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Abstract
This review publication is an expanded version of the 2015 lecture at the III Moscow Seminar on Mathematical 
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developments by E.D. Adamovich and F.K. Orekhov, as well as a number of graphic materials of historical value. 
The work proposes new principles or approaches for multifactori/multimodal analysis of various bioacoustic signals 
based on N-dimension complex spectral analysis of different (bio) physical variables - “bioacoustic fingerprinting” and 
“bioacoustic footprinting”. Hadware-based technical examples of possible uses of this approache are given for the breef 
annotation in the text of this lecture.
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1. Introduction
1.1 The Main Problems of Mathematical Bioacoustic Analysis
Despite the decades that have passed since the beginning of 
automated work on the bioacoustics of marine fauna, the most 
common analysis tool is representation in amplitude-time 
(oscillogram), frequency-amplitude (spectra and amplitude-
frequency characteristics) and frequency-time (sonogram/
dynamic spectrogram) coordinate systems. Therefore, the main 
accepted models for describing the properties of a bioacoustic 
signal are models (and, consequently, methods) based on 
simplified concepts of amplitude and frequency modulation 
(AM and FM, respectively) borrowed from radiophysics [1-
3]. The proliferation of computer acoustic spectrum analyzers, 
available to any specialist who has a computer with a high-
quality sound card or other ADC (analog-to-digital converter) 
with very average technical characteristics, starting in the 1990s 
led to a situation where widespread software, which in most 
cases includes only analysis algorithms working in the above 
coordinate grids, began to “dictate” data analysis technologies 
to bioacoustics who do not fully possess programming skills 
and advanced mathematical tools necessary for a deeper 
understanding of processes at the physical/biophysical level [4-
7]. As noted already in the 1990s “this ease of access increases 
the potential for incorrect methods or misinterpretation of results 
[8].” The only way out that logically followed from this state of 
affairs at that time was the transition from data analysis to their 
identification (using databases or one with another - previously 

identified) and comparison without taking into account their 
specificity and relevance to environmental, ethological, 
hydroacoustic and other conditions environment and their 
physiological generation, the same work proposes software for 
cross-correlation analysis of bioacoustic signals, which “is a 
candidate for replacing or complementing the visual comparison 
of spectrograms and their multidimensional analysis, being a 
search method for comparing sounds [8]. With the increasing 
availability of software with built-in cross-correlation methods, 
the analysis procedure is becoming accessible to biologists who 
may not have extensive knowledge of acoustics." A process 
equivalent to that occurring at the same time in spectrochemical 
analysis occurred, when the introduction of computer-aided 
analytics (COBAC) technologies and the spread of the principles 
of spectral analysis into routine analytical chemistry (where 
specialists working from first principles were absent) led to 
the replacement of the "old school" » spectrochemists with its 
successes in meaningful decoding of spectra came a young galaxy 
of specialists in automated identification, replacing the concepts 
of “decoding”, “establishing physical correspondences” with 
the concepts of spectral fingerprinting (in almost all common 
spectral methods) and then with spectral footprinting [9-14].

A significant imprint was left by methodological inertia and 
a stereotypical approach to data analysis (uniformitarianism 
towards early sources analyzed by some method or technical 
complex, for reproducible comparison with which it is necessary 
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to copy it multiple times in all works studying the object studied 
using it). As a result, despite the fact that any computer is 
indifferent to the variables and descriptors calculated on it, after the 
advent of the PC and, especially, IBM-PC-compatible platforms 
interfaced with sound cards and ADCs of sufficient capacity, the 
first emulated bioacoustic devices reproduced on them devices 
were sonographs also known as dynamic spectrographs, which 
visualized the dependence of the spectrum amplitude frequency 
dependence on time [16,17]. The subjectivity of comparing 
sonogram graphs visually, as well as machine recognition of 
graphic images of sonograms using neural networks, but in 
the absence of identifying descriptors other than those visually 
observed, was emphasized back in the 1990s, however, palliative 
and conventional solutions were chosen ad hoc, for convenience 
implementations did not reveal the array of heuristically valuable 
information that characterized the bioacoustic signal. The 
claims in the article "there have been some attempts to reduce 
subjectivity and increase the repeatability of this approach, for 
example by tracking sonograms on paper and examining areas 
of overlap or inconsistency using statistical data," should not 
be taken seriously, since statistical processing on descriptors 
that do not carry sufficient comprehensiveness information 
about the process does not bring new and sufficiently complete 
information for its qualitative description [18]. Despite this, and 
in subsequent work leading to the creation of bioacoustic control 
tools based on neural network algorithms or other methods of 
clustering and automated classification, the variables usually did 
not differ from amplitude and frequency, and models built on 
their basis could not in any way differ from AM- and FM-like 
simplifications.

Let us illustrate the last thesis with a number of representative 
examples, deliberately not specifically considering a number of 
early works that directly indicate the time-frequency nature of 
the analysis (even when we are talking about fairly advanced 
DSP methods - such as the Hilbert transform, autocorrelation 
tone detection, cepstral and wavelet analysis, Wigner-Vill 
transform for the analysis of non-stationary signals, etc. [19]). 
One of the first works in the field of publicly available extended 
analysis of measurements of bioacoustic characteristics (these 
measurements, obviously, are primary recording files) was 
work which described the LMA software, designed for time-
frequency analysis of significantly noisy and harmonic or 
nonlinear distortion bioacoustic data [20]. LMA analyzes the 
number and location of dominant frequency or pulse-time ranges 
based on amplitude extrema, i.e. at a threshold depending on 
the amplitude distribution in the corresponding segment. LMA 

algorithms also carry out parameterization that characterizes 
the amplitude distribution along time-frequency coordinates - 
as medians and the 1st and 3rd quartiles of the total amplitude, 
and also determine the statistical values of amplitudes and 
their distribution along the time axis (initial value, minimum, 
maximum, modulation). It is quite obvious that LMA is a more 
statistical package than a DSP-oriented package, which does not 
extract information by analyzing the source data, but calculates 
statistics on data already presented in an accessible format for 
analysis. Another, more recent work on the automatic analysis 
of acoustic parameters proposes to implement an assessment of 
the fundamental frequency and statistically dominant frequency 
ranges, on the basis of which to calculate the distribution of 
spectral energy / power (which, in contrast to early subjective 
types and analysis techniques, is a very objective additive 
criterion), but at the same time, the only reference criterion even 
for two-channel files\recordograms is the frequency or pulse 
density per second [21]. 

Phase and other signal characteristics are ignored even in cases 
where they are significant for the energy analysis of bioacoustic 
signal files, although for specialists working with MATLAB, 
often found in bioacoustic group techniques extraction of these 
characteristics is not difficult (for example, see our computer-
based modular analyzer of entropy, noise quality and phase with 
post-processng and analysis of bioacoustic signals in MATLAB 
on Figure 1) [22]. As a consequence of the limited array of 
parameters at the stage of primary processing of measurements 
(and the measurements themselves), the arrays of compared 
values in comparative analysis are limited - in particular, in the 
correlation analysis of the bioacoustic signal, and therefore in 
the methodology for automated classification of bioacoustic 
data. The cross-correlation method of analysis, used along with 
the PCA principal component method in sound classification, in 
particular cases of bioacoustic applicability comes down to the 
analysis of the frequency coordinate in time (and in power) and 
uses the formalism of normalized frequencies in clustering [23]. 
The correlation analysis of the formant structure in mammalian 
vocalizations is also of a purely frequency nature, based on the 
metrology of instantaneous frequencies, frequency bands and 
subranges, frequency modulation while taking into account 
the analysis of the autocorrelation function [24]. The result is 
obvious: with monoparametric (frequency) analysis, cross-
correlation of spectrograms in bioacoustic analysis gives way 
to target parameters and automation of the study of patterns 
is replaced by automation of identification only with known 
parameters [25].
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Figure 1: Computer-based modular analyzer of entropy, noise quality and phase with post-processng and analysis of bioacoustic 
signals in MATLAB, EDSW, "Fractan" and "AutoSignal" software (GEOKHI RAS, 2010).

1.2 Multifactor / Multimodal Biological Interpretation or 
DSP Identification Only?
Let's illustrate this. As is known, methods of image recognition 
and, in essence, semantic decoding and group identification 
based on ethological characteristics can be applied to bioacoustic 
whistles within the framework of fairly widespread software 
(such as the Dolphin software) [26]. This is a rather complex 
and time-consuming task, so no one is specifically addressing it, 
not allowing thoughts about expanded population screening on a 
bioacoustic basis (zoopsychological and population genetic with 
reference to the extended phenotype). Therefore, in the newest 
and most popular products due to their simplicity and publication 
efficiency, these capabilities are not emphasized. There is no need 
for an expanded pool of variables if there are no tasks extended 
in relation to standard approaches (solvable by the existing pool). 
The main part of modern clustering methods or neural network 
methods and software for bioacoustics is based on the subjective 
selection of criteria by the primary operator, that is, the so-
called “supervised learning”, while truly objective classification 
software should work on the principle of “unsupervised learning”, 
itself selecting fundamental comparison criteria. The absence of 
this most important feature is currently a characteristic quality 
of ad hoc bioacoustic work performed. “After manual selection 
we trained an artificial neural network to automatically collect 
events from the recordings. Using hidden Markov models, 
we achieved at least 70% correct identification "the size of 
the repertoire was first assessed subjectively [27]. (Based on 

auditory and spectrographic patterns) on one of a large number 
of temporal types. for each call type, the preliminary mean was 
calculated the mean values were used for clustering” “a signal/
song element is defined as the smallest (visually) distinguishable 
element of the spectrogram” “classification of a new sample is 
carried out in a Bayesian way [28,29]. Effectively estimating 
posterior clustering probabilities... for classifying new patterns" 
or "the results showed a typical trade-off of speed versus 
accuracy... the best algorithm was inserted into underwater audio 
recording and signal detection systems" [30,31]. How can one 
expect an objective massive analysis from a network into which 
subjectively selected parameters with palliative/compromising 
threshold values for an incomplete array of variables 
characterizing the signal are included at the stage of its creation? 
In the most progressive works condemning the impracticality 
of identification “by ear”, which propose means of automatic 
detection based not only on temporal and spectral properties, but 
also on the properties of sequences, that is, sequences of signals 
the operation of a computer is not fundamentally different from 
the operation human ear and perception - since, also, like the 
latter, it does not distinguish between phase and other special 
features or signal descriptors in variables other than frequency 
and intensity [32]. In objective, from the point of view of the 
energy approach, works specifically indicate, in particular, that 
“most of the work on automated identification was carried out 
under supervision - depended on the preparation of data labeled 
by a person” and that in the optimal case, an “unsupervised 
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approach without label pre-training” is needed data” [Ibid] 
the criterion and the only variables of ab initio analysis are 
amplitude, frequency and time, that is, clustering occurs in the 
most anthropomorphic and even anthropomimetic mode [33].

In the case of cepstral processing (similar to the chemical 
cepstrocsopy based on the setup, provided at the Figure 2), the 
situation changes a little: we get several new variables, but they 
duplicate the known ones in accordance with the needs of the 
new ideology of analysis [34]. These variables, by definition 

(definitively) are “saphe” - an analogue of phase and cepstral time 
or “quefrency”. Any bioacoustic signal contains fundamentally 
extractable information about the phase, but in most methods, 
as indicated, it is neglected. A similar nuance works in the case 
of cepstral analysis of a bioacoustic signal. Phase information 
is extracted and the phase spectrum is formed in the case of 
complex cepstra (especially when restoring the original signals 
from convolution), which is synonymous with the method of 
homomorphic deconvolution or homomorphic filtering [35,36]. 

Figure 2: Elementary multimodal acoustochemical and bioacoustic (entomological) spectrometer with advanced spectral signal 
processing. General view of the device with a control panel and an ADC placement unit. The universal serial bus (USB) inputs 
leading from the ADC to the PC are visible (ICP RAS, Department of Dynamics of Chemical and Biological Processes, 2011). This 
device can also be used as a bioacoustic signal cepstrometer with ZLAB ADC-DAC.

It is also known that for minimum-phase signals, cepstral 
spectral coefficients can be obtained directly from the power 
spectrum estimate, and only in this case do cepstra and complex 
cepstra produce virtually equivalent results, which is due to the 
fact that both methods are based on the inverse FFT transform 
( inverse Fourier transform) of the logarithmic power spectrum. 
Thus, cepstral analysis in the case of bioacoustic processing can 
provide no more and no less information than spectral analysis 
implemented over the entire array of variables, including phase. 
However, a review of currently available commercial products 
- such as the AVISOFT software and hardware complexes, 
often used by both terrestrial bioacoustics and hydroacoustics, 
but stopped at the stage of a progressively expanded digital 
sonograph [37,38]. SYRINX, SCREECH and others as well 
as many other representatives of proprietary software (Adobe 
Audition, WaveLab), often used by bioacoustics instead of 

specialized software, shows that the functions of calculating 
the phase spectrum, not to mention more complex processing 
methods they are usually absent or are in illustrative form 
[39,40]. Probably as a consequence of this, in most of the 
reviewed works in the thematic trend, these approaches are 
also absent [41-48]. Low-budget solutions introduced long ago 
did not solve the problem (due to low budget?) but new cross-
platform or UNIX-oriented / Linux-oriented software solutions 
with open source and a free distribution policy do not consider 
“unpopular” phase type descriptors and do not have the means 
(or utilities) for analysis based on criteria other than human 
hearing [49,50].

1.3 Are Simplified Approaches Good for Phase-Complex 
Bioacoustic Signals?
Simplification of models does not go unpunished for their 
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quality. Ignoring the phase at the stage of selecting variables 
in bioacoustic analysis leads to a number of paradoxes that 
are akin to quantum uncertainty and cannot be eliminated 
otherwise than by multicriteria optimization methods, leading 
to palliative decisions - a compromise that is not beneficial from 
a metrological point of view (unless, of course, return the phase 
back to the limits of consideration). Recognizing that “animal 
vocalizations are not periodic, frequency-modulated signals,” 
but limiting himself to a two-dimensional approximation where 
“the type of signal simultaneously varies in two dimensions, 
time and frequency,” Beecher, contrary to the obvious, does 
not introduce additional variables, but postulates a formalism, 
or rather a concept, in which "spectrographic measurements are 
constrained by the 'uncertainty principle'" and "to improve the 
accuracy of a measurement in one dimension, we must sacrifice 
the accuracy of a measurement in another dimension" [Ibid] 
[51]. Beecher makes a logical conclusion within the framework 
of this approach that “a compromise is inevitable” and “for 
any particular frequency-modulated aperiodic signal there is 
an intermediate-optimal spectral bandwidth setting equal to the 
square root of the average rate of change of the measured signal” 
[Ibid]. It seems rational, appealing to common sense, to exclude 
the uncertainty principle from the analysis of signals with low-
frequency characteristics that are observable even without ultra-
high-speed oscilloscopes, but for this we need to turn to the 
phase and phase spectrum. It is known that in the transactional 
interpretation, which appeals to the principle of uncertainty, the 
amplitude is determined by the degree of phase coincidence. 
Even if we consider a bioacoustic signal (which, it must be 
said, does not make sense in a practical context) as a wave 
function, which in the classical case of potential is a measure of 
kinetic energy, with a spectral distribution invariant in a given 
taxonomic or other category, this should be associated with a 
change in the wave phase functions. Moreover, the concept of 
kinetic energy density, which reflects the change in the latter, 
definitively includes both a change in module and a change in 
phase! The need to introduce uncertainty for the analysis of 
bioacoustic signals is not obvious from the standpoint of analysis 
using spectrographic digital cross-correlation (SPCC) in which 
frequency, amplitude, and time are simultaneously analyzed [8]. 
The most advanced versions of SPCC, in particular, the SPCC-
PCO algorithm which operates both on the time-frequency 
recordogram of the signal and its duration within the framework 
of principal component analysis (analysis of the frequency 
coordinate in time using the PCA method in bioacoustics) and 
weighted harmonic components (i.e., harmonic parameters, to 
use the slang of sound engineers-acoustics), allowing emphasis, 
rather than smoothing out the differences between signal types 
in the n-dimensional space PCO takes into account, or more 
precisely, must take into account, by definition, also the phase 
[23,52]. It is well known that the energy exchange between 
harmonics depends on the phase relationship: in a system with 
frequency dispersion, the phase velocities are different and the 

relationships between the phases change at a very high speed, 
without supporting the nonlinear effects that arise in the presence 
of phase matching. For obvious reasons, when changing the 
reference point (the recording time of bioacoustic oscillograms), 
the initial phases of the harmonics, that is, the phase spectrum 
of the signal, will change (the phase spectrum of the signal can 
be interpreted as a set of the initial phases of all harmonics), 
and the amplitudes of the harmonics will remain constant. That 
is, signals with an equivalent amplitude spectrum in different 
clustering groups may differ with statistical significance in non-
equivalent phase spectra. It should be noted that using the phase 
approach at low quantization and sampling values does not make 
sense, since the discreteness of the phase space is fraught with 
measurement artifacts, and the usual jitter of digital recording 
and oscillographic systems is definitively the phase jitter of the 
digital data signal and is visualized as a phase shift between 
ideal (either supplied or reference) and real signal (according 
to the ITU-T G.810 standard, the term wander is also adopted).

In this sense, the feature of a number of methods (including the 
above-mentioned SPCC-PCO in its bioacoustic explication) to 
analyze noise (see Figure 1) and signal-to-noise ratios, including 
the harmonic weighing criterion, is very justified [52]. From first 
principles (ab initio) it is necessary to take into account some 
properties of phase noise in electronic recording (eg, ADC) 
and generating (including DAC) means. It is known that there 
is a mathematically specific relationship between frequency 
and phase, as a result of which the principles that formally 
describe the deviation of frequency and phase (depending 
on time or frequency in the corresponding coordinates) are 
physically interrelated, and frequency is considered in this case 
as the rate of phase change. The phase shift is measured with a 
frequency reference - in a given frequency band or a specific 
individual sideband. A feature of noise, from the point of view of 
bioacoustics, is the content of an almost full range or stochastic 
set of phases of spectral harmonics. However, as is known, 
there are also underwater noises, which, in the phase-frequency 
characteristic, in most recordings that are not equipped with 
artifacts, differ from bioacoustic signals, however, the latter 
can also be unrecognizable noise and recording artifacts. When 
monitoring the noise parameters of the ocean various sources 
of noise are permanently recorded, which both affect marine 
fauna (including its acoustic communication) and are generated 
by it [53-58]. Non-directional sound recording does not allow 
identifying the source of noise (regardless of its biogenic, 
geological or technogenic nature), which also directly follows 
from one of the meanings of the term ambient. Therefore, in the 
diagnosis of a bioacoustic environment, there is a pronounced 
trend towards combining the identification of a sound source 
(sound source species analysis) and the determination of its 
spatial localization based on data and with reference to the data 
of its multi-position bioacoustic measurements / sound mapping 
(see Figure 3) [59]. 
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Figure 3: Digital microprocessor azimuthal bioacoustic correlometer for microphone arrays with ADCs. Prototype development: 
Adamovich E.D. (2015). 

These measurements are made by many differently localized 
microphones at known distances (microphone arrays) for 
comparative differential signal processing [60]. In this case, 
phase noise can be filtered with a matched filter. However, the 
principles of differential comparative analysis in microphone 
arrays are directly physically based on phase delay measurements, 
being, in the elementary case, somewhat similar to measurements 
of binaural characteristics of auditory perception. Since human 
perception ignores phase information, as a rule, few people 
work specifically on this, however, if we move away from 
direct analogy to anthropocentric perception when designing 
and analyzing bioacoustics problems, then phase information 
will turn out to be very significant. Thus, the characteristics of 
phase spectra are essential for perception in dolphins, since it 
is associated with the binaural phase difference at the points of 
the auditory canal and inner ear, and, moreover, Dolphins use 
phase patterns in emission and reception to increase the acoustic 
contrast between echo intensity and sound interference [61,62]. 
As is known, complex acoustic systems can be modeled using 
digital filters, which makes it possible to model and program 
most frequency and phase responses in auditory perception 
[63]. Therefore, there are no physical and technical grounds for 
anthropomorphism in the aspect of simplifying the perception 
model and phase biomimetic signal-to-noise filtering. The 
authors of the work note that not all animals have directional 
hearing based only on differences in amplitude between the ears, 
and also that the use of the difference in the time of arrival of the 
signal between them, understood as phase, is a fairly common 
and more resistant to sound degradation means of detecting 
directionality, and on natural neural networks such recognition 
(based on the phase descriptor) is not inferior in efficiency to 
amplitude decoding [64].

Many examples of such bioacoustic machinery can be given. 
Phase models for determining pulse localization in neural 
network implementation have been known for a long time 
[65]. In AER analysis (auditory evoked response), the polarity 
of the response when switching the phase by 180° and the 
corresponding delays are often analyzed [66]. In it is especially 
emphasized that amplitude signals degrade faster, and organisms 
that use phase methods of perception are able to more rationally 
navigate the acoustic field, even when amplitude perception no 
longer provides the required information [67]. The degradation 
of signals and their direction during dispersion in space (this 
is the cause of disorder in ambient noise) is more successfully 
overcome by animals with the perception of phase differences. 
In the case of ambient noise in shallow water when close to 
reflective surfaces of the bottom, phase recognition is extremely 
important [68]. This would not be worth talking about in the 
context of communication if there were not some correlation 
between directionality as a physical criterion (directional 
diagram) and the development of the sensory parameters of 
the body and its nervous organization. This requires the use of 
bioacoustic correlometers and source orientation analyzers (Fig. 
3, Fig. 4).The directional patterns of higher organisms are more 
optimized (in particular, in primates the signal is emitted more 
omnidirectionally than in humans, their highest representative 
according to neurophysiological criteria) [62,69]. In the case of 
radiation pattern varieties of communication, the phase shifts due 
to phenomena such as reflection from the surface (ground) and 
interference between the direct wave and the surface or reflected 
wave. This is critical for information transfer, which requires 
phase analysis to avoid chaos based on reverberation effects, etc. 
This is particularly true for marine mammals. Unfortunately, 
many studies were not carried out on them that were carried 
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out taking into account the phase on other (simpler) organisms, 
but the ethological meaning of the analogy, taking into account 
the pulsed nature of phonation of both, can be demonstrated 
by several detached examples. Thus, for H. versicolor, phase-

incoherent signals are less attractive to females, and a 50% 
phase shift, which is equivalent to 180°, reduces the efficiency 
of communication by 1/3 and even by V of the signal [70]. 

Figure 4: Multi-angle orientation comparative two-channel correlometer with a universal serial bus (USB) and built-in ADC. This 
instrument was developed by Gradov O.V. (with co-authors) in GEOKHI RAS in 2010. This instrument was reconstructed and 
modernized by Adamovich E.D. in 2014.

On the other hand, avoiding acoustic and mechanical resonance, 
a number of organisms in natural conditions use antiphase 
generation modes during acoustic signaling while other 
organisms use resonance as an integral and specific attribute 
of their bioacoustics [71,72]. Thus, monitoring biodiversity 
through diversity analytics of bioacoustic signaling should 
include phase analysis and signal phase spectroscopy [73]. 
Bioacoustic absorption spectroscopy, based on the study 
of sound absorption by the biomass of the ocean or other 
environment, can be given a certain semantically significant 
and communicatively interpretable meaning by applying the 

principles of phase analysis and directivity measurement using 
the latter [74]. This is especially sensitive for the last task in the 
presence of non-directional noise - ambient noise of the ocean, 
recorded not only by passive oceanic acoustic observatories, but 
also by corpuscular physical installations located in the ocean 
[75,76]. For any acyclic stationary conditions, that is, at least for 
subtidal systems (at a level below the tidal zone), methods for 
recording, archiving and analyzing measurements of bioacoustic 
parameters, without requiring feedback automation to adjust the 
level of location of the recording system and its detectors in the 
environment, is implemented simply, accessible and cheap [77].

Figure 5: Precision digital bioacoustic carrier modulation analyzer with universal serial bus (USB) and built-in two-channel ADC. 
The left indicator is a carrier wave indicator. The right indicator is the low-inertion nanovoltmeter. This instrument was developed 
by Gradov O.V. (with co-authors) in GEOKHI RAS in 2010. This instrument was reconstructed and modernized by Adamovich 
E.D. in 2014.
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4. On the Benefits of Abandoning the Anthropomorphic 
Approach to the Recognition of Biosignals
In order to analyze bioacoustic signals from the point of view of 
systems and objects that perceive the signal in real conditions, that 
is, biological systems, we must move from the anthropomorphic 
approach to biomimetic analysis. Since, as stated above, many 
marine organisms have phase sensitivity, their recording spectra 
should be not only amplitude, but also phase. One should proceed 
from non-simplified models in order to obtain results that are 
not distorted by simplifications. In this regard, the distributions 
underlying classifications must be adequate to the principles of 
separation that underlie interspecific and ethological recognition 
in the natural environment (for example, predator / prey or 
male / female / young or aggressive / latent / neutral individual, 
etc.). To impose purely dichotomous systematizations on nature 
and, even more so, simplified forms of distributions when 
fitting (fitting, adjusting data) ad hoc is irrational. However, 
dichotomous sorting is the main system of choice in models of 
bioacoustic recognition in the presence of a predator [78]. In 
programs for acoustic identification of arthropods, probabilistic 
neural networks and parametric estimation of the probability 
density function using Gaussian systems are used (at all levels 
of the hierarchy - suborders, families , subfamilies, genera 
and species) [79]. Even in essentially biomimetic recognition 
systems - when classifiers or software clustering tools imitate 
recognition means of auditory images or echolocation systems 
(for example, dolphins), and fairly adequate biomimetic or 
neuromimetic algorithms are used (including genetic and 
evolutionary algorithms), nevertheless, they choose subjective 
weight functions, in particular, of a pseudo-Gaussian nature 
[80]. The specificity of methods and principles of analysis 
regarding objects is not taken into account, based on which 
approaches to data approximation should be selected, i.e. fitting 
to distributions. Models of bioacoustic or other communication 
are adequate to the behavioral conditions of the environment. 

Therefore, recognition programs must be behaviorist-adaptive 
in order to correctly recognize, rather than adjust, data. In 
elementary applied statistics, it is well known that the nature 
of distributions depends on the type of events (successful 
or unsuccessful attack of a predator on a prey ceteris paribus 
- Bernoulli distribution, the number of females / males in a 
population - binomial distribution, time intervals between runs 
of specific prey when it is waylaid by a predator - exponential 
distribution , natural population mortality due to energy causes 
- Gompertz distribution, the number of fatal mutations in 
population autoreproduction - Poisson distribution, reliability 
theory in biophysical type systems - Weibull distribution, etc.). 
Therefore, the number of events in the bioacoustic case must be 
timed and colocalized with the systematics of the statistically 
corresponding distributions. If there is a correct interpretation 
and correct prediction of events on its empirical statistical basis, it 
is possible to produce statistical fingerprinting of events together 
with spectral or other metrology-oriented fingerprinting of the 
nature or source of events. In terms of its fundamental qualities, 
this approach is much more expedient than fingerprinting in 
frequency space (which does not carry ethological and causal 
information in principle) and a statistically non-adapted random 

ethological study.

5. Conclusion
Thus, to summarize, we can summarize the physically feasible 
methodology for analyzing bioacoustic signals in native 
conditions (including in real time and beyond the “purely 
acoustic”, that is, audible or human-reproducible range) in the 
following form [81]. An automated classification system based 
on bioacoustic indicators, or rather, the qualifications of its user 
should not be subjective when using objective data:
 I. Understanding bioacoustic signaling as a means of 
communication (both interspecific and intrapopulation), 
take into account, at a minimum, those characteristics of the 
bioacoustic signal that are perceived and used in communication 
or have some other information value (for example, in the case of 
bioacoustic location). In particular, it is logical to use objective 
units of measurement (instead of conventional and normalized 
ones for human perception) [82].
 II. Monitor characteristics not in the range that is recorded 
by the human ear or modern means of low-frequency sound 
recording, but in the range to which the real harmonics of the 
signal extend [83,84]. If this corresponds to new descriptors 
associated with the interaction of high-frequency or low-
frequency signal components with the environment, then the 
underlying physical effects should be taken into account when 
modeling wave propagation [85].
 III. Based on the properties of the signal, and not the 
processing features, since the introduction into the analysis 
of purely amplitude-frequency characteristics of wavelet 
representations and visualization based on scaleograms 
(scaleogram, scalogram) instead of sonograms as well as the 
introduction of new methods of Fourier analysis based on 
elliptical descriptors or replacing metrological frequency with 
cepstral time (quefrency) in cepstral analysis, introducing new 
entities, does not lead to the emergence of new information about 
the signal [86,87,88]. You can complicate processing systems as 
much as you like, but convolution systems without extracting 
new variables only reduce the heuristic value of information 
about the signal. Therefore, it is necessary to characterize 
the signal also by other complementary parameters - phase, 
radiation patterns for different variables (depending on which 
of them most objectively characterizes the flow of bioacoustic 
information), etc. 
 IV. Take into account the properties of objects of bioacoustic 
communication or bioacoustic echolocation in circuits with 
feedback and as transceiver systems. The development of 
directional patterns during phylogenesis went along with the 
development of morphological differentiation of organisms, 
which cannot be ignored.
 V. To carry out not only simple recognition (even 
very multiparametric), but also linking to cause-and-effect 
relationships and the causal conditionality of a particular type 
of signal from a specific taxonomically recognized source, 
which will allow us to move away from simple identification 
(fingerprinting) to one interpreted within the framework of 
ethological, ecological, neurophysiological and “behaviouristic” 
automated methodology for research statistics.
 VI. Take into account environmental noise and be able 
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to separate environmental noise from the noise of biological 
systems, based on fingerprinting their physical characteristics 
(technical noise, having a reliable physical character, can be 
easily distinguished: flicker noise is 1/f noise, white noise is 
1/f[ 2]-noise, frequency flicker-modulation noise is 1/f[3]-noise, 
random frequency modulation during recording is 1/f[4]-noise), 
including phase and directional patterns (see above regarding 
defocusing ambient noise). Many biological and non-biological 
noise sources can be separated as parametrically distinct also 
using noisy signal entropy analysis methods (see Fig. 1) used in 
various fields applicable to bioacoustic data [89-94].
 VII. Rely on those types of signal modulation that are 
actually used by certain specific animals in bioacoustic signaling, 
defining them both from the point of view of the organism that 
is the source of the signal (“transmitter”), and from the point of 
view of the individual perceiving the signal (“receiver”), that is, 
not to be limited to standard AM and FM modulation (see Fig. 
5) in approximations describing the biosignal, as has become 
popular in the last period.
 VIII. Without simplifying the set of variables, it should, 
however, be accessible and adaptively reconfigurable by the 
operator, a modular system (LabView type) for research, and not 
for routine tasks, allowing the introduction of an objective and 
comprehensive approach in situ at the same time [95].
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