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Abstract
Intuitively, violations of Bell's inequality make no sense because one cannot violate a mathematical relationship unless 
it is wrong, or has been misused. However, the rotating polarizer experiment has been argued to provide such violations, 
and it is asserted this requires non-locality. It is shown here that at least one form of the inequality is violated because 
the results violate a condition used in deriving the inequality. The problem arises from mixed frames of reference being 
utilized, and if an external reference frame is employed, such as a polarized source, the inequality should be complied 
with. This could be verified by experiment. It is also important to resolve this as entanglement is to be potentially 
involved equipment such as quantum computing. Correct understanding may assist in such design.
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According to Wikipedia, quantum entanglement is actively being 
researched or applications such as communications, quantum 
computation and quantum radar. Quantum entanglement means 
that properties of well-separated particles have correlated 
properties, thus if a pair of photons are entangled, if you measure 
a particular property of one, you immediately know the value 
of the property of the other, even if the pair are photons going 
in opposite directions and hence can never communicate. The 
Copenhagen Interpretation of quantum mechanics asserts the 
value of the first variable was determined at measurement. If 
so, since the second has to have its value instantly conferred, 
it is stated that the combined state of the entangled pair is non-
local. There is an alternative. If the properties of the particles 
were conferred on them when the entanglement was created, 
then there is no mystery that the correlation can be shown to be 
measured faster than any possible communication could have 
occurred; the properties were always determined before anyone 
measured anything. However, this is generally ruled out because 
we observe violations of Bell's Inequality.

It is generally held that the rotating polarizer experiment, 
exemplified first by Aspect et al.(1981), and later by Weihs et 
al. (2) demonstrate violations of Bell's Inequality (1982) [1,2,3]. 
A violation of a mathematical relationship usually either means 
the relationship is wrong, or it has been misused. The above 
experiments have a concern that arises because the procedure 
to ensure only entangled photons are counted makes the first 
detector the frame of reference. The joint detection depends on 
the sin2 of the difference in the angle between the detector filters 
(after adding π/2).

The question then is, if a common frame of reference were to be 
employed for all terms in the inequality, are there violations? That 
can be experimentally tested. However, to ensure the common 

frame of reference, all terms must be referenced individually, 
even if they are measured jointly, and we need a version of the 
inequality that permits this.

Bell's Inequality requires tests that either pass (+) or fail (-) at 
three conditions. Let the probabilities of such a result be given 
by capitals. Because a test must either pass or fail, but not both, 

A = (A+) + (A-) = 1                                                                  (1)

and similarly for B and C. Therefore

(A+)( B-) = (A+)( B-)[(C+) + (C-)]                                              (2)

because the bracketed term equals 1, the sum of the passes and 
fails at C. Similarly

(B+)(C- ) = [(A+) + (A-)] (B+)( C-)                                               (3)

By adding and expanding,

                                                                                                    (4)

Since the bracketed term equals 1 and the last two terms are 
positive numbers, or at least zero, we have

(A+)( B-) + (B+)(C- ) ≥ (A+)(C-)                                                    (5)

Consider a wave of amplitude a with polarization at an angle of 
θ to the y axis generated by one photon. The projected amplitude 
on the y axis is acosθ, and on the x axis, asinθ. Accordingly, the 
way the probabilities P are projected onto the two axes are

Py + Px = a2cos2 θ + a2sin2 θ = a2 = A = 1                                     (6)

(A+)(B-)(C+)
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Thus probability, or energy, is properly conserved. If the 
polarization is on the axis of the detector's polarization, then 
A(+) = 1, and no signal is found on the x axis because sin20 = 
0. [In practice, no equipment runs perfectly so there were minor 
discrepancies. For the rest of this paper, I assume all equipment 
was running perfectly. The ideal result is, of course, the basis 
of equation (1)] This was experimentally complied with in 
the Aspect experiments, and demonstrates that the results also 
comply with the Malus Law.

The Aspect rotations were, for detector A = 0o, B = 22.50, C = 
45o. Following Bell the joint probabilities are given by sin2(δΘ) 
where δΘ is the difference in rotations, required because the 
second photons are only counted if they are entangled with the 
first and hence have the same polarization plane, from which we 
get for the photons counted that were countable for that detector 
combination,

0.146 + 0.146 ≥ 0.5                                                                       (7)

Which, as Bell noted, is clearly not true. This is the basis of the 
violation. (The usual approach is to use the CHSH inequality, 
with which Weihs et al. clearly demonstrate the sin2θ relationship 
[3]. That uses joint detections, and while the results are true, it 
hides the problem.)

The problem lies in the use of mixed frames of reference. 
Each of the detectors read the same because the source is 
rotationally invariant, but not all the photons recorded with one 
are entangled with the other. To separate these out, the second 
detector, say, counts only photons that arrive within a given time 
of the first one. That makes photons at the first detector to have 
a probability of 1 because they have already been detected (and 
thus eliminates the need for the cos2 term in the Malus law) but 
it also means there is not a constant external frame of reference. 
The inequality requires three different conditions. Thus Bell 
demonstrated the inequality through washing socks at three 
different temperatures. You could always tell which condition 
a sock was washed at by inserting a thermometer. Because the 
source is rotationally invariant it is impossible to tell whether a 
measurement is an A, a B or a C from the equipment. One could 
argue that the laboratory walls offer a frame of reference. That 
might be true but no measurement refers to or is affected by the 
laboratory walls.
The net consequence is that as the reference frame changes 

between determinations, so do the values of the terms. As a first 
example, if B(+) = 1, then B(-) has to equal 0 or the condition 
(equation 1) in the derivation does not work. From rotational 
invariance A(+) = B(+) = C(+) = 1, so all minus terms equal 
0, and (4) now becomes 0 + 0 = 0 + 0 +0. The B(+) and B(-) 
terms used in (7) to arrive at the Bell figures are in different 
reference frames, which leads to B = 1.146. That is a violation 
of probability, and of the condition used to derive the inequality. 

Let us try as a thought experiment a constant frame of reference, 
namely a polarized source. Let the initial orientation of the 
detector filters align with the polarization of the wave. Assume 
we can have sequences with a common number of photons. 
Now A(+)B(-) = 0.146 and A(+)(C-) = 0.5, the sin2θ relationship 
as above, but now B(+) does not equal 1 because not all the 
polarized photons can be detected by the B+ polarizer, but also 
far more are detected by the C detector. Now B(+)C(-) = 0.427 
(the amplitudes are cos 22.5 and -sin 45) and Bell's inequality is 
obeyed since 0.146 + 0.427 > 0.5 (6)

Thus the violations do not arise from any equipment failure 
or loophole, but rather the data put into the inequality violates 
the derivation of the inequality. This arises because the second 
photon is in the frame of reference of the first, which leads to 
only employing the sin2 relationship as the cos2 term is 1. That 
leads to two frames of reference in one relationship, wherein 
(C-) takes two different values at two appearances, yet the 
derivation requires it to have one value. The problem with the 
CHSH inequality is that by counting joint detections or non-
detections, the issue of reference frame is buried.
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