSE 
1.335 1.335 1.337 1.000 1.387 1.378 1.406 1.000 EFF 
-0.022 -0.022 -0.022 -0.048 -0.014 -0.014 -0.016 -0.041 RB 

(96, 180) 0.179 0.179 0.179 0.218 0.186 0.186 0.185 0.216 RRMSE 
1.476 1.476 1.476 1.000 1.357 1.356 1.365 1.000 EFF 

d)  The exact   𝜌𝜌 = 0.0264. 

α = 1/2 α = 1  
𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝑇𝑇𝑇𝑇 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆2 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆1 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌𝐸𝐸𝐸𝐸  (𝑛𝑛1, 𝑛𝑛2) 
0.166 0.166 0.165 -0.241 0.115 0.120 0.097 -0.199 RB 

(24, 30) 0.901 0.901 0.900 1.272 0.858 0.862 0.845 1.482 RRMSE 
1.991 1.991 1.996 1.000 2.986 2.962 3.076 1.000 EFF 
0.081 0.081 0.081 -0.104 0.055 0.056 0.049 -0.188 RB 

(54, 54) 0.639 0.639 0.638 1.611 0.612 0.612 0.609 1.490 RRMSE 
6.364 6.364 6.366 1.000 5.925 5.915 5.986 1.000 EFF 
0.025 0.025 0.025 -0.083 0.027 0.027 0.025 -0.052 RB 

(96, 180) 0.353 0.353 0.353 1.164 0.356 0.356 0.355 1.303 RRMSE 
10.835 10.835 10.835 1.000 13.394 13.389 13.466 1.000 EFF 
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