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Abstract

The matter distribution of the extremely high-energy and dense plasma inside a supermassive rotating black hole has been
theoretically investigated, starting from Einstein s equation with the source term, in the coordinate close to the free-falling frame
along the geodesics of interior matter, where the state of the force balance can be described with the formalism of modified
Newtonian dynamics. For a model of equal-rotation velocity of matter, where the main component of plasma is rotating around
a common axis with the same velocity close to the light velocity, with a high Lorentz factor (gamma rate), it is concluded that the
matter distribution is condensed to a region with a much smaller radius than that of the event horizon of the Kerr spacetime. The
gravitational waves that are generated from the condensed matter region due to the orbital motion of the binary, return towards
the source, after ceasing at the critical sphere in the vacuum region of spinning Kerr spacetime. At the stage where returning
waves encounter with foreword waves, the gravitational waves are deformed to standing waves that carry no energy outside of
the event horizon. We conclude that no gravitational wave is radiated from the supermassive black hole binary.
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1. Introduction

1.1. Relation to Current Studies

Direct observations of gravitational waves (GWs) by LIGO
[1,2,3] have opened a new avenue for the quest of GWs, after
,2the first indication was made by Einstein [4]. The LIGO team
has frequently reported the detection of GWs generated by the
mergers of black hole (BH) binaries. The objects of mergers of
BHs have been estimated to be in the mass range of a star or
intermedium masses less than 120M/. Through the history of the
progression of theoretical studies on GWs, the LIGO results meet
the expectation of theorists, with no special room for argument.
However, because BH mergers have not been directly confirmed
by other means, except in the case of the neutron star merger [5],
several works have attempted to investigate alternative objects
such as the gravastar [6] or ultra-compact star [7,8] as mimics of
a BH that has no event horizon, with similar density of matter to
that of a BH. These alternatives have not yet been verified because
of the current limits of the accuracy of observations. After a long
history of studies on star tracking around SgrA* at the center of the
Galaxy [9,10,11,12,13], the existence of the supermassive BH has
been confirmed; recent results indicated a mass of (4.31+0.42)x10°
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Mg [14], which was further improved to (4.28+0.31)x10° Mg
[15]. Different from the star-tracking methods of the quest for the
supermassive BH, we have proposed evidence for the existence of
the supermassive Kerr BH binary (SMBHB) based on results from
observations of decameter radio wave pulses (DRWP) at 21.86
MHz from SgrA* [16]. Digitized data from observations whose
signal-to-noise ratios are from 1/200 to 1/500 (i.e., extremely low)
were transformed to Fourier-analyzed spectra; after sufficient
averaging to eliminate background noise, the final data, called the
BH code, were deciphered by applying the simulation technique
to the original signals, which comprised two kinds of pulses;
detected intrinsic pulse periods of (173%1) and (148+1) s show
constant variation with common periods at 2,200+50 s. By
attributing the pulses to spins of two Kerr BHs, we concluded that
two supermassive BHs exist, temporarily called Gaa with the mass
of (2.27+0.02)>10° M5 and Gab with the mass of (1.94+0.01)x10°
M©((4.21j:0.03>)X106 Mg in total), forming a binary system with
an orbital period of around ~2,200 s. The orbital velocities of Gaa
and Gab were also calculated as 18% and 22%, respectively, of
the velocity of light. Interpretation [17] has been carried out for
the evidence of the time varying emissions with regular period
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of 2150+2.5sec observed by 1.3mm wavelength radio VLBI [18]
, with time variation model of 1,3 mm wavelength radio wave
sources associated with SMBHB orbital motions [17] whose
parameters are decided as results of DRWP[16]. By this study
to confirm the orbits parameters by coincidence between VLBI
observations and DRWP results, we can state the existence of
SMBHB at Sgr A* with such extreme parameters.

Thus far, when we apply the currently established theory of the
generation of GWs from the binary BH without distinguishing
between a star-mass BH binary (STM-BHB) and SMBHB, the
existence of the above-described SMBHB system may not be
accepted at all because of the extremely high rate of energy loss of
the orbital motion due to the generation of GWs. However, if we
have room to argue for the difference in the generation mechanism
of GWs between the cases of STM-BHB and SMBHB, we could
not abandon the proposal of the existence of the SMBHB at SgrA*.
Thus, we presently have evidence with which pursuing the present
study can be considered to be meaningful; that is, there has been
no report of the merger of a SMBHB by ongoing observations of
GWs, despite frequent reports of the merger of BHs of a STM-
BHB and an intermediate-mass BH binary [19]. The trial to
observe the continuous GWs from the expected SMBHB has not
been detected yet [20].

Currently we have thought that the most important references
to the standpoint of claim of existence of SMBHB at SgrA* are
the results of EHTC works [21,~26]. Though the EHTC forced
to release the single image of BH shadow at SgrA* we are not
able to accept the results because of clarifying discrepancy or
erroneous conclusion. The erroneous conclusion is disclosed by
Miyoshi et al [27] who pointed out that the EHTC made basic
misunderstanding for their mapping processes of the VLBI
data which resulted construction of wrong image for shadow of
black hole M87*[28,~33]. Miyoshi et al claim [27] that there is
an inherent hole , of the data distribution versus viewing angle,
that coincides with a size resembling the shadow of the black hole
caused due to biased locations of the global scale distribution of
observation station of VLBI of the EHT. It is naturally adopted
to the case of the SgrA* whose observation data are collected
almost in the same periods with completely same VLBI system.
Furthermore we consider that in the EHTC approach constructing
image of the black hole shadow, the problem of the time variation
of the observed data [34] is not solved even that is the principal
cause for delaying the release of the image of the black hole
shadow of SgrA* about three years compared with the rerelease
of M87*.

1.2. The Purpose and Uniqueness of the Present Study

Thus, the purpose of the present study is to investigate a possible
model that allows the stable existence of the extremely close case
of the SMBHB without outward radiation of GWs. A significant
step toward the purpose of the present study is to achieve a
physically reasonable model for the distribution of collapsed matter
as “inside matter” of the supermassive BH (IMSBH, hereafter).

Current studies on the interior of the Kerr BH are described based
on the anti-de-Sitter (Kerr-AdS) space time [e.g.35,36,37]. Such
works for the interior of the Kerr BH generally concern with the
stellar-mass BH, where the source energy tensor of the Einstein
equation consist of the quantum dynamical wave equations
for the quark—gluon plasma. In this work, for the case of the
supermassive BH, the Kerr-AdS space time was not used. There
are three reasons why we applied the present unique method
without following the already established space time to investigate
the interior of the Kerr BH. The first is because we are concerned
with the supermassive BH, whose maximum possible density of
interior matter is in a relatively tenuous state because the average
density of the BH interior follows the inverse square law of the
total mass. For example, in the case of a supermassive BH with
mass of 10° M, the density becomes 10 ~ 102 that of the stellar-
mass BH. Thus, we can apply classical dynamics to the rotating
plasma as the interior matter of the BH. The second reason that
we do not use the direct spacetime of the interior matter region
of the BH, is in the coordinate system covering the wide range of
space of the binary system. More specifically, the orbital motion
of the binary can be described by Newtonian dynamics, while the
generation of GWs caused by this orbital motion is exactly the
subject of the general relativity governed by the spacetime around
the source region. Rigorous connection of the dynamics of the two
regimes is possible when we transform the physical processes to
the quasi-Minkowsky coordinates that are selected as a common
observation frame of the two regimes of physics. The third reason
is that unlike the de-Sitter or anti-de-Sitter spacetime, whose
curvature is controlled by vastly distributed inside matter, we seek
the collapsed matter region, leaving a wide vacuum region on the
inner side of the event horizon.

Accordingly, we selected observation coordinates that are not
fixed to the BH but are close to the freefalling system following
the geodesics of the corresponding BH interior. The analytical
method to determine the force balance state is based on the quasi-
Minkowsky spacetime (QMST) that starts from Einstein’s gravity
equation, setting the perturbation spacetime from the Minkowsky
spacetime. The method to establish the forces follows that
indicated by Einstein himself [38]. In the detailed phase, however,
we have modified his processes from two aspects. First, contrary to
the case of the present study with high-speed rotation of the inside
plasma with a velocity close to that of light, Einstein selected in his
lecture, the case of low-speed matter whose velocity is negligible
compared to that of light. Second, regarding the function to set
the source energy tensor, we applied the delta function for locally
moving matter because the energy carried by moving matter works
at the moment of mutual interaction only at a given point, unlike
the case of gravity that shows effects of the interaction with matter
located at remote places. The characteristic point of the present
model is the assumption of the equal speed of matter rotation with
quasi-light velocity, with a high relativistic gamma rate, in a range
greater than 10, to increase momentum of the rotating matter. Then,
in the model, the radius of the matter region is condensed from
1/10 to 1/100 of the radius of the event horizon, maintaining the
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observed mass and rotation parameters to describe Kerr spacetime
in a vacuum region as the same as the observed values.

The studies from Sec.2 to Sec.4 concern with formation of IMSBH
that is located deep inside of BH contacting with the boundary
of Kerr spacetime that is characterized as vacuum solution, of
the Einstein field equation, which is constructed with the mass
and angular momentum of IMSBH; It should be emphasized
that contents in Sec.2 to Sec.4 are not purposed to modify the
orthodox form of the Kerr spacetime but for IMSBH inside of
the Kerr spacetime. Then, in Sec.5 and Sec.6, the generation
and propagation of GWs are analyzed over a wide vacuum area
inside the region of the event horizon of Kerr spacetime. Current
studies on the radiation of a GW from a BH state that there is no
definite distinction between neutron stars concerning either quasi-
normal mode radiation [39,40] or radiation of GWs associated
with the orbital motion or merger of compact objects [41,42].
More specifically, in the case of quasi-normal mode oscillation,
the existence of the event horizon that distinguishes the BH from
other compact stars such as neutron stars is considered. However,
because there is no clear separation of the vacuum region from
the matter distribution, oscillation of the event horizon is assumed
simultaneously [43]. Thus, current studies on the radiation of a
GW from a BH are not impeded by the existence of the event
horizon; this may be accepted in the case of a stellar-mass BH,
where the separation of the matter zone from the event horizon is
not clearly discussed.

In this study, we analyze the generation and propagation of
GWs, for the IMSBHs isolated deep inside of surrounding Kerr
spacetime of a supermassive BH. It is important that the result of
the present study reveals that the sources of GW are not available
outside of the event horizon of BH a priory; GWs are generated
by the acceleration of the quadruple moment source formed by the
binary configuration and their orbital motions of IMSBHs, but the
propagation of the GW is controlled due to the constraint of the
Kerr spacetime inside the event horizon. The waves are deformed
to standing waves that are unable to carry energy outside, as
described in Sec. 5. Thus, we conclude that no GW is radiated
from the SMBHB, as described in Sec. 6.

2. Classical Approach to Analyze the Internal State of IMSBH
2.1. State of Matter Distribution

The average density of possible matter inside of a BH generally
becomes milder as the mass becomes larger. The average density
of a BH, where the matter radius is assumed to be close to the
Schwarzschild radius r, with a spherically symmetric shape and
total mass of M, can be simply estimated using:

M p@
p= =

(4?11) i (M/Me)"

(2.1)

where M __ is the solar mass, and p is the average density of the
solar-mass BH with Schwarzschild radius r, ;=2GM /¢, In Figure
1, the interior state of possible matter of a BH is given in terms
of the estimated average density of the matter region (top panel)
and the average separation distance of baryon (bottom panel) for
the assumed matter radius close to the event horizon; furthermore,
the average particle distance d is calculated from d=N"? for the
number density N of neutrons for regime I and ions for regime II.
The mutual distance of particles in regime I covers the distance
range less or close to the neutron radius r_, reflecting the state of
quark—gluon plasmas that are described by quantum mechanical
theory; whereas, the particle distance in regime II is larger than
10* r , suggesting high-density plasma that can be described by
classical plasma physics.

For the plasma state in regime I, we assume iron ions throughout
this work, considering that the matter is in the final stages where
energy is provided only by gravity; possible accreting components
with atomic nuclei lighter than those of iron are considered to be
fractional and to arrive at the final stage after a relatively short
period of nuclear fusion. The mutual distance of particles in
regime I in Figure 1 covers the state of a stellar-mass BH, while
the particle distance in regime Il is for the supermassive BH. These
interior states of matter show a clear contrast to the states of the
stellar-mass BH, regime I in the bottom panel of Figure 1, whose
masses are smaller than 100My, where the average separation
distance of particles is less or close to the neutron radius r . This
state is currently considered as quark—gluon plasma by quantum
mechanics. To describe the interior state of a supermassive BH
with a mass larger than 10° Mg, we can therefore consider states of
plasma whose physics can be described using classical mechanics.

2.2. Description of Dynamics of IMSBH by Bridging Einstein’s
Equation to the Modified Newtonian Dynamics

2.2.1. Basic equations

We start with the Einstein equation to find the spacetime of the
present study for the supermassive BH which consists of Kerr
spacetime for vacuum solution of the Einstein equation and a
spacetime for IMSBH which is located inside region of Kerr
spacetime with assumed spherical boundary; that is.

1

Rjk =5 8jkR = KTjic. (2.2)
where Rjk,R,gjk,and Tjk are the Ricci tensor, scalar Ricci, metric
describing spacetime, and the source energy tensor, respectively;
and « is Einstein’s coefficient that connects energy to the four-
dimensional curvature providing forces. Because the regions of
vacuum and distributed matter are clearly separated in the present
model, we can rewrite eq.(2.2) as
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Figure 1: Interior state of the black hole (BH) in terms of the estimated average density of the matter region for an assumed radius close
to the event horizon (top panel) and average separation distance of ions (bottom panel). The average separation distance d of particles is
calculated from d=N™ for the number density N of neutrons for regime I and ions for regime II; d in regime I covers a range less than
or close to the neutron radius r, reflecting the state of quark—gluon plasmas described by the quantum mechanical theory, while d in

regime Il is larger than 10* r , suggesting the state of high-density plasma that can be described by classical plasma physics.

where superscripts (K) and (M) are for the Kerr spacetime and
IMSBH, respectively. Hereafter we concentrate to the space time
of IMSBH before arriving at Sub. Sec 3.5 where we consider the
boundary of the Kerr spacetime and IMSBH.

To find the spacetime of IMSBH, we have started with a standpoint
to search for suitable coordinates to describe the dynamics of
plasma as IMSBH. Then, we select a coordinate close to the
freefall system to observe the balance in the forces in the regime
of classical dynamics; hence, the spacetime is expressed by

dZX(M)i

ds?

s dx DI d DK
e
jk ds ds

perturbation of the Minkowsky spacetime. We determine the
perturbation terms by following the methods of Einstein, who
demonstrated the connection to Newtonian dynamics of matter,
for weak fields, starting from the Einstein equation with source
energy tensor [38].

When we express the anti-covariant vector in the coordinate of

the IMSBH, as x™' (coordinate x™ hereafter) geodetics in the
spacetime of the IMSBH can be written as:

(2.4)

Further, when we select a coordinate slightly shifted from the coordinate of system that freefalls in the spacetime of IMSBH , we obtain

the following geodesics:

(2.5)

(2.6)

d?x® e dx"dx¥ 0

ds2 Wids ds
where . _ Ix® (M)iaX(M)j ox Mk ox® 92xME
W = 50T K gxn T axv T gxODE axkaxY
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Then, the force F* working on a portion with density p in the frame of the IMSBH is given by:

w dzxo‘_ ra dx* dxV 27
“ Pz T TP W gs as (2.7)

Here, we can describe the spacetime using the perturbation metric y, with respect to the Minkowsky spacetime 1, because the observation
system is close to a freefall system, i.c.,

8ik = Mjk T Yijk, (2.8)

which is referred to as QMST(see Introduction).
As a solution to satisfy Einstein’s equation, given in the second of Eq. (2.3) gives the relation:

rw _ 1 ss( O*vgi . 0%vps 9%V >_1 BB( Pvg | Pve 0%V )
Tk 2" \o

= + — — _ —
2"\ 5xPaxk T 9xi9xX  9xP 9xK xkoxB ~ oxioxP  0xPoxB
+K  (29)
where
K = [p, Iy — It It = 0. (2.10)

We can rewrite Eq. (2.9) further defining y=n" y,, as:

1 1( 0%y 0%y
o™ _ 2 : _ BB ___tBK
R;, ==0y; - 2 . 2.11
jk T2 ylk+2<ax1 axk “ 9xBaxk (2.11)

Here, we can find the generalized Lorentz condition as:

0%y 0%ypx
————2nPff——— =0, 2.12
axioxk ‘M 5xB axk (212)
Then, it follows that:
R - 1n 2.13
jk = 5 =ik (2.13)
Setting y=#" Vi the scalar Ricci R is expressed as:
(M) jkpp (M) 1 jk 1
RV =n*R;)~ = En Oy = EI:Iy, (2.14)
and the second of Eq. (2.3) becomes:
1
Uyjk — EnjkDy = KT (2.15)
2.2.2. Rationale of using the QMST spacetime gij“‘” that apparently differs from our assumed QMST.

Before proceeding, we consider the appropriateness of our approach ~ For the coordinate x™! fixed to IMSBH, we have a corresponding
to find the state of force balance in the IMSBH, which has its own  coordinate x' in QMST that is related as:

x(MI = x(M)i(x0 1 2 3), (2.16)

Then, by the transformation of the tensor, the relation between the QMST and the spacetime of IMSBH is given by:

Eart & Envi Scie Res & Rev, 2023 Volume 6 | Issue 1 | 282



axMj gy (MK
by = g _
T]HV YHV g]k axu aXV

(2.17)

Case 1

Case 2

Figure 2: Configurations between the source point r, and the observation point r,. Case 1: r,, is located outside of the source region.
Case 2: 1, is located inside the source region; this is the case of the present study.

For the geodesic of IMSBH given by Eq. (2.4), we obtain the geodesic in Eq. (2.5) with the transformed affine coefficient given in Eq.
(2.6), corresponding to the geodesic in our selected QMST. Then, we can observe the force balance acting on a group of test particles
with density p from Eq. (2.7) as:

Bl dzxi_ i dx“dx"_o 218
“ Pz T TP s g T (2.18)

As described in the following sections, the force balance detected in the QMST is endorsed as the true state of force balance in IMSBH.
From the geodesics of the IMSBH given in Eq. (2.4), the forces working on test particles with density p and the force balance states are:

_ d2x(MDi dxMj dX(M)k
FMi— 5.2~ —0and — F(B)‘ 0. 2.19
P ds? an P ds ds ( )

For & x*/ds* in Eq. (2.5), which expresses the geodesic in QMST, we can determine the following relation:

d2x* d / 9x* dxMi  gxx g2x(Mi
( ) . (2.20)

=— - + - .
ds2  ds\gxMi ds oxMi  ds?
Considering the time-stationary condition (see Appendix A), the first term on the right-hand side of the above equation vanishes, as:

d / 0x

Then, Eq. (2.19), which reveals the force balance state in the IMSBH, produces the result to Eq. (2.20) as:

d2x“
= 0. 2.22
Once Eq. (2.22) is confirmed, we can further realize, for QMST, that:
po X5 T (2.23)
Wds ds '

The above-described logic indicates that the force balance of IMSBH is strictly reflected by the force balanced state described by QMST.
Furthermore, because dx™/ ds and dx™*/ ds are not necessarily zero for all of those terms, we should select the following in Eq. (2.19):
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L' =o. (2.24)

More specifically, around the point of the force balance, we can describe the dynamics in the IMSBH by applying the approximation on
the frame of QMST.

2.2.3. Einstein’s approach [38].
Substituting #* to both sides of Eq. (2.15), we obtain the equation that was originally shown by Einstein as:
Oy — 2nikn Dy = - ET = 5
Vi — 5y = ke T = «T. (2.25)
Because 1" n,=4, it follows from Eq. (2.25) that:
S y=«T . (2.26)
Then, by inserting this [y into Eq. (2.15), it follows that
Oyjk = kT, (2.27)
where
. 1
T = T =5 T (2.28)
By rewriting the d’ Alembertian with respect to the coordinates (x,,z,¢) as:

0% 0% 0> 9% 07

T 3BxB =~ “c2 g2 + 0x2 + dy? * 0z2’

(2.29)

the solution for 7, can be expressed by:

v,k(rob)—— Uf k(rs’ ~ fos/©) dxdy,dz, (2.30)

where r,, and r_ are the position vectors for the observation point and source position, respectively. Then, the scalar distance r, between
the observation point and source point is given as:

Fos = |r0b - rSl = \/(Xob - Xs)z + (YOb - YS)2+(ZOb - Zs)z . (2'31)

With respect to the two categories of configurations between source r, and observation point r, depicted in Figure 2, we are concerned
with case 2. The perturbation metric Vi (r,) givenby Eq. (2.30) is subject to the condition of 1ns1de the source region; that is, we cannot
avoid the point where r =0 in the processes of the integration to describe the metric of IMSBH.

2.3. Perturbation Metrics of IMSBH in QMST

2.3.1. Rotating state of IMSBH

We start with the metric in QMST given by Eq. (2.8) that is understood as spacetime transformed from that of IMSBH; by rewriting to
the spherical coordinates, we obtain:

ds? = —(1 — ygo)c?dt? + (1 + y41)dr? + (1 + y,,)r2d6? + (1 + y33)r?sin?0de?. (2.32)

Further, we consider the case of a supermassive BH where the IMSBH rotates with a constant velocity \x associated with additional
components that have random thermal velocity v, . Then, for the rotating component, v, can be express by:
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de

Vo =r-sinf-(, withQ = TS (2.33)
For this case, Eq. (2.32) is rewritten as:
ds? = —(1 — ygo)c?dt? + (1 + yy)dr? + (1 + y,,)r2de?, (2.34)
where
* V(p 2
Yoo = Yoo + (1 +Y33) (T) : (2.35)
When we find ds for dr=0, and d6=0, considering y,,<1, under the condition v, ¥ ¢, it follows that:
2
ds? = — (1 — (vg/c) —Yoo) - c2dt? (2.36)
The present study is carried out in a coordinate system 1 - (v q)/c)z >7,,- Hereafter, we take ds’ as:
Vo2
ds? = — [1 - (?) ]CZtZ. (2.37)

2.3.1. Setting of source function for rotating IMSBH
The setting of the energy as the source function in the second of Eq. (2.3) is basically guided by Einstein’s concept [38], where the energy
expression is generalized from the case of special relativity as:

T dx* dxV (2.38)
jk = 8ju8kvP ds ds gikP, .

where p and p are the density at rest for ponderable matter and total pressure, which constitute the hydrodynamic component and

magnetic energy, respectively. Considering the case of high velocity where (vq)/ ¢)*~ 1, we can define the energy density of plasma

dynamics p for the IMSBH in the QMST frame as:

2 BZ
p=p-(1—Qylp by — 2.39
cp=p-( C)vth2+2u0, (2.39)

where ( is the ratio of the plasma component, which is responsible for systematic flow, while the ratio (1-{) is for the themal component;
B/, , with permittivity i of the magnetic field in vacuum, is the energy density of the magnetic field generated by possible electric
currents in the plasma distributed in IMSBH. Because generation of the magnetic field energy is directly related to the stage of the charge
separation in the plasma, the existence of the magnetic energy is independently given to the mass of the matter. In addition, relating to

Egs. (2.37) and (2.39), we define Lorentz factors, yw* and y,’ as:
1

- ()

C
i.e., the plasma components of the rate { take systematic motion
in the azimuthal direction ¢ with velocity Vo which is close to the
velocity of light ¢, while components with rate (1-) are in a state
of thermal motion with thermal velocity v, which is also close

to c. The dynamics of these plasma components are all under the
effects of the magnetic field B and intense gravitational force.

*

Yo = and Y:h =

We start with the Cartesian coordinates for space, which are
transformed to spherical coordinates as subsidiary coordinates
in cases when the expression becomes tractable. To set the
source energy density following Einstein’s constant, given in the

1

- (o)

, (240)

second of Eq. (2.3), we consider that room remains to modify the
coefficient with a related function to connect the energy tensor T,
to match the description of Newtonian dynamics of the plasma.
The modification also remains for the effects of source terms that
have two categories. The first category is for the gravity that has
remote effects; and the second is for local dynamical forces in
plasma that have no remote influence. In the latter case, the source
tensor T, is selected for local effects at r_ by introducingd(r-r ),
where r and r_ are, respectively, the general position vector and
the vector to indicate a specific position within the source plasma.
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We follow Egs. (2.38) and (2.39) to obtain:

*2 A
Too = PYy”~ - E'(l—()v

Sr—r *2172 BZ
PO —Ts)veiVin ) e (2.41)

2 29

where A is a factor introduced to bridge the result of Einstein’s gravity equation and modified Newtonian dynamics. Further, we use
plasma /3 to describe the relation between the kinetic and magnetic pressure, defined as follows:

AV
= (pv:ﬁ VZ—“> / (E) (242)

Considering the rotation of plasma as described in Sec. 2.3.1., the other terms of T, are:

A
Ty = EpS(r — 1)y (va/c?) - sin%g, (2.43)
A
Ty, = EpS(r —1)vZ(v3/c?) - cos?e, (2.44)
1A *2 2 2 :
T, =Ty = —5 EpS(r — TV (V(p/C ) - sin2¢), (2.45)
T33 = O . (2.4‘6)

The effects of the rotating plasma are also expressed by T, for i=1,2 as:

A ., dx!
Toi = Tip = 8(r — 15) P e g (2.47)
In Egs. (2.43)~(2.47), 6(r-r ) is defined as:
8(r—rg) = S(X(l) - Xgl)) - S(X(z) — ng)) - 5(X<3) — X§3)). (2.48)

We start solving the Einstein equation with the form given in Eq. (2.27), which is deduced by changing Eq. (2.15), with Eq. (2.28),
following Einstein’s original method. The source tensor T, is transformed to Tjk* (see Appendix B) as:

Too Tor Toz 0
Tio T Tz O

TO=\ m m om oo ) (49
0 0 0 T3
where T,'=T '=T =T because 1,~=,=0. The elements of the source tensor are then given by:
1 A
Too = 5| (oviZ = A0) + 2080 - 1)v2(v/c?)], (2:50)
1 A
T, = 5 [(pyfpz - Af) - Ep&(r —Ts)Yeq (Vé/CZ)COSZ(p], (2.51)
. 1 A
Ty, = 3 [(pyfpz —Af) + - p8(r — ry)yi? (v?p/cz)cosZcp], (2.52)
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and

1 A
Ti; = 5 [(py —Af) —p8(r - TV (vq,/CZ)] (2.53)
Because 7'=5?'=0, it follows from Eq. (2.45) that:

1 A
Ty =Tyy = =5 p8(r — vy Z(va/c?) - sin2¢. (2.54)

In Egs. (2.50)—(2.53), the term A is given by:

8(r — 1))y 2v3 1
p ( S)Ythvth (1 + _) . (2.55)

A
Ar=—-(1-0 >c2 B

2.3.3. Calculation of perturbation metrics Ve
Corresponding to case 2, inside the IMSBH, as shown in Figure 2, where dt (=r, /¢) <

rg/c, the solution given by Eq. (2.30) is rewritten as:

K Ti;f (rs)
Yij(rop) = o . dxgdysdz, (2.56)
os

where x ¥ =x,x®=y_,and x® = z_. For the case of i=j and for i = 0 and 3, it follows that:

*2
Yo p(Ts)
Y11 ob) fff A i dx dYSdZs

(-0 *z(th/cz)< B)

f j j dx,dy,dzg
1/‘OS

_4njff Ap8(r I‘S)y (ch/ 2) dxgdysdzs, (2.57)

where the + sign of + is for the case of i = 0 and the — sign is for i = 3; and for i = 1 and 2, it follows that:

*2
Yo p(Ts)
Vislran) = 7= fff ¢ Sd (dysdzs

)Xo (1- Z)Y*Z(th/cz)< B)

” S(r —rg ”
- _nfﬂ e dx,dycdzg

.Uf ApS(r—rs)ye (V(p/CZ)COSZq)

dx,dy.dz,, (2.58)
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where the — sign of F is for /=1 and the + sign is for /=2. The last term of the right-hand side of Eq. (2.58) can be rewritten, taking a

spherical coordinate transformation, as:

fff?\pS(r r)Ye (V(p/CZ)COSZq)

dxsdysdzg

fﬂ‘)\pS(r )Y (V(p/CZ)COSZ(p 2
41'[

Then, as the result of integration by ¢, under the condition , —0, Eq. (2.59) vanishes. Similarly, for y , and y, :

Y12(rop) = Y21(rop) =

Fory, (r ), we have:

fﬂ‘?\pS(r—rs)y Z(v3/c?)-sin2¢ 2
" 4m

r2sinBdr,do - do. (2.59)
ApS(r—r. v2/c?) - sin2
W p8(r — 1o)yy (@/ ) - sin2¢ dx.dy.dz,
résinfdrgd0 - de= 0. (2.60)

Yoi(rob)

(2.61)

We are concerned with the case in which r = r_.;when integrating the second and third terms of the right-hand side of Eq. (2.57), and the
second terms of the right-hand sides of Egs. (2.58) and (2.61), all these terms are subject to the singularity problem where r  approaches

asymptotically close to r,

in the denominator of the integrand. Specifically, for an example case of the second term on the right-hand

side of Eq. (2.57), the result is obtained by applying the method of the Cauchy integral (see Appendix C), as:

o (1 -0y o (Ve h/cz)( B)

=

I 1
= 3= vilvd (1+5).

rOS

dx,dy,dzg

(2.62)

where | is the imaginary unit. Using the same procedure to realize Eq. (2.62), Eq. (2.61) can be rewritten (see also Appendix C) as:

N i\x ) t
01 ob (p Cdt
Because the right'hand Sides OquS. (2.62) and (2.63) are expreSSGd

as imaginary quantities, we should select the coefficient A such that
i pAis real, as will be discussed in the next section.

3. Calculation of the Distribution Limit of IMSBH

3.1. Force Balance in IMSBH with Formulae Bridged to
Modified Newtonian Dynamics

3.1.1. Basic current to find the force balance formulae from the
geodesics in QMST

The dynamics working in IMSBH cannot be described unless we

(2.63)

use the exact coordinate system fixed to IMSBH. However, we can
observe the state of the force balance in IMSBH in the coordinate
by which the geodesic is expressed in Eq. (2.5), which is close to
the freefalling system in IMSBH, though the expressions of forces
are modified from the actual forces operating on the plasma. The
forces F' observed in the coordinate system corresponding to Eq.
(2.5), that is modified from real forces working in IMSBH, can be
then realized as:
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L L W dx* 31
~Pac\ar) ” TPk Tade 3D

where 7 is defined as -ds’=dz*. Before proceeding, we rewrite Eq. (3.1) as:

d /dx! _ ri dx)  dxX 3
Pac\ac )~ ~Pikar Ao (3-2)

Using the resultant Vi (see Sec 2.3.3.), Eq. (3.2) is expanded to find the dynamic balance for plasma with density p, as:

ddx 1 dyg (dx° 2+1 iaykk dx<\*> By [dx°
Patar ~ 2P ax \at 2P L%t \dt P %0\ ar

k=1
Mo o)\ dX¥dx®  Odydikdd 1 dyy dxl dx
—pZ( . ) pZ—k———— =0. (3.3)
0x dt dt — ox* dt dt 2P axi dt dt
The first term of the right-hand side of Eq. (3.3) is expressed by setting i = 0 in Eq. (2.56) as:
0 2
1 Jygo [dx B
2P oxi \Cat ) ~
kc?p P(ro)vy i o Vin (o1
p{ L grad [ ] B axsdysdz, | - 5r001 - grad |- vi2 5 (14 7)
+ o Ggrad (v;ivi.) } (3.4)

In the present case, because of the situation:

& o, 3.5
d_E (')

the second term of the right-hand side of Eq. (3.3) is expressed as:

1 iaykk ka 2
2P L ox e

k:

_ p{_gr de p(r. S)YqJ dx.dy,dz, _é—,\(l_g).grad [yzﬁ ;h (1 +%)l }

X —. (3.6)

Considering Eq. (2.60), the third term of the right-hand side of Eq. (3.3) is expressed as:
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Ivio (dx®\* i, 9 (dxi .
ool ar) = 2P el w ) (.7

Then, we can rewrite the equation using the regular vector expression as:

dvio (dx®\" i ov ig
pzaxo ac ) ~ &P ZY“’at (38)

Considering Eq. (2.62), the fourth term of the right-hand side of Eq. (3.3) can be expressed as:
CZ <6le ayko) dxX dx°
b oxk dt dt

_ 3 . K
—_1.2. *Zz ai_al k 3.9
TP A Gvg & oxk oxi ) (39)

As explained in Appendix D, Eq. (3.9) can be rewritten using expressions for regular vector analyses as:

io  OVko) dxX dx° i
—p- ZZ(axﬁ 0) T =—Zp27\-iy(zprotvxv, (3.10)

i.e., the fourth term on the right-hand side of Eq. (3.3) represents the Coriolis force when we select the coordinate system on the rotating
frame.
Moreover, the last two terms on the right-hand side of Eq. (3.3) vanish because y, terms are time-stationary, i.e.,

— 0xk dt dt 2P axT dt dt 4 Ot dat 2°7at at

3 . .
_pz Ay, dxRdx! 1 ayn dx' dx! ayn dx! 1 6yn dx! (311)

Collecting the first to fourth terms on the right-hand side of Eq. (3.3), the force F working on the IMSBH, i.e., iron plasma, is expressed
considering homogeneously distributed v, as:

F=p- ];C:<1+ ) Up(rS)y‘pdVl

i . (OV i 2 1
+ 2 pZAZy(pZ . (a + rotv X v)— gp?\ [(1 —0) - yingrad - P (1 + E>] (3.12)

where the velocity vector is v = (dx'/dt, dx*/dt, dx*/ dt (=0)),and P=p((v,’/2). For the first term on the right-hand side of Eq. (3.12),
which corresponds to the Newtonian gravitational force and is intensified by (1+(V(P/ ¢)?) times as a result of the modification of general
relativity; we can find the gravity constant as:

Kc?
=80 (3.13)
That is,
8nG
K= c_2 , (314)
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and x becomes the same as that in Einstein’s lecture [38].

We understand that the manipulation of 4 follows the concept of the selection of Einstein’s k value, i.e., we can redefine x depending on
Yi for consistency with Newtonian dynamics, to bridge the results of Einstein’s equation to modified Newtonian dynamics. For smooth
bridging to the modified Newtonian dynamics of the expression regarding the second and third terms on the right-hand side of Eq. (3.12),

we require:
I ctie e —iF
4p =1,ie A= lp'

(3.15)

3.1.2. Freedom of selection of coefficient of the source term in Einstein equation
At this stage, we are allowed further freedom to consider the Lorentz factor y(p*z at each term of Eq. (3.12); the constraint to our selection
within the freedom will be given by parameters of the BH. Regarding the first term in Eq. (3.12), we separate yw*z by introducing

constants y . and Y@M*’ as:

Yfpz = Y*(p 'Y*<pG 'Ypr-

(3.16)

Then, applying the newly selected constants given by Egs. (3.14) and (3.15), we can rewrite Eq. (3.12) as the relation:

av

* VZ pM(r ) *2 2
F =pyg, <1 + c_(;)) Yecgrad [Gf ross dvsl +pCyy - (at + rotv X v + grad - V(p)

B [(1 —O(vih/2)grad - P (1 " 1>] ’

where p, = py*w .~ under the freedom of the mathematical selection
to share the coefficient yw*z at each term in Eq. (3.12), we selected
one of the possible cases that corresponds to the increment of the
matter density p to p,, due to the relativistic effects of the high-
speed rotation of the matter with velocity close to that of light.
Because v, is close to ¢, the gravity term in Eq. (3.16) increases
to 27*¢G; this difference from the pure Newtonian expression of
gravity is also attributed to the effect of the general relativity that

B (3.17)

reflects the QMST selected for the observation of dynamics of
IMSBH.

3.2. Detail of Balance of Forces in IMSBH

3.2.1. Modified Newtonian gravity

By setting F=0 in Eq. (3.17), we realize the situation of force
balance in the IMSBH as follows:

v2 r
oM <1+ —‘;) Yocgrad IGf P (rs) dVSl
S

C o

- [ =0/ 2vi)srad-

1 av
1+—>+pMZ-yfp<—+rotv><v>] =0.

(3.18)

B ot

The first term on the left-hand side expresses the gravity field VZYpr g,, which is radially directed toward the center of the spherically

distributed IMSBH, and can be expressed for v,~cas follows:

Gpm(r
g, = grad lpr—(S)dVSl.
I-OS

(3.19)

Instead of calculating this directly, we employ the analysis method of Gauss’s theorem for integration, starting from Poisson’s formalism

for flux of gravity field g, expressed by:
divg = —4nGpy,

which gives a relation of volume integration as:

(3.20)

(3.21)
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For the gravity field g, we can apply the Stokes theorem:

ﬂ divg - dVg = .Ug-dS = 4mr?g,. (3.22)

Then, from Egs. (3.18), (3.20), and (3.21), it follows that:

grad U. Gpr—(rS)stl —g = — I Ger(zrs) - st’ (3.23)

where 1 is the radial distance defined in the local spherical coordinates, whose origin is set at the center of the IMSBH.

3.2.2. Lorentz force due to rotating plasma of IMSBH
Because plasma creates toroidal flow, the toroidal electric current I, is raised due to possible differential velocities of the average motion
between iron ions and electrons, as follows:

1,8 = (nNjevi, — Neeve, )@, (3.24)

where N, Ne,n,viw, Vor®s and @ are the number density of iron ions, number density of electrons, ionization number of iron ions, rotation
velocity of ions, rotation velocity of electrons, electric charge unit, and unit vector in the ¢ direction of the spherical coordinate,
respectively. Because of the charge neutrality, nN=N , Eq. (3.24) is rewritten as:

l,@ = nNie(Viq, — Ve(p)(’ﬁ. (3.25)

We here propose a ratio a_ (r)= (Vw—Vw)/ Vio for the electric current generation efficiency due to differences in the velocities between
ions and electrons; furthermore, we assume that the ratio a_ (r) depends on distance r in general. Using this ratio, the toroidal current i

(=1, ®) is given by:

I =nN;e- a.(r)vi,®. (3.26)
For this I and generated poloidal magnetic field B, (see Appendix E), the Lorentz force F, is generated as follows:
F, = IxBp =I,I At"+aAtp £+ 1,] cos® Ay +6A’:p 0 (3.27)
=1X = —+——r —] -9, .
L Pmie o\ r 7 or ®°\sind r ' ro®

where T and ® are unit vectors in the radial and polar angle directions, respectively; and I, is given by Eq. (3.26). In Eq. (3.27), the
modified vector potential A iSA an with respect to the vector potential A, and current den51ty I, atr=r, ; these are described in detail
in Appendix E, where Values of A" q)/r 8A o or, B ,and B, are given normahzed by p, I, 1., with the unit 4nX 107 V s/m* for u =4nx107
H/m, with current density I, (A/m*) and core radlus Ty (m) of the IMSBH, i.e., the plasma region. As also described in Appendix E,
the density of plasma distribution is assumed to be:

N; = N, (r“:c)z, (3.28)

where N is the ion number density at r =r,, . Furthermore, we assume the electric current generation coefficient as:

a.(r) = a, (rl\:c)s (3.29)

with a constant rate o, and power index & in the range of 0 < 6 < 1. Then, the plasma density and the current density are expressed as
Py=Poy (T A)* and I=1, (x, M), respectively.

For the generated magnetic fields, we set a constraint that the fields are frozen in the rotating plasma, i.e., magnetic field B satisfies the
frozen-in condition with respect to v=v_ ® as follows:
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0B
s +rot(Bxv)=0. (3.30)

In the case of the frozen-in magnetic field, the toroidal motion of plasma moves with the magnetic field. Thus, there is no electric field
without raising relative motion between the plasma and the magnetic field.
The second term on the right-hand side of Eq. (3.17) is rewritten as follows:

. (OV . dv . (V&\[.  cosb .
F, = —pmGvo (a + rotv X v) = —pM(-yq,a = pmCYo T [r + Sino 0. (3.31)
Then, we can express the total force F, working on the rotating plasmas as follows:
, dv
Fr :_pM'Z'Yq)a-l'IXBp

2 * *

PM " Vi i} r Ay  0AG\] .
=— +nN—(—+—

r {[ZY“’ T]rMC ( r ar J|"

+c059 - r Ay N OA’:p,g 3.3
sin@ Yo +1 e T 1750 ’ (3:32)

where .
2 2
_ac(Mage’nNoryehty (D aowpirie
m; c?

(3.33)

with ion plasma angular frequency (GI which is given by 5.617:\/(117Ni)X10'2 /'s for N. indicated with the unit 1/m’. The normalized
magnetic field intensities B_ and B are given in Figure 3.

As the first step to construct a model for the total force balance of the plasma in the IMSBH, Eq. (3.18) can be further rewritten
considering the Lorentz term with condition v ~c¢ as:

a
C)) e (b) i
—01 25 1

o —————————— —02 v . —01
o \\-// a3 L e =
] 2 —0.4 ° 5 = — SNy, i
N 05 g — 5
[ 06 s °
E $ \; B 17 £ ’ \ “’
g | '8 s 13 S .
z + t —09 - T R S SRR LR SR T S R

30 60 90 120 150 180 4

Polar Angle 6 (deg) Polar Angle 6 (deqg)

-
(€ i

0.8 4~
0.6 4—
0.4 4—

0.2

0.2 1T—

(/nyc)cos®

04 4

0.6 1—

0.8

1.0 4—

Ly
-1.0-08-0604-02 0 02 04 06 08 1.0

(r/r,)sin®
Figure 3: Poloidal magnetic field generated by toroidal current in IMSBH for the case of @ =a ,6=0: (a) magnitude of 0 component
B, normalized by u, I, r,, , which has unit 4tx107 Wb/m? for u = 4nx107 Hm, with current density /, (A/m*) and core radius r,,
(m); (b) magnitude of the radial component B, also normalized by x, I, r,,; (c) direction of magnetic field expressed in 7@ plane in
terms of vectors normalized by the magnitude at each given point, indicated by the orange circles. The magnetic field lines are drawn
approximately by connecting the tip to the end of the nearest vectors with each other.
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F-= 2y},cp - grad U Mdvsl + [(1 — O (yin/2)grad -P (1 + %)]

r‘OS

A . A’;eraA";p A+cose r o Ap N LIPS
Vo T]rMC r " ar J|T T |sine o + T]rMC 130 =0.

3.3. Solution of Dynamic Balance Equations
3.3.1. Balance in r-direction
From Eq. (3.32), we can obtain equations of the force balance for the r-direction:

25 cGM(r) 0
—w—alp( —OYn - E

0 or

where { = v, 2/c* with respect to the thermal velocity v, . We will describe GM(r) in detail at the end of this section.

(3.34)

Z(p r <A;£p+%)l —0, (3.35)

Considering diamagnetic effects for the thermal components of plasma, we assume r dependence of the total thermal pressure P as:

C2 B?h rl%/[c 2
P=p(1-0 8y~ o -\ Poc?, .(3.36)
where P ¢’ is the total pressure at r=r, . Then, we can rewrite Eq. (3.35) as:
2Y,cGMMp 1, pV2 r (A, O0A;
-+ R+ 2|y, — | —+—= || = 0. 3.37
r2 r3 RERA Tme\ T Or (3:37)

3.3.2. Balance in 0-direction.
Because we assume that dp/ 068 = 0, the force balance in the 6-direction, obtained from Eq. (3.34), is given by:

pMV(p , cosB ) r (A cosf L 9% A%
YR Zuo R sing | 1V rmc\ r sin®  rae/| T 0, -(3.38)
Here, we use an approximation form with assumption n =n, (r/r,, )’ (see Appendix F), as:
r (Apcos® 0A, cosH
— =t — 3.39
n( 'Mc < r sin® rae) M Bing ( )

Then,
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Figure 4: Magnetic field energy density B, (6)/u, versus polar angle 0, taking = p vwz -[Cyw*-i-;yo K,1/18,,0,/2u, asa parameter.

We consider results corresponding to f, less than 0.2 to be acceptable as approximately independent to & in Eq. (3.34).

Normalized Magnetic Field Energy Density

cosO
sinf ’

d [B&] eve .
- [2u0]+ - (Zy(p+n0KB) (3.40)

where K, is a constant that takes a value of 1.3 for (nm/6<06<5w6) and 0.5 in other ranges of 0 (see Appendix F).
Thus, we can solve Eq. (3.40) as:

B, (8) _ Bf, (6,)
21 ATH

(3.41)

) . sin0®
+pv3 - (Tvip + noKg) - In sn6) -

Because Eq. (3.41) includes singularities at =0 and 6=n, we should modify the expression for a realistic model of the magnetic field
energy caused by the thermal component of plasma. Specifically, we assume that the 6 dependence of B> (0)/(2p,) is:

sinf

+pv<%-(iy2‘p+noKB)-ln(. ) for 8, <0 <1 — 0y,
sinB,

Bf,(6) _ BZ (6)
219 219

and

2 2
Bth(e) — Bth(eo) for0<o< 90 and T — 60 <0< (342)
219 2Ho

As an allowable approximation for this setting of the model using Eq. (3.42), we select 6, =5°. In this model, it is favorable that the B,
(0)/2p, value is less dependent on 0 to endorse a spherical shape of IMSBH. In Figure 4, examples for low-f3 cases where pV(P2~ ( QyQ*Jrno
K, )/[B,° (0,)/2u,] is in the range of 0.05-0.25 are presented. For these cases, we observe a weak 0 dependence, where we expect to
simplify the force balance condition in the r-direction by approximating independence of 6.

3.3.3. Radius of IMSBH r,, .

Corresponding to Eq. (3.28), the density in the IMSBH is:
2

7
Pm = Pmo (%) ) (3.43)
and
T s T 2
M(r) = 21‘[J f Puo (%) ré sinfsdredOs . (3.44)
o Jo 3
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Integrating Eq. (3.44), we obtain:
M(r) = 4Tpyq * Tzl (3.45)

which provides a total BH mass of M by M(r,, ); and Eq. (3.35) is rewritten as:

Yool , L Tawy |, Pmotmc (vG/c?) r (A, 04y
_TeGe, <Mp Aoyr +n— (224222 =0, (346
rMcr3 PmoTmc + r3 0 + 1,_3 ZY(p + n I'Mec r + or ( )

where r =2GM /c*. As discussed in Appendix F, in detail, we apply the approximation regarding the last term in the bracket of the third
term on the left-hand side of Eq. (3.46) as:

r (Ap 0Ay
—|— ~ 0. 3.47
T]rMC( r + 6r> ( )

As will be discussed in Sec 4.2., the systematic rotation flow of plasma is tightly controlled by the extremely intense gravity in IMSBH.
Therefore, we consider an extremely low rate for o, which also produces a low 7.

From Eq. (3.46), we obtain:

. Po .
Yocts = [— + (pr/cz)(ycp] *TMc - (3.48)
Pmo
Taking v, ¥ ¢, it follows that:

N V;)Grg
Me Cyop + (Po/Pmo)’

(3.49)

3.4. Calculation of the Rotation Parameter a
In the present model, the rotation parameter a is expressed relative to the angular momentum J of the IMSBH, considering yw* andp,
to be constant, as follows:

2
* 1 s
2T f;MC drs fon dGs-y(pc l—ﬁszo(rll‘vI—sc) rgsmzes
a=L= \ . (3.50)

Mc r T r 2 .
2m [MC drg ] deSpMo(rLSC) résin0s

Then, the rotation parameter is calculated from Eq. (3.50), with Eq. (3.49) for r,,_, as follows:

a:L:(E) 1 e Vel (rg/2)
Me R4 v Sve + (Po/pmo)

(3.51)

In the case of a Kerr BH, the maximum rotation takes place at rg/ 2 =r,, where a =r,. As the observational result [16], the supermassive
BHs at SgrA* are in the state of maximum rotation. Then, we can set the condition of the maximum rotation for Eq. (3.51) as:

-5 [1-= Yoo Yob' _
rg  \4 Y& Cvo + (Po/Pmo)

(3.52)
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For a sufficiently high yw* value, Eq. (3.49) gives the result as follows:

_ 8 I'g
T Y6l

(3.53)

Inmc

3.5. Angular Velocity of Vacuum in Kerr Spacetime
For a vacuum region, which envelops IMSBH, we are concerned with the Kerr spacetime [44] that is given in spherical coordinates, in
space as follows:

T 2carr,sin%0 X
2 _ _ 2 __ g 2 _ g I ) 2
ds? = —c?(1 2) dtde + 7 dr? +£d8
a’rr,sin?0
+ <r2 +a?+ gT> sin?8d¢?, (3.54)

where r= 2GM/c?, a = a=J/Mc, X=r *+a%c0s%0, and A = rzfrrgwL a’. When we consider an extremely collapsed IMSBH radius r,, , Eq.
(3.54) is expressed as an asymptotic case where r approaches r,, (<a) , except for a polar angle range ,(7/2+r/a)>0>n/2-r/a, as
follows:

ds? = —c2dt? + cos?0dr? + a%cos?0 - d6? + a?sin?0d?. (3.55)

Introducing rotation of vacuum space of Kerr spacetime Q, the spacetime can be deduced from Eq. (3.55) at a given point with the
condition dr =df =0 as :

2
ds? = —c? (1 _ (Cl—zsin26[22> de?, (3.56)

The angular velocity €, =~ of the rotation of IMSBH described in the spaceteime of IMSBH should harmonize with the angular velocity
of vacuum space of Kerr spacetime Q; that is, when we observe the rotation of the IMSBH in the frame of the QMST, as is the case of
the present study of plasma, the proper four-dimensional distance ds corresponding to the surface of the IMSBH for time passage dt,,
has a common relation to ds of the contacting vacuum region described in the Kerr spacetime for dt,. Then, it follows that :

Vo2 ay?2
—c? [1 - (=2 ] dtZy = —c? [1 ~ (=) sin%6- 92] dt (3.57)
C C
where v, = QycI'mcSing.
In the present study, we assumed fast rotation of the IMSBH with velocity v,~¢ on the left-hand side of Eq. (3.57); we can find angular
velocity Q2 of the rotation of the vacuum. Kerr spacetime at the boundary extremely close to the singular point of the spacetime as:
C

N — 3.58
a - sin@ ( )

We understand that the high angular velocity Q,, (= v,/ (r,,, sinG)) observed in QMST corresponding to the spacetime of the IMSBH
occurs as the low angular rotation velocity given by Eq. (3.58) in vacuum spacetime due to differences in time passages between
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Figure 5: Results of numerical calculation for the ratio of radii ./, based on Eq. (3.53) versus the Lorentz factor yw*, which is
proportional to the energy of the rotating iron ion energy € as € = y(p*>< (5.6x10'°) eV, related to the angular momentum of rotating
plasma with velocity extremely close to that of light, and considering , the rate of the rotating plasma component to the total plasma,
as a parameter.

dt,,,, in QMST observing the IMSBH and that in the vacuum region dt,, in vacuum region Kerr spacetime.

That is, we have relation for the angular velocities between the discussing two systems as

DEj—q):\/l_(%)zsmzelﬂz-dd(p |
SN O

(3.59)

4. Numerical Results of the Ratio of IMSBH Radius and Event Horizon Radius

4.1. Possible Rotating Plasma Energy

In Figure 5, the ratio of the event horizon radius r, and that of IMSBH r, is presented as a result of Eq. (3.53), with { (= 0.1~ 0.9) as a
parameter that shows the rate of the rotating plasma component in total plasma. IMSBH radius r,, decreases when the rotation velocity
increases with a larger gamma rate; furthermore, the ratio also depends on the rate of the rotation component {. The abscissa of Figure 5
expressed by the Lorentz factor (gamma rate yw*), in the case of velocity extremely close to c, is proportional to the energy of the rotating
iron plasma in IMSBH; i.e., the energy € is given by:

2
MironC
E=— = MironC*¥g, (4.1).

(%)

for iron ion mass m, . Taking m ¢ as approximately 56 GeV, € of the rotating plasma for yw* is€= yq)*><(5.6X 10'°) eV. Therefore, in
the case of (=0.7 at yw*:l75, where r,/r,, becomes 50 (r,, is condensed to 1/50 of r,), the condensed plasmas are rotating with energy
9.80x10'* eV. For the case of the condensed plasma region of the IMSBH, the density and average mutual distance of the iron ions are
calculated as given in Figures 6 and 7, respectively. As shown in Figure 6, the density for the above-described case of (=0.7, r,./r, =
50 at y¢*:175 becomes 3.59x10%"/cm?®. We can confirm, for this extremely high-density state, that the plasma is still in a gaseous state
where particles are not bound by each other, as revealed in Figure 7, where the mutual distance of the ions is indicated as 3.03x10"" cm,
i.e., approximately 2.4x10°times the quantum mechanically estimated iron ion radius with energy 9.80x10'? eV.
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Figure 8: Comparison of the Coulomb potential energy and gravitational potential energy working on the electrons of rotating plasma in
IMSBH. The left-hand panel shows the Coulomb potential energy between an electron and the nearest ion or electron versus the rotation
energy of plasma given by the gamma rate yw* that gives energy € = yw*x(5.6><10‘°) eV. The right-hand panel shows the gravitational
potential energy working on an electron of rotating plasma, with the same abscissa as the left-hand panel.
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4.2. Intense Gravity and Low n

Figure 8 presents a comparison of the potential energies of the
Coulomb force and the gravity working on an electron of the
rotating plasma in the IMSBH. It is remarkable that the motion
of electrons is absolutely governed by gravity. Specifically, when
we select the example case where (=0.7 and y =175 with r,/
7\ =50, the Coulomb potential energy is 4.75 keV, whereas the
gravitational potential energy is 24.6 MeV. Because of the basic
nature of gravity, particles move with the same velocity when
the dynamics is controlled by gravity. From Eq. (3.33), n =1 by
a,=2.73x10" for the same example case of (=0.7 and y =175
with r./1,, =50. We may use this low rate of the current generation
as a reference point to consider the effects of the Lorentz force in
the IMSBH.

5. Generation of GW

5.1. Solution of GW under Transverse Traceless Gauge

5.1.1. Start point

As motivation for the present study, we are concerned with the
generation of GWs, focusing on the possible SMBHB that we have
proposed for SgrA* at the center of the Milky Way Galaxy. The
configuration of the Kerr SMBHB is depicted in Figure 9 where
the relations of the radii of the IMSBHs are estimated to be in the
range of 1/10 to 1/100 of the radii of the event horizons based on
the results of the present study (see Eq. (3.53) and Figure 5). As
the source of GWs, IMSBHs are at positions far from the event
horizons in the interior of the BH; the effect of orbital motion on
the source does not arrive at the event horizon directly. We should
separate the dynamical processes that may be raised at the event
horizon and the processes that initiate GWs in the source region,

which is not like the case of the stellar-mass BH where generation
of a GW is considered without separation of the source matter
and the existing event horizon. When we consider a possible case
raised by our observation of the SMBHB at SgrA*[16], the speed
of the source movement is less than 21% of the velocity of light;
then, we can follow the classical quadrupole moment theory, as
presented by Einstein, rather than the current post-Newtonian
or post-Minkowskian expansion theory [42]. We begin with the
orthodox GW generation theory by following the established
method of the GW theory, albeit with some differences in details.

5.1.2. Description with transverse traceless gauge

In the main two fields of the theory of the generation of GW from
compact objects, i.e., the quasi-normal mode oscillation and the
merger of spiraling compact objects, the present study of GW
generation belongs to the latter case. However, we are seeking the
possibility of no GW for the case of a SMBHB. Unlike most of the
current works, we consider the interior of a supermassive BH as
propagation media of GWs. Before focusing on the coordinates to
describe the real configuration given in Figure 9, we start with an
arbitrary coordinate in the Minkowsky spacetime n; with Cartesian
coordinate (x°x',x2,x%). This is possible when we observe a freefall
system that moves along the geodesic of the BH spacetime. In this
coordinate, the linearized perturbation of the spacetime metric hij
of GW, related to the spacetime metric g is expressed as:

gij = My + hy; . (5.1)

By following the procedure of the deduction of the spacetime to
describe GWs, as given in Appendix G, we approach the basic
equation as:

Nab

T -Event Horizon

&Gaa 1.89E+12
//

L
Qe /

-Event Horizon

Y

Figure 9: Configuration of the SMBHB system at SgrA* for investigation of generation of GW in the present study. Members of

binary Gaa with mass (2.27+0.02)x10° M and Gab with mass (1
(5.40+0.15)x10* kmvs (0.18c)and(6.31+0.03)x10* kmvs (0.21¢) ,

.94+0.01)x10° M orbit with period of 2,200+50 s and velocities of
respectively. The orbital radii of Gaa and Gab were estimated to be

1.89x107 and 2.21x107 km, respectively; Gaa and Gab are associated with event horizons with radii of 3.83x10° and 3.21x10° km,

respectively [16]
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161G

Oy = ——=— Ty, (5.2)
where 1
@i = hy; — Enijh ) (5.3)

with trace & = #? hij. To approach Eq. (5.3), we apply the Lorentz gauge:

0pj;

]
— =0, 5.4
Ew (5.4)
considering the freedom for 9,
When we seek a coordinate where h’=0 for the transformed trace h’ corresponding to h in Eq. (5.3), anew coordinate system (x’°x!,x°2 x"%)
that is introduced with a small deviation & # is required as:

XM = xH + gH (5.5)
(see Appendix H). For the requirement of the Lorentz gauge in the transformed coordinate,
dpj;
) _
=1 =0 (5.6)
it follows that:
Ogk = 0. (5.7)

Associated with this additional constraint, we find the basic equation of the GW components in a traceless (h’=0 ) frame (see Appendix
G).

As given in Eq. (G6) in Appendix G, Eq. (5.3) is transformed to the new coordinates as:

‘v=h 5,08 e 8 L 5.8

Qpy = Dy — M5 uﬁ_nij vﬁ_znu\) . ( )

The trace is given by:
=WV = nMVh. — nhV __SiE_ uv _.51'E_1 MY 59
@' =neu =nhyy = nngd, oS M0y 57— 51" Nwh’ (5.9)
Further, ¢’ is given (see eq. (H7) in Appendix H) as:
r 1 ]
When we establish the condition ¢’=0, then h’=0 ; therefore, the equation transformed from Eq. (5.3) is expressed as:
I 1 1 '
¢j = hy; — Erlijh ) (5.11)

giving the result:

(see Appendix H). In this context, we set the solution of Eq. (5.2), a priori, as well as that of the equation in the transformed coordinate
O ¢, ’=-(16nG*) T,’; that is:
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@i = Ajj exp(ikyyx™)
and

(P{j = A,ij exp(ikinx’ m) )

(5.13)

(5.14)

where i is the imaginary unit, and £ and & ’ are four-dimensional vectors to express harmonic waves. Then, the processes to set ¢’=0
and h’=0 are carried out in the frame given by Eqgs. (5.9) and (5.10), as described in Appendix H. It is indicated that 4, ’= 0, and only
two independent components are allowed among 4 . When we select 4" and 4,,” as independent amplitudes to decide ¢, and ¢,,’,

the other amplitudes are given by:

k1A, + koA,
13 — [
k3

! —

(ki + kA1, + 2kikAl,

22— k72 + ki

> (5.15).

ks

o (k) (ki® + k)AL + kikhAg,
23 klzz + kl32
(k? + k)AL, + 2K Kk5A),

!
33 2 12
k° + k5

In the case of a plane wave (k,’=0 and k,’=0), for the propagation
of GWs in the region located a long distance away from the source,
it is indicated from Eq. (5.15) that A =0, A ’=-A ’, A ’=0, and
A,;’=0. From the symmetry of the spacetime tensor A, ’=A ’,
we can see the commonly known characteristics of the transverse
traceless (TT) expression. Because we are concerned with the
propagation near the source region, it would be accurate to use Eq.
(5.15) without the plane wave approximation, but we assume the

local plane wave front for each propagating direction.

2(© z(s)

Event Horizon of BH

Parallel to Moving
Direction of y(c)
Gam

Radius rMc

J

5.2. Generation of GWs from Quadrupole Source

We now consider the system depicted in Figure 9 for binary BHs
whose IMSBH regions are condensed to radii ranging from 1/10
to 1/100 of the event horizons (see Sec. 3), i.e., we set the final
coordinate system described in Sec. 5.1.2 as identical to that
describing the generation of GW, which is associated here with the
configuration in Figure 9; hereafter, we express the member BH
as Gam that represents Gaa and Gab, by taking “m” as “ a “ and
“b” ,respectively.

2 (ts) z(or)

CENTER

OF ORBITS
/

) ), (or)

Figure 10: Coordinate systems of orbiting binary Gam (m indicates a or b) to describe the generation and propagation of GWs. The
basic configuration of the Gaa and Gab orbits in Figure 9 are described as Gam in the Cartesian coordinate system (x,y0,z®), whose
origin is at the center of the orbits. The orbiting IMSBH of Gam moves in the direction of the y™ axis of the Cartesian coordinate system
(x®,y),z), where the center of the IMSBH of Gam, with radius r,, , is located in the direction of the x* axis where Gam has orbital
radius R, . The position in the interior of the Kerr BH within the event horizon is expressed by vector r ,, defined from the center of
the IMSBH, as described by the Cartesian coordinate system (x©,y©,z), whose origin is at the center of the IMSBH; axes x©,y®,and
7 are defined in parallel directions to x®,y" and z*, respectively. The vector T is also described in spherical coordinates (r,0,¢), as

transformed from the coordinate system (x,y©,z©).
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Further, we follow the established expression of the generation of GWs, projecting 40,-,-’ to the TT gauge given by Eq. (5.15) that is
connected to:

oyt _ 167G

Then, in Eq. (5.16), hijTT is expressed for the Gam system following the standard method, where the source function is expressed by the
retarded function as:
_ ﬁ) 5(
C

W) = 4G J T;; (
r _- —
ij ob c4 orb Tos

wherer ) and r*” are vectors of the observation point and source position, respectively, in the orbiting system defined from the origin
of the coordmate at the center of the binary orbits; andr = r " -T ©7]. Integration of Eq. (5.17) is carried out, with:

(or)

t (or) (or)
Ton Lo

Ob l‘S ) dV(Or)
S )

(5.17)

dv" = dx{""dydz".

(5.18)

Following Einstein’s original expression, it becomes standard procedure to consider the quadruple moment for the source of GW. In the
present work, we cannot simply apply the remote approximation for the proximity to the source but it becomes clear after a mathematical
manipulation that we can use the same formula for the case of remote source approximation, as commonly utilized in the general formula
of GW generation (see Appendix I). Specifically:

2G azj
cb atob s

wherer = |I=[ |, andr =[r -T |.InEq.(5.19), all vectors are defined from the center of the IMSBH, and t  is the time passage at

the observatlon point. Concerning the time passage t_at the source point, we have the alternative expression:

02 Too(rs(or)» ts)Xin '

2
s ats Tob

Too( ©n) ¢ &

xix)
C ) dVS(OI") )
Top

hiT (rop) = (5.19)

2G

h;I;T (r ob,tob) = - 6

avier, (5.20)

wheret =t +r_/c.
ob s os

5.3. Case of SMBHB coordinates for Gam orbital system and for the interior vacuum

We apply the results given by Eq. (5.19) (or Eq. (5.20), which are
equivalent) to the case of the supermassive BH shown in Figure
9, taking the Cartesian coordinate for space with the origin at the
center of the orbits of the two members of the BH Gam. Further,
for detailed description of GW propagation in the Kerr BH interior,
we depict additional coordinate systems in Figure 10, where the

region of the Kerr BH located outside of each IMSBH of Gam are
indicated together.

As discussed in Sec. 5.1.2 for determining a TT gauge, we
concentrated on the two basic spacetimes 2 ™ (r ) and 2 ™ (r,,)
to express the generated GW, as follows: )

hTT(Fob)
26 [ 9% [pe?8 (7 =2 ¥ 3, top —72%)

== ¢ aver (5.21)
c® ), 0tz Tob s A

d
. b (rop)
(or) (or) Tos

2G [ 92 |pc 6( —XYs Tyt —)-xy

__ 44 C dqvn (5.22)
ct s 6t§ T'ob s A
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where x and y are the same as x*” and y”, respectively, as components of r_," .
In Egs. (5.21) and (5,22), x " and y ™ can be rewritten as:

x§°” = Rgam€0s(Qorpts) + xgc)
and
yéor): RgamSin(Qorpts) + ygc), .(5.23)

where x© and y © are components of the source position vector measured from the center of the IMSBH in the new coordinates
(x9)9,29) (see Appendix I), and R and Q  are the orbital radius and angular velocity, respectively, of the orbiting BH Gam.
Following the configuration in Figure 10, we obtain the relations:

xgc) = rsind - cosg (5.24)
and
v = rsin® - sing. (5.25).
Spin Axis u
S

Event Horizon

T

GW Equad
Phase r

Circular Line

Propagation
Direction

Figure 11: Equal-phase circle of GW propagating at polar angle @, generated from IMSBH. GWs that propagate radially in the 8 (0—x
/2) direction take the same phase for a given # homogeneously without dependence on the rotation direction ¢, i.e., equal-phase lines
form a circle. The spin axis of IMSBH is directed perpendicular to the orbital plane of the binary; then, the azimuth is ¢ = Q ¢+ ¢ for
angular velocity £ and phase angle ¢,,.

As described in Appendix J, the integrations of Egs. (5.21) and (5.22) are given as functions of the observation point at distance r_,
measured from the center of the IMSBH at time t , as:

hET (top, Fob) = zr%gb- (VG%)2 €05 [ 200m, (tor = -2) + @], (5:26)

and

hIF (tob,Tob) = 2 rroib (VG%)2 - sin 200 (tob — r"T") +o|, (527

where v, is the orbital velocity of Gam. The initial average phase ((2Q2 , a,, 1,,.)/C is given by &, = 2a,, =, with a factor a,, (0<a,, <1)
to be calculated to give the representative source position in IMSBH within radius r,, .
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6. Propagation of GW in the Interior Region of a Kerr BH

6.1. GW in the Rotating Frame of Kerr BH

To investigate the propagation characteristics of the generated GW, we introduce a vector k , to describe the wave number forh ™ and
thTT, given by Egs. (5.26) and (5.27) as:

h;l(‘g(tob, rob) = AXXCOS[Z'Qorbtob - kobrob + CDI] (61)
and
hiy (tobs Tob) = AxySIN[2Q0rpteb = KobTob + @1, coe cer cee vev ver vov s e 0 (6.2)
where
_ _ r_g VGam 2
Ao = Ay =25 (—C ) e (63)
and
Tob

To describe the propagation of a GW in the interior region of the Kerr BH, we follow the spherical coordinates describing Eq. (3.54). At
this stage, however, we rewrite Eq. (3.54) for the observation system where we can observe the spinning angular velocity of the BH as:

T 2carr,sin?0 /Q arr,sin?0 02
ds? = — (1 ——g) + ;(—> —(r2+a%2+—5—|sin?0 (—) c2dt?
) hX C hX C

2 2 2
+5dr? +2de?, (6.5)

defining Q = do/ dt with respect to coordinate ¢ (see Eq. (3.54)); the coordinate to describe Eq. (6.5) becomes consistent with those of
Eqgs. (6.1) and (6.2) when we translate from the Cartesian to spherical coordinates (see Appendix K); that is:

hg;r(tob' l“ob) = ACOS[Z-QGamtob = KopTop + @1 — 2(p0b]' (6.6)
and
hgg(tobr l"ob) = ASin[ZQGamtob — KopTop + @1 — 2(P0b]' (6.7)

where A=A = A, and ¢, is a ¢ value corresponding to a given observation position. Considering Egs. (6.6) and (6.7), Eq. (6.4) is
rewritten to describe the propagation through the interior region of BH, as follows:

KopTop = k| 1sin® + kyrcosd = k(0)r (6.8)
where k(6) is a newly introduced function that satisfies relations We do not address the calculation processes of energy transport
k1 =k(0)sin6 and k, = k(0)cos0. or the work action of the generated GW but simply discuss the

propagation of GW in terms of h ™ and hinT. Therefore, we
With the configuration in Figure 11, the propagation of the wave construct a function to simplify the description for the propagation
front of GW was analyzed as a function of the distance r from the  of GW with spacetime h ™" and thT, as follows:
center of IMSBH of radius r,,, with the wavelength characterized
by a propagating direction given by the polar angle 8; the equal-
phase line of the propagating GW forms a circle along the direction
of the azimuth .
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H= h’IFIT + lh’II“(’;I)‘ =A" COS(Z‘Qorbtob - kobrob + CDI — 2(p0b)
+1A - sin(2Qorptop — KopTob + Pr — 2¢0gp)
= A- exp[i(z'o'orbtob - k(e)r + CDI - Zq)Ob)] (6-9)-

where i is the unit of the complex quantity again. platform following the geodesic of BH. Then, transformation to
The velocity of the generated GW propagating through a vacuum the spacetime for the vacuum region in the interior of Kerr BH
region of the interior Kerr BH is calculated. Egs. (6.6), (6.7), is required. With respect to the four-dimensional proper length
and (6.9) are described by the coordinate close to the freefall described by Eq. (6.5) for the Kerr BH spacetime, we can find the
system where we apply QMST, which becomes the observation common proper length given in the QMST as follows:

Spin Axis .
GW Velocity
R10c
09
08

Distance r/x parallel to the spin axis with origin
at the center of IMSBH

Event Horizon

i0 08 06 04 02 0 02 04 08 08 1.0
Distance ¢/ perpendicular to the spin axis with origin
at the center of IMSBH

Figure 12: Calculated velocity of GW propagating in the interior region of Kerr BH. Results are given in r—0 cross section, including
spin axis for AQ= 8 (see Eq. (6.17) and Figure 13), with IMSBH radius r,, /r_ =1/50. The GW velocity is indicated as gray code, from
pure white for light velocity to pure black for null velocity. The GWs that propagate radially in the direction of the polar angle 0 cease
to propagate at (r,0, ), corresponding to F*=0 (see Eq. (6.12)) before arriving at the event horizon.

v2 )
—c2(1— C—‘;’) -dt?, + dr? = —c2dtd - F? + Zolr]%, (6.10)

where t and r in Eq. (6.5) are rewritten as t, and r, respectively, for the case of BH, and d0 is set to zero because the phase of the GW
varies as a function of t, and r, propagating in the direction with fixed angle 0. In Eq. (6.10), F* is defined to simplify the expression of
Eq. (6.5), as follows:

T 2carr,sin?0 /Q
2 _ __'8 g -
F (1 X ) + X <c)

2

a’rr,sin?0 Q
- <r2 +a% + gT) sin?0 (?) : (6.11)

When we try to find the relation of the linear transformation, it follows that:
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( dr ) _ (311 a12) (dI'B
dtyy,/) — \azqazy/ \dtg

Based on Eq. (6.10), the result is given by:

X

a1 = A a;; =0,

a;; =0 and ay, =y,F

) . (6.12)

(6.13)

(see Eq. (2.40) for y(p*). Using the transformation relations given by Eqs. (6.12) and (6.13), the propagating GW given by Eq. (6.9) is
expressed, in the interior region of the BH that is given by the Kerr spacetime, with the form of the WKB approximation, as follows:

tob
Hy = Ay expi( [ 200mrgFdes - [
t r

S

)
k(0) 2418 + @1 — 290, (6.14)

Mc

As discussed in Appendix L, the normalized amplitude A observable in Kerr spacetime is estimated as:

)Y Y r
Ag=—A= &

Lz ("Gﬂ)z
A A I'op C '
The propagation velocity V(t ,,
of the spin axis is then given by:

Z-Qorbygo

V(tobl r, e) k(e)

W -l

where 2Q_ yw*/ k(0) = c. It is clear that V(t , r, 0) becomes zero
at two characteristic points, at F=0 and the event horizon that is
given by A=0. In Figure 12, the GW velocity given by Eq. (6.16)
is shown with gray code from 0 to near light velocity for the case
in which the radius of IMSBH is r,, /1, =1/50. All GWs radiated
from IMSBH stop before arriving at the event horizon. Before
arriving at the stopping point, GWs propagate in the range from the
direction of the spin axis to its vertical; the calculated results show

Q Q-rg 1 r
— = =1—Eexp[An (E—l)]

ZQE C

where Q, is the angular velocity at the event horizon.

(6.15)

r, 0) of this GW at point t =t at r in the direction with polar angle 0 that is measured from the direction

(6.16)

that the propagation distance in the vertical direction is shorter
than in the direction parallel to the rotation axis. To express the
stopping points of GWs clearly, the lines where we can see F=0 are
presented in Figure 13, where the lines are indicated in 1,0 domain
with the parameter A ,, which describes the spatial dependence of
Q given with the following function (see both the top and bottom
panels of Figure 13)

(6.17)

As given by Eq. (6.15), the amplitude of a GW diverges to infinity at the event horizon. The calculated results given in the top panel of
Figure 13 show, however, that in all cases, GW’s stop before approaching the event horizon by encountering F=0 lines.

6.2. Return of GW from Stopping Points

The GWs propagating in the direction of the polar angle range 0 < 0 < 90" start returning from the point where they cease to proceed,

taking reciprocal paths with the wave function given by:

tob,R r,R Z
HB,R =A- exp l .l- ZQOFbV(ZthB + f k(e) ZdrB + CDIR — 2(P0bR
t 'mc

S

. (6.18)
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It is a significant principle that the propagating wave does not accumulate the phase value because the wave maintains progress with the
condition of the phase, as:

tob,R r,R Z
j 20,y Fdtg —f K(0) [2drg = 0. o e (6.19)
t I'Mc

sF

At a given time and space, the return wave H, , encounters the outgoing wave:
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Figure 13: Top panel: Stopping line F=0 of GW plotted in the r-0 plane in the interior region of Kerr BH, where the radial distance r is
given in the ordinate in terms of the ratio to the event horizon r,.. The parameter A, of the stopping lines represents the spatial dependence
of the spin angular velocity. Bottom panel: Spatial dependence of the spin angular velocity with A, of 5-20, showing the range of
variation of the spin angular velocity from the value at the event horizon to the rotation at the position of IMSBH.The radial distance is
given in the abscissa in terms of r/r, along the spin axis.

tob,R r,R P
HB,F =A- exp l f Zﬂorby(;thB - f k(e) ZdrB + CDIF - ZchbF © e e e e (620)

tsF T'Mmc

Then, the forward-progressing wave encounters the returning waves at each moment, as:

X
Hpr + Hpr = A-exp|i| 2QompY,Fdtg + k(0) ZdrB + @R — 2Qobr

X
+A-exp [i| 2QorpY,Fdtg — k(6) ZdrB + O — 200pr || o (6.21)
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At this encounter state, the initial phases of each wave, @ .- 2¢,, . and @, - 2¢,, , are generally independent. In the present situation,
however, @, and @, are defined as the average propagation time differences around a sphere-shaped source within IMSBH that always
give the same values; the phase angles 2¢,, . and 2¢,, . are also the same because they are selected from the spinning IMSBH, which is
assumed to be in complete symmetry with the azimuth direction. Then, Eq. (6.21) gives the result:

Hpr + Hpr = 2A - exp|i(2Qor,Fdtg + @1 — 2¢p,)] cos | k() drB :

which shows that GWs are deformed to standing waves that can no longer carry energy.

7. Discussion

7.1. Problem of Angular Momentum to Describe Kerr Spacetime

In the present study, one of the significant points is that GW forms a standing wave, so dissipation of the orbiting energy of the binary is
avoided; this fact is strictly related to the existence of the wide vacuum region inside the Kerr BH, as suggested in the present work for
the condensation of IMSBH. The essence of the argument of condensation is in the property of the rotation parameter as a defined in Eq.
(3.50), which is repeated in a simple form here as:

]
= (7.1)

When we assume a homogeneous rigid state model rotating with angular velocity Q and with a constant density p, the expression of Eq.
(7.1) is given, normalized by the Schwarzschild radius r,as follows:

C r

a 81TI‘MCp.Q/15 1 Z(V_(p) I'nc ’ 72)
rg (41TrMcp/3)c rg 5

g

where 1, and v, are the radius of the assumed IMSBH and the To lose this constraint, we selected a fast rotation model that

representative rotation velocity selected at the equator surface,
respectively. In so far as we maintain the constraint of the low-
velocity model, we have arg<1/5 ,considering the case of matter
distribution where the radius is close to the event horizon 7,
—(r /2); thus, we cannot approach the case of the maximum
rotation where (a/r )=1/2.

2T gy, rsin®
]_f j f _ PVl 5P 2 25in@drdfde ,

1—(vy/ C)
where 1 /.f 1—(v,/ C)2 is given by yw* (see Eq.(2.40)). However, the

rationale to accept the concept expressed by Eq. (7.3) is not simple
because there is the question of what is increased to maintain a
constant rotation parameter under the situation of shrinking r,,
Considering only J in Eq. (7.3), the angular momentum increases
because the Lorentz factor yw* increases matter density from p
to pyw* as relativistic effects. However, in Eq. (7.1), it becomes
a subject of argument that the mass M could also be increased as

_ (3/4)MrycveYe
Mc ’

comprises a fluid with constant rotation velocity v, and angular
momentum that admits the relativistic approach to realize the
same rotation parameter a, even though the radius r,, of IMSBH
becomes small because of condensation. Specifically:

(7.3)

Myw*; therefore, the rotation parameter a would neither be increased
nor would it remain constant for decreasing matter region radius
r,,.» €ven in the case of high-speed rotation of the IMSBH.

When the equal-rotation velocity model is selected, as is the case
in this study, the rotation parameter corresponding to Eq. (7.3) is:

(7.4)

where M = (47R?/3) p assuming homogeneous p. Because Eq. (7.4) is simply expressed ,for Vv, ¥ as:

a= (3/4)rMcy§Z )

(7.5)
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there is no room for explicit expression of p* (= p/~N(1-(v /c)z ) in
Egs. (7.4) and (7.5). We must then consider the rotation parameter
a without the relation to the increase in density; that is, it should
be understood that a is realized only in the form r, y$*, which

is also endorsed in the present study as given by Eq. (3.53). The
underlying physics of the constancy of r, yw* for high-speed
rotation is, therefore, the Lorentz shortening of the length of the
distributing range of the matter along the rotation direction.

2 /
1.5

1

0.5

0.25

0

Index St
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5 6 7 8 9

o —Value of density function

P

Figure 14: Index S, versus power index o showing the density distribution of IMSBH as p = p,, (r,,/1)".S, is given by Eq. (7.10) under the
constraint of the maximum rotation (a = r,), which indicates a critical point at 0.25 where the IMSBH radius r,, becomes equal to the
event horizon radius r,, with y¢*=1 and v /¢=0.5. The differential length dl of an arc on rotating matter that is set in a parallel direction

to the rotation direction is expressed by:

df = (1/y*q,)d{’0 ,

(7.6)

where dl is the differential arc length in the case of non-rotation that can be expressed as d/ = r, , d¢ for the radius r,,, of the matter
region in the static case with differential azimuth angle do. Then, the radius r,, of the rotating matter region is given as:

£ 21
2Ty =f dfzf (1/y2},)rMc0dcp.
0 0

This shows that:
* o __
rMCY(p = I'mco-

7.2. Effect of Matter Distribution on the Rotation Parameter

Although we assume a case of constant and homogeneous
density distribution in Egs. (7.2), (7.4), and (7.5), to simplify the
discussion, we need to consider the cases of the density distribution
functions p = p, (r,,/r)* in the present study. Therefore, the general
case must be discussed here, with p = p, (r,,/ )% (where o is an

11(3 — ocp) . TMcYeo (V_(p

ar, = 4(4—a,) Ty N

(7.7)

(7.8)

arbitrary constant), which reflects the spacetime of IMSBH and
affects the calculations of the rotation parameter and the radius of
the IMSBH.

When we assume a constant rotation velocity \x the rotation
parameter depending on the density distribution function is given
as a ratio to L, by:

(7.9)

For the case of maximum rotation (a/ 1=12) of a Kerr BH, we define an index S, corresponding to Eq. (7.9), as:

r C 2

g

_ 'McYo (Vo ( _O‘p)
5= Y (—)—(1)-::(‘;—_%).

(7.10)
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The index S, is 0.25 when 1, is extremely close to the event
horizon at whichr,, =1, = 2rE,'ym*21 ,and V(p/c =0.5.If S >0.25,
we can find the solution for v /¢ = 1, such as ym* >1 withr,, <t
i.e., the surface of the IMSBH is clearly inside the event horizon
and apart from the event horizon even for the maximum case
of r,, . In Figure 14, S is exhibited as a function of o Passing
the boundary formed by the singular point at o =3, the features
of S, reveal different o, dependences. That is, for a, higher than
3, the index remains in a range from = 0.25 to 0.5, over most of
the range; and at o, =4.646, it is exactly 0.25 where r,, ~r,. We
should note that for this high o, value, there exist an extremely
high intensity of the gravity that would be completely different
from the orthodox Newtonian gravity which results distribution of
matter with density distribution function p = p, (r,,/ ™.

7.3 . Role of QMST

To solve the state of local force balance in the IMSBH starting
from the Einstein equation given in the second of Eq.(2.3), we
have employed the QMST that is set in the frame close to a system
of free falling system following the geodesics in IMSBH. As has
been described in Sub Sec. 2.2.2 , we can observe the state of the
force balance in IMSBH even though we cannot obtain the real
spacetime of IMSBH; as has been described in Sub Sec.3.3.3, we
are able to find the key relation to find r,, as consequence of the
quest to find the force balance in IMSBH observed from QMST. It
should be noted that the usage of QMST in Sec.2 is, therefore, not
to be purposed to construct the spacetime of IMSBH but to describe
the geodesic observed from a frame close to the freefalling system
; that is, we have derived formulae to express the force balance in
IMSBH observed in QMST based on the metrics to describe the
geodesics.

In Sec.5, we utilized QMST to describe the GWs which are
generated from IMSBH and propagate through internal vacuum
region of Kerr BH. In this case, we take QMST as a frame of
observation where the gravity is observed as weak field even that
is intense enough in the frame of the spacetime of IMSBH and
in Kerr. spacetime. Due to this rationale we have translated the
expression for time and space as given from Egs. (6.10) to (6.15)
to describe the phase and amplitude of the propagating GWs inside
of the BH with intense gravity fields.

8. Conclusion

The motivation of the present study was to investigate the proposal
of the existence of a SMBHB at SgrA* based on the observation
of decameter radio wave pulses independent of the established
method of tracking stars surrounding Sgr A*. The most critical
issue of the present study relating to our observed SMBHB
with an extremely close situation is energy dissipation due to
the generation of GW. When we apply the current GW theory
and evidences of the generation of GW reported by LIGO to the
observed system, SMBHB will merge within a few hours[45].
However, before we abandon the observed SMBHB as erroneous,
we have reinvestigated the present concept of the generation of
GWs from a BH. The following questions remain for studies of the

generation of GWs from a BH: 1) all results reported by LIGO at
present are GWs from the mergers of star mass objects; 2) sources
endorsed by theory assume star mass binaries of less than 200 solar
masses; and 3) all theories of GWs tacitly assume no remarkable
separation between the distribution of matter as GW sources and
positions of the event horizons of BHs. We restricted our argument
to the case of a supermassive BH whose possible matter density
becomes milder than that of a stellar-mass BH so that we could
apply the classical theory of plasma dynamics and try to find the
possibility of separation of the matter region (IMSBH) from the
event horizon, where GWs generated at matter sources cease to
propagate toward the outside so as not to cross the event horizon.
Various studies have addressed the interior of a BH using a family
of spacetime AdS,, for example, but we selected a unique way
aiming to find a collapsed matter region deep inside of vacuum
space in the interior region of a Kerr BH (IMSBH). To investigate
the separation of the IMSBH within the event horizon, we selected
a coordinate QMST, which is close to the freefall system in
IMSBH where the spacetime can be described as perturbation
from the Minkowsky spacetime. Although we could not express
the exact form for forces described in the spacetime of IMSBH, we
could observe a state of force balances that strictly reflect radius
of matter distribution region in IMSBH. The results of the force
balance were obtained through methods of analysis of classical
plasma physics characterized by modified Newtonian dynamics,
arriving eventually from Einstein’s equation for weak gravity
fields given with QMST. The result shows that the collapsed radius
of the IMSBH depends on the increased rotation energy of matter
as m, ¢* vy " for the iron ion mass m, with Lorentz factor y,~ .with
rotation velocity close ot the light velocity.

From the expression of the force balance state in the IMSBH, we
obtained results of the collapsed radius r,, for matter distribution
with respect to the radius of the event horizon r,, for Kerr spacetime
which envelop the IMSBH thickly in the end point of inside vacuum
region, as r,, =(8nl)r, N(1- (V /¢)? for the rotating velocity v,
that is assumed close to the llght velocity ¢ and rate { of rotatlng
plasma. The original cause of the contraction of IMSBH is the
gravity by which the matter is condensed, finding a balance point
by the centrifugal force due to systematic rotation of plasma and
the pressure that gains energy converted from increased gravity.
For the balance system consisting of pure kinetic forces, however,
we cannot endorse the final balance point. The present study
suggests that the runaway state of the contraction of the IMSBH
is avoided as associated with the generated Lorentz force induced
by electric currents that are raised in parallel to the toroidal motion
of the plasma. The investigation to determine the precise limit for
the final stable state will be deferred for future work considering
the electric current formations with many possible effects. We
assumed a range of contractions of the matter radius from 1/10 to
1/100 of the event horizon radius by considering a high Lorentz
factor y corresponding to the systematic rotation of the iron
ion with ¢ energy from approximately 500 Gev to 10 TeV. This high
plasma energy is thought to have only kinetic origin, including the
Lorentz force without nuclear fusion, because of the assumption of
the final stage of matter as iron plasma.
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From the member of the binary BH orbiting with speeds of 18 and
21% of the light, GWs are generated starting from the IMSBH.
We followed the established generation theory of GWs, starting
from Einstein’s quadruple pole source description. The theory
of the generation of GWs has proceeded independently of the
recently developing advanced theory relating to post-Newtonian
or post-Minkowskian approaches because the orbiting speeds of
the sources are still in the range in which we can apply the non-
relativistic case.

Although the generated GWs expressed with the TT gauge consist
of two fundamental components, these are expressed by one wave
formula using a complex exponential function because the present
study is focused on the propagation features rather than actions of
GWs. After generation from condensed IMSBH sources, the waves
propagate through the vacuum spacetime of the interior region of
the Kerr BH toward the event horizon from the sources at IMSBH
located deep inside. In rotating Kerr vacuum spacetime, there are
two characteristic points where the propagation of GWs cease.
One is the exact event horizon, and the other is the characteristic
zone controlled by the angular velocity of the vacuum region, as
indicated by the F or F? function (see Eq. (6.11)), that is expressed
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Appendix A
We start with Eq. (2.16) in the main text by changing tensor index from (u,v) to (a,f) as:

o ox ™M1 ax™i

Nag +Yap =8y Jra  GxF - (A1)
This relation can be inversely transformed as:
ox*  oxP
™M _
g = (Map + Yap) 507 55 (A2)

Four-dimensional time derivatives of the metrics of the above equation are expressed as:

dg(ill'v[) _ dggy ox* oxP QM d| ox% axB
ds  ds \ox™i gx™j + 8y ds |ax™i 5™ |’ (A3)

M
where gg\, =N + Ypv-

Because the metrics are time-stationary, Eq. (A3) can be rewritten as:

d[ox* oxP]
ds [9x™1 x| (AD)
Then, the term in the bracket in Eq. (A4) is expressed by:
ox*  oxP
b (A5)

Ix™Mi gx™j — i

where Kij“B is a function independent of s for all combinations of (a,f) and (f,7) Then, we find logically that 9x*/dx® 1 and 9xF/9x®)
are functions independent of s.Thus,

d / ox* _
d_S(W) —_ 0. Wes sEs EEE wEs EEE GEs EEE GEs EEw wEE wEw me wew (A6)

This is given in Eq. (2.20) of the main text.

Appendix B

Following Eq. (2.28) in the main text, which is repeated here as:

1
Ty = Tjk_EnjkT; (B1)

we calculate Tjk*, starting with T, as given from Egs. (2.41)—(2.47) in the main text. The scalar T in Eq. (B1) is given as:

T= T]OOTOO + n11T11+n22T22 + T]33T33 © eee nas e ees aas aes (BZ)
It follows that:
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A v2
T=—(pvg —AD) + -8 —T)VE 5 (B3)

where

A p8(r — r)yvinve,  Bi
Ar=—-:(1- + T 27
£ KCZ( Z)( > e (B4)

Inserting T in Eq. (B1), we have T, " as follows:

* *2 1 *2 A *2 V(Zp
Too = pYy —Ar+3 —(pvi2 — A) + —p8(r — vy —

CZ
1 *2 }\ *2 V(Zp
=2 |(pvg —Ag) + —p8(r — 1)y -3 - (B5)
A V2 1 A v2
Ti = —p8(r — )Yy —") sin’ — l—(py"{pz = Ag) + —p8(r = r)yy c—fl
1 *2 )\ *2 V‘%’
=2 (v —A) — P8~V Fcos2g|, ... (B6)

A 'z 1 A v2
T, = Epﬁ(r — )Yy -C—(g - cos?p — > [—(py*(pz —Ap) + Epg(r — )y C_‘;’l

1 *2 )\ *2 Vé
=3 (py(p — Ay) +Ep8(r—rs)y(p -C—2c052(p ;e (B7)
and
* 1 *2 }\ *2 V‘%
T35 = 5 (py<IJ — Af) — Epéi(r—rs)y(P |- ISTVPRRRR ¢ :15)) W
Because 1'>=n?'=0, it follows from Eq. (2.45) in the main text that:
T, =T = —5 —p8(r —ryy = SIN2Q. v (B9)

Appendix C
Whenwesety =y andz =z

, the integrations of the second and third terms on the right-hand side of Eq. (2.57) in the main text can
be rewritten by 1ntr0du01ng Vi (

ob)2&3

Yii(rob)z&s

xse PO(Xob — Xs) Y 202

Ys =Yob; Zs=Zob
dx., (C1
(Xob - Xs) s ( )

2
\%
l+< Y(p C + (1 Yth thl

4

—Xse

where -x_ and x__ are the limits of the source region for the coordinate x . Therefore, we can define the existence of matter with density
p confined within the source region as:
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po (Xob - Xs)

VZ Y BZ
* ¢ th

out side of Source

e R (07
We can further rewrite Eq. (C1) as:

Yii (ob) 283

v2 v B?
¥s=Y¥ob ; Zs=Zob
41 (Xob — Xs) s- (C3)

— 00

By applying the residue theorem to the integration of Eq. (C3), which can be considered as a loop integral with Eq. (C2), we
have:

V2 y h BZ
Yii(rob)2e3 = 1 ”+< Yo =2 + 1-9 t* 2c2 PATRYY

Xs=Xob ;¥Ys=Yob ; Zs=Zob

where i is the imaginary unit. In the main text, Eq. (C4) is simply expressed as:

2

A \77 Yi B?
Yii(Tob) 283 = IzP ["‘Z Yo C— +(1-07 t v

Y 262 210p |’

(C5)

Appendix D
The right-hand side of Eq. (3.9) in the main text can be rewritten when we Please compare with eq.(C4) which is in a same current. i to o

: 3 [od k
_ Lo, *zz ove vy |
1P e k_1<axk ax<)”

o <6V°‘ GVX> N ov*  0vy +<6V OV) D1
¢ |\ox ~ axa) Vx dy  Ox“ Yy "oz " axe) Ve DD).

where arguments are rewritten as x' =x, x*=y, xX’=z,v'=v_’=v and v’=v_ .
Starting from Eq. (D1), we can raise the regular vector form by introducing the unit vectors X ,9, and Z directed in the x, y, and z axes,
respectively; specifically, we form a vector, -(1i/4) p? %qu)*z V that is equivalent to the right-hand side of Eq. (D1), as follows:

_ <6vx avx> N ovy 0vy N <6vX avz> R
~Vax ~ax /¥ dy  0x T \az T ax ) 2 |R
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vy  0Ovy vy dvy vy  0dv,
+[<a‘a—y>Vx+(a—y‘a—y Wt e "oy )V

dv, 0vy dv, 0vy dv, 0dv, R
+[(§‘E>Vx+<g‘a w (G g

This is further rewritten as:

Ve (avx 6VZ) vy  0dvy 2 + vy 0Ovy ov, 0vy .
~(\az " ax /"2 ox 0dy Yy % ox dy Vx dy 0z Va |Y
dv, 0vy dvy 0v, R
+[<E‘E>“‘(E‘§>Vx 2 (D3)
When we apply the basic relationship of vector analyses, it follows that:
_[(0vx  0v, vy 0Ovy R
r"w”—[(z‘a)Vz‘%‘a—y Yy |X
AT Y A ZSA T
[\ 0x Jdy dy 0z
N [(0v, Ovy (avx avz) ~
\ay ~3z)" " \Gz " ax/) Vx|t (P

We can confirm that Eq. (D1) is equivalent to - (i/4) p? X-CYQ*Z rotvx v, as described by Eq. (3.10) in the main text.

z
A

X

Figure E.

The configuration within an IMSBH describing the source point r_and the observation point r , on the Cartesian coordinates (x,y,z).
Angles between vectors z and r, z and r,andr andr_ are given by 6,0 ,and O, respectively, for the case where r_ and r_are
expressed in spherical coordinates as (r ,, 0 , ¢ ) and (r, 0, 0 ), respectively.

ob’
Appendix E

Regarding Eq. (2.32) in the main text, the plasma of IMSBH rotates in all regions with constant velocity v around a common axis with
different angular velocity Q as:
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. . de
Vo =1r-sinb - (}, with Q = e (ED)

Associated with this toroidal flow of plasma, toroidal electric currents may easily be raised, as given by Eq. (3.26), which we repeat
here as:

I = o (r)nN;ev, (E2)

where o (r) expresses the rate of the velocity difference between ions and electrons; we assume that most ions are Fe™, with fairly
large integer n, because of ionization under extremely high temperatures. We must then consider the electromagnetic Lorentz force F_
= IxB due to magnetic field B generated by the current given in Eq. (E2). Specifically, B (=rotA) can be found by introducing the vector
potential, as:

A=-2|=qv, (E3)

where r_ is the same as the expression of Eq. (2.31) in the main text, and I_is the current at position r, where x =x,y =y, andz=z_.
When we set r, within the source region, we cannot avoid including A(r,,), at r =r, then the integration of Eq. (E3) was carried out
by applying the expansion of 1/r_ into the series of polynomials containing Legendre functions. For this expansion purpose, we rewrite
1/t , considering the relation of vectors r_ and r_given in Figure E, as follows:

1 1
— = for rop > ry (E4)

Jl + (;st)z ~2(+) coso

1 1
—= for rg >ryp, (E5)

Fos rs\/l + (rro—sb)z -2 (i"—:’) cos®

where rop, = |ropl, I's = |1g], and

Pob — Ps Pob — (ps)
2 2

For the expressions given by Egs. (E4) and (ES), the polynomial expansion is established as an application of the Legendre function, P_
(x), of the n-th order by setting the argument x to be cos®, corresponding to Egs. (E4) and (ES5), respectively, as:

cos® = cos(B,}, — Os) * cos? ( ) + cos(B,p, + 65) * sin? ( (E6)

1 > D
— = Z n—il P,(cos®) forrgp, > g (E7)
r‘OS n=0 rob
and
1 - rop b
— = —7 Pn(cos@) for rg > rgp - (E8)
1"OS n=0 1«S
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Because current I is expressed assuming that the current intensity is proportional to the plasma number density and velocity difference
factor, it follows that:

I'Mc 2+8
L= () 19, (E9)

Is
using the unit vector in the azimuthal direction ¢. Then, the vector potential given by Eq. (E3) is expressed by:

A(p(rob)
I 2T I'ob r 2+8 © R
Lilo_no smesdeS depg J. r2dry - (%) Z rn%Pn(cos@)
0 0 0 s £ Top
I'mc r 248 — 2
+f r2dry - ( MC) Z%Pn(cosé)) . (E10)
T'ob rS n=0 rS

Because the dependence of P, (cos®) on the arguments 0 and ¢_ is complicated, as expressed by Eq. (E6), we applied numerical
integration for integration by d0_and d¢, after finding the analytic formulae for integration by dr_ for Eq. (E10). Then, we arrive at the
equations for Aw/r,(6A¢)/(6r ), and (aAw)/((raﬁ), which become elements to calculate B=rotA; i.e., by rewriting r , and 0, as r and 0,
respectively, it follows that:

A_(p _ IJOIOrMC rMc f f 2n+1 (rMc>8
r - (n+8)(n+1—8)
. (r>np( 0)! sin6,d.d E11
n 16\ cos0®) ¢ sin Qs , (E11)

0A tolorme —(2n+1)6 vy 10
6r(p OOMJ f {Z[(n+a}(n+1—a)(%)

n=0

n r n—-1
-— <F_MC) l - P,(cos®);sinB,d0,deps,  (E12)

6

0Ap _ Holomc (rMc) jﬂjm Z 2n+1 (rMC)8

rao 41 r’/ )y Jo 0(n+8)(n+1—8) r
n=

1 (r_l\l:[c)nl 0P, (x) | d(cos®)

“1T5 F 0 sinB,d0ds , (E13)
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where

d(cos0®)

T —sinBcosBg + cosOsinbs - cos(p — @s). (E14)

In Egs. (E11)~(E13), the expansions of the Legendre function P, (cos®) are approximated by stopping the expansion at n = 6, and
differentiation (0P, (x)y0x was directly performed to the expanded polynomial P (x) of the Legendre function.

By the numerical integration of d0_ and do_ with respect to Egs. (E11)~(E13), we have the results of the generated magnetic field in
spherical coordinates as:

coseAq, 0A¢,
B, = (rotA), = ot T1oe (E15)
and
A 0A
Bg = (rotA)g = ——2 — —2, E16
o = (rotA)y = ——% - — (E16)

The numerical results of B_and B are given in Figure 3 for =0 in the main text, where quantities are normalized by p, I r,,, with the
unit 47x107 Wb/m? for the current density I, (A/m?) and core radius r,, . (m) of the IMSBH.
The Lorenz force caused by the toroidal currents and generated magnetic fields is:

[XB ol Ay +aA¢, o cos® Ay . 0Ay \ (E17)
X = —+ —r _ . 4
®\r  or P\sin® r rae )9
where r and 0 are the unit vector in the radial and polar angle directions, respectively.
In the main text, normalized A, is expressed by defining Aq)* as:
Ap = oA}, . (E18)

Appendix F
Regarding Egs. (3.37) and (3.38) in the main text, we are concerned here with the 6 dependence of the Lorentz force terms F, and F
expressed, respectively, by:

r (A, 0A,
Fir =n() - <T + ?> (F1)
and
r (A, cos® O0A;
Fig = — (2= ?). F2
Lo n(r)rMc< r sin® + r06> (F2)

To obtain a simple model of the force balance in the IMSBH, the point of interest is focused how the 0 dependence of F, and F , becomes

close to that of mechanical forces of rotating plasma, which is expressed by a constant for F,  and cos0/sin6 for F . Then, we calculate

F  and F  with a_(r)= a, (r,, /1)’ for ten cases of § in the range of 0<5<1, together with A * and the related terms given in Egs. (F1) and
r ¢ c | [0}

(F2) (see Appendix E). In these cases, 1(r) is expressed as:

n(r) =g (%)6 (F3)
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In Figure F, the calculation results of F and F, are presented for three example cases of 6=0~0.2. Among these results, we selected the

case of =0 with a standpoint to evaluate the range of divergence versus r/r,, . As given in the panels of 6=0, the estimated approximation
functions that represent the F, and F|  functions are:

Fi,=0, (F4)
and
{ 3 cosB i g < 5
" sinB’ 6 6
Fro = (F5)
l cosO 0 <g < s d 5T o <
—~ = S —and — = S T
sinB’ 6 6
O
—ns  —0G p—
! 5
- el
2
3 0
-1 El - - . by L
15; — Approximation - Function _: — Approximation  Function
231 S T B T, “ ; , , ,
0 30 o0 a0 20 150 180 0 E &0 a 120 150 180
u_‘j 05 5=0.1 5 j
c i L 3
S o S
1] =
c 1 o S
L.I:_s 15 % At
2100000 o | I I =
0 0 50 an 120 150 180 0
1
05 &d=10.2

|

o Bl &0 a0 120 150 120 1] kil B 40 1H) 150 THi

Polar Angle 8 (deg) Polar Angle 8 (deg)

Figure F: Calculation results of functions F, and F,, versus polar angle 0 with radial position vf,, as a parameter. Results are shown
for three cases of & from 0 to 0.2, as given in the corresponding panel. The case of 6=0 is selected as the suitable case containing an
approximation function of the 6 dependence, which is close to that of the mechanical terms in the force balance equations. In these
selected cases, the approximation functions are shown in the corresponding panels by pure red curves

Appendix G

Starting with Eq. (5.1) in the main text, the Einstein tensor ij is realized with the Ricci tensor R, and scaler Ricci R, which are
expressed by:

0%h 0%h; 0%h
L ) (G1)

1 km
= = — . nm - nm _ _
Rjk 2 ( Dby +1 Jx" 9xJ + oxn oxk  0x gxk

Eart & Envi Scie Res & Rev, 2023 Volume 6 | Issue 1 | 321



and

2
R = kR = 1 —20h + zniinmma—"m. . (G2)
) Ox™ 9xJ
When we introduce a new tensor 9, as:
1
@ik = hy — Enjkh' (G3)
then the Einstein tensor is expressed by:
1 az(pkm 62(pjm
G]k R]k 2 Tl]kR - E <_I:|(p]k + nmm aX] aXm fm axk Jxm
az(pjm
+ Njk m) . (G4)

At this stage, we apply gauge selection following the orthodox method of the reduction of GWs. When we follow the Lorentz gauge,
which allows

0@y
o, (65)
it is easily concluded that:
nmmaz_('ﬁ — mmi(aq)km) -0
ox) gx™ dxJ \ gx™ ’
T]mm —achjm = nmm i a(ij =0
axk gxm axk\ gxm ’
%M ) 0 (0¢m
Nik 37 gom — Tk npmm gl <6x_m = 0. (G6)
It follows from Eq. (G4), referring to the Einstein equation of Eq. (2.2) in the main text, that:
16mG
Do = == Tik- (G7)

Appendix H
As given in the main text, we introduced a new coordinate system (x’°, x'!, x?, x**), with a small deviation & such that:

x't = xH + -, (H1)

By this transformation, the metric tensor . in the x* coordinate system changes to g in the x™* coordinate system as:

ox' 9x"
—— dxtdx" = g, dx"dx". (H2)

gijdx"dx" = g{jﬁ %
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Then, hw, as given by Eq. (5.1) in the main text, is related to hij’ in the transformed coordinates as:

, ox't 6x’1
(nu + hl]) OxM a v — Nuv + huv (H3)

For Eq. (H2), we have:
ox" ox’ (. 9E\( 0%
axt ox¥ (8 +ﬂ> (8 0X">
0% 13
~ 8,8), + &l — 2

B axVv VoxmK
Because nij’ =N, it follows from Eqgs. (H3) and (H4) that:

(H4)

, 0% j 0% 98, 0%,
hHV = h nllsllla \Y n1]8V oxM hHV ox¥ oxh’

(H5)

Then, the metric @y, is transformed as:

‘v = hyy — 161 0% e B Lo (H6)
‘-Puv r]1] ua v Th] VaX“ znuv .

Here, h' is given by:

, &, 0%\ gt
" _T]HV(h““_ﬁ_ﬁ =h-255. (H7)

Thus:

0%, 0%, ag!

Ppv = Ppv — oxV M nuvﬁ : (H8)

Calculating d¢y,,,/9x" for @y, given by Eq. (H6):

axV — ax¥ \axV/ T gxv  Mvoxvaxy T W gxv gxk T N oxV oxH (H9)

More specifically, because n ,=n, = n,, for nonzero terms, Eq. (H9) is equivalent to:

0Py 0@y, <(’)x"> 0y 92 92k 92EH

0Py 0@y,
ax'v oxV

For the selection of the Lorentz gauge 6(pw’/ 0x"¥=0and 6(pw/ 0x'= 0, it is required that:

— O, (H10)

O = 0. (H11)

To clarify the TT gauge expression for the GW, following the standard processes, we express 9,9 and &" as propagation functions,

as follows:

n?
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Quy = A’u\,exp(jkmxm), (H12a)
Oy = Apvexp(ikyx™), (H12b)
¢ = B”exp(ikmxm), (H12¢)

where i is the imaginary unit, and k_ is a four-dimensional wavenumber of the harmonic waves. In Eq. ( H11), AHV’,AW, and B*are
amplitudes of the corresponding harmonic wave expressions. Corresponding to Eq. (HS), therefore, we have:

Ay, =Ay — i(nwka“ + Nk, BY — nwkuB“) . (H13)

From this relationship, we can find constraints for AW’ and A“V asA, =0and A =0, respectively, for suitable values of B" as functions
of B that satisfy:

NookyB® +MyykoBY —MgykeB® = 0. (H14)

Further constraints to A and A can be found when we investigate the Lorentz gauge given by a(p '/ 0x")=0 and 6(p /0x" =0, in
terms of Eqs. (H12a) and (H12b) ie.,

ik, Ay, = ikyAyy + ky(nyukyB* +nyk,BY —nk,BH*) = 0. (H15)

Then, it is required that:

kA, =k,A,, = 0. (H16)
The traces n* (pw’ and n" 9, are expressed by:
n“VA'w = T]uvApv_ i(ﬂ“"ﬂuuka“ + ﬂ“vﬂwkuBV - nwnuvkuBu) : (H17)

Then, the traceless condition is confirmed for the case:
(M*nyukyBE +1*¥ny k, BY — 0,k B*Y) = 0. (H18)
Specifically, for A’=n* A =0, which is equivalent to @’= 0 and h’=0, it is required that:
M"Y AL = n°°Ago + 1AL +1*AY, + 0P A, = (H19)
Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as:
koB® + k;B! + k,B2 + k3;B3 = 0. (H20)
The relation in Eq. (H19) is rewritten, considering A = 0, as follows:

,1+A,22+A,33:0. (HZ].)

Further, considering all possible constraints at this stage, givenby A ’=0and A =0,k Aw’= 0, and Eq. (H.19), we have the following
four linear equations:
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11 tA, +A5=0
ki Al + kpA%, + k3Alz = H.22
kl AI + kl ! + kl ! — . ( " )
1021 20122 3023 =
kiAis + kyA%; + k3As3 =0
Here, we are allowed the freedom to select two amplitudes of the metric, among Aw’, as arbitrary values; then, the remaining AHV’ can

be fixed by solving Eq. (H.22) as functions of the two selected arbitrary Aw’. We then select A, ” and A ,” as independent amplitudes to
decide ¢, and ¢,,’. More specifically, the linear equation Eq. (H.22) is rewritten for the four unknowns A ;”,A,,°,A, . ,and A, as:

0 1 01 13 —Al,
ks 000 22 —kiA1; —K3AY,
i I 7 = ) H23
0 k;, ki O 3 —K! A, (H23)
ki 0 Kkj ki 53 0
with solutions:
T kll ,11 + kIZAIJ_Z )
13 k13
, (K +k5)A1; + 2kikyAT,
22 = k'zz + k’32
!/ 4 4 ! ! ! ! " > H' 24
(K O+ RDAG + ki AL (H.24)
23 K5 k7 + k7
, (k2 +kP)AY; + 2K kAT,
3 k% + k¥ J

Whole equations in Eq. (H.24) are given as Eq. (5.15) in the main text.

Appendix I
We start with the retarded potential formulation given as Eq. (5.17) in the main text:

(or) top — I‘%) . S(F(Egr) _ rS(or)

o[
S

c4

hi (o) = — ) aver (I1)

rOS

(See the main text for all notations relating to Egs. (5.17) and (5.18).) As given in Figure I, four Cartesian coordinate systems with
supporting spherical coordinates are set to describe an orbiting IMSBH: specifically, the coordinate system (x©7,y",z) describes the
entire binary orbits and coordinate system (x®,y,z(%) describes the interior of the Kerr BH and IMSBH of Gam, where the y® axis

rotates with phase angle Q _, t:

XéC) = Xgor) cos(Qorpts) + ygor) sin(Qorpts) )
Y§C) = —Xgor) sin(Qorpts) + Y§or) cos(Qorpts) - Rgam ) (12)

ch) — Zgor)

where R is the orbital radius of BH Gam. In the coordinate given by Eq. (12), we rewrite Eq. (I1) as:
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i Z(tS)/ z(or)
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OF ORBITS
Quuts yx(or)
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y(ts)

Figure I: Coordinate systems for orbiting IMSBH of the binary supermassive BHs whose orbits are described in the Cartesian coordinate
system (x(‘”) y(©0,z(D) with the origin given at the center of the binary orbits. The center of IMSBH that is assumed to be spherical with
radius r,,_is located in the direction of the y™ axis with distance R, , i.e., the orbit radius of BH Gam; the Cartesian coordinate
system (x®),y9,29)), whose origin is set as coinciding with the center of the blnary orbits, is defined so that the x® and y" axes are
in the orbital plane, setting y* to coincide with the moving radius of the orbiting Gam. The Cartesian coordinate system (x©,y©,z©) is
defined by setting the origin at the center of the orbiting IMSBH. The directions of all axes are set parallel to the corresponding axes
of the (x),y,z™) coordinate system. The source position in IMSBH given by the position vector r_ is expressed by the Cartesian
coordinate system (x’,y’,z” ) defined by rotating the (x©,y©,z) system with respect to the fixed origin at the center of IMSBH so that
the z’ axis coincides with vector r . In this (x’,y’,z’) coordinate system, the integration of Eq. (I1) can be expressed with simple steps

by transforming to spherical coordinates.

hij" (ron) = —— (13)

S I«OS

where r =[r ©-r©| forr © andr© are vectors of the observation point and source position, respectively, defined from the origin of
the coordinate at the center of the IMSBH. Considering the relation of the unit vectors in the two coordinate systems (x©,y©,z) and
(x,y',z' ) whose relations are expressed by:

%' = —sin@ypR© + cos@4Ly®
§' = —c050,,c05@pRS — c0s0,psin@,L Y + sinbpp2© (14)
2’ = sinB,pcosPopX(© + sinb,ypsingyL 7 + cos8y,2()

we can write the relation of Vectors r( and r in terms ofr,' and r/ in the transformed coordinate system, i.e., r, —|r r | Ir,-
Therefore, when we select r ;' in the dlrectlon of 2", the dlrectlonal cosine is expressed as follows:

Iy " Ts = Iop.T's COSOgs, (15)
where 0 _is the angle between vectors r " and r' observed at the center of the IMSBH. Rewriting this using r_,r, 0, ,and 0, as given
in Figure I, i.e.,
Zob = Tob, X§ = I'sSinBscos@s, Y& = rgsinfgsineg, and
Z¢ = rgcosby, (16)
it follows that:

= |r), — 1% =12, + 12 — 2ryprscosf ;. (17)
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When we rewrite the integration given by Eq. (I3) in coordinates (x®),y®,z®) to the expression in the (x',y',z' ) coordinate system, it
follows that:

r
4G ¢ Tij(rs, top — 22 _
h;l;T(FOb) =~ ( < )I‘g sin6ysdrg d6,sdes, (18)

4
c* Jg Ios

where r,0_,and ¢_ are spherical coordinates related to (x',y',z" ) as:

X¢ = I'sSind,scos@g
Ve = I'sSind gsingg . (19)
Zg = I'sC0SO g

Then, from Eq. (I7), we have:

Tos = Jrgb + 12 — 2ry,rsCos0,; . (110)

Using Eq. (I10), we can rewrite Eq. (I8) by expanding 14, to the first order of r 4, , a

h'iIJTT(rob)
LT
o M) o)
=—= - r2 sin@,,drg d0,sdes . (I11)
s ob

Using dV ' for integration of the first term, it follows that:

r
4G Tjj (rs, t — =22
hTT(Fos) =T ( £ )

dvi
Tob *

Iy
o t_T) 3si 112
r3sin20,s drgdf,dep. (112)

Because the second term on the right-hand side of Eq. (I12) vanishes for integration by 0__ in the range of 0<0 <, we have the same
result with the case of the remote source approximation, given by:

r
4G  Tylrs,t——2
hiT (o) = iy ( o £ )stf- (113)
S o

Because r  and r , do not vary when the coordinates are transformed from (x',y',z' ) to (x,y*",z"), we can express Eq. (114) in the
form of an orbltlng binary as:

(o) Tos (or) _ (or)
4G  Tij(rop stop — =) 8(ry y — T
hiTCon)= —— s (o < )b (=% = )dvs(“). (114)
S o

For the source term in Eq. (I14), we can apply Einstein’s quadrupole theorem to the IMSBH of Gam in the binary orbit as:
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(or) I' i
2G 02 Too (Ts™ 7 tob x'x)
it (e : f (x ) v (115)

ob) = —— "=
C atob I'op
This result is given as Eq. (5.19) in the main text.

Appendix J

For Egs. (5.19) and (5.20) in the main text, we have approximated expressions by taking x=R
considering R, >»x© ,and R, >y ©, as:

Gam €OS(Q_ t ) and y=R__sin(Q_, t ),

TT
hig (ry,)
2 (or) (or) _ _Tos 1+ COS(Z-Qorbts)
2G 6_2 pc 8( % Vs y t ) Gam * 2 qu e’ J1)
= _C_4 S atg Iob s
and
hTT(rob)
(or) (or) r
3 _@ f 6_2 pc 8( —XYs " —Y top— %) Gam [2 Sln(z-ﬂorbts)] (or) (JZ)
- ¢ s ot2 Tob
Differentiating by t, Egs. (J1) and (J2) are rewritten as:
hTT(Fob)
r
~ EJ- pC28 (Xgor) X, ygo r) Y, topb — %) . [_R%}amﬂgrbcos(z'ﬂorbts)] dV(Or) (J3)
=- S
s Tob
and
hTT(r ob)
Iy .
_ EJ pc 8( (or) - X, ygo - Y, tob — T) [ RGam‘Q‘grbSIH(ZQ'orbts)] dV(Or) 4)
ct r s
s ob

where R, and Q  are the orbiting radii of the BH Gam and the angular velocity, respectively. We calculated GW in the region inside
the event horizon of the Kerr BH, where the radius of the event horizon r, is in the range of 100r,, >r,>10r,, , with respect to the radius
r,,, of the IMSBH as the source. In this case, the distribution of the source is not simply considered as a point; we should consider the
distribution of the source within the range r,, >r . Then, applying the same processes for treatingr =|r -T |, as is the case in Appendix I,

where we selected local spherical coordinates to express dV © =dV ©, Egs. (J3) and (J4) are rewritten by expanding r__ to the first order
ofr/r, as follows:
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TG = 4G j J JZn pc 6 [tob — rOTb(l — l}:)—sbcoseos)])

Tob

[RGamQéamCOS(ZQorbts)]rszSinedrsdedq) (]5)

and

] 25 (ts — [top — 222 (1 — == cos6
hTT (1) = 4G LFM fo“ joz“ pe (ts [tob c( T, €08 )D

Tob

X [RZ,,,Q2,,5in(2Qpts)r2sinBdr dode. (J6)

The relations in Egs. (J5) and (J6) are further mainpulated to realize:

hg; (r ob)

811(;.’- .[ p-RZ, Q2% cos [ZQorb( ob — —) + Zﬂorb coseOS r2sin6dr,d6 a7

Top

and

h;’}I" (rob)

SRGJ Jﬁp R%, Q2. sin [Zﬂorb( ob — —) + ZQorb coseOS rs smedrsde. (18)

Top
When we estimate the term (2Q_, t_cos0_)/c at the phase of the sinusoidal function, the value is clarified to be less than 10~ in the case
of the present binary system. Accordingly, we can only consider the term 2Q__ (t,-r /€) in the phase of the sinusoidal function. As results
of the integration in Egs. (J7) and (J8), we have:

4GM [RZ,, Q% Tob
h;;{ (tob:rob) = c2r b< ar;z > ) cos [Zﬂorb( ob ™ (C) )] (]9)
o
and
4GM (R%,,.Q b
hTT (tob: rob) -2 < fam orb) sin [Z'Qorb( ob — Lo )]: (]10)
C“Top c? C

where M is the total mass of the BH, given by:

4T
M= riep, 011)
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with respect to the radius r,, of the IMSBH, simply assuming a homogeneous state of the matter.
When we apply the Schwarzschild radius rg=(2GM)/ ¢’ , orbital velocity v, , and initial average phase @, the results can be rewritten
as follows:

T o) = 275+ (“2) - cos [202 (500 = 22) + ] 012)
and
B o) = 2 (“22) - in [20,1 (1o - 22) + ). 013)
Appendix K

Egs. (6.1) and (6.2) in the main text are given in Cartesian coordinates with the origin at the center of the orbits of the binary BH, as
depicted in Figure 10 of the main text, where the spherical coordinates whose origin is at the center of the IMSBH are defined. These
two coordinates are related as follows:

X7 = Reamcos(2,ppt + ®g) + 7sind - cosg

Y = Rgamsin(@,,pt + ®,) + rsind - sing : (K1)
(or) _

zg ~ =rcosf

For the spacetime of the GWs h " and thTT, we applied the transformation to include expressions in the spherical coordinates at a given
plane with a fixed 6. Following the formula of the transformation of the tensor, the transformed tensors hnTT,thT,and hwTT are expressed
as:

pr 0% 0% LIT 0x dy hTTa_y oy

TT _ —_—
hrr - hxx or' ar' Xy ﬁar, vy or’ (’)r” (KZ)
ox 0x ox 0
hIT = BT e 2y pIT . Y ey OX OV gy O OY (K3)
® or' r'dg Y or' r' o XY 1 a@ar | Y or'r 0’
PTT _ T 0x . 0x or OX . dy —d . dy 4
$e T 1 dg Yrop rrop Vr'de r'ie’ (K4)
where x=x§or), y = ys(or), z= z_g"”, and ' = rsiné, and the spacetime h;; is given as
hyy = —hs by local plane wave approximation. From the relations given in Eq. (K1), it follows that:
dx/dr’ = cos,
0x/r' dp = —sing
dy/or' = sing (K5)
and |
dy/r' 0@ = cos@ )
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Inserting the relations in Eq. (K5) into the corresponding terms in Egs. (K2)—(K4), we

have:

hIT = hiTcos?¢@ + 2h]Tcose - sing + hiTsin?¢ = hicos2¢ + hyy sm2(p

_ 4t (Veam)? _Tob _
=4t ( - ) - cos 200 (tob ° )+ @ - 26)], (K6)
hiy = —hygg cos@ - sing + hij cos? — hygsin®@+hyysing - cosg

—hyy sin2¢ + hyJcos2¢

_ 4%. (VG%)Z - sin [Zﬂorb (tob - F"Tb) + D — 2@], (K7)
and

hTT — hTT _hTT

sin?¢q — 2h1T y SN - cos@ +hyycos Q=
= —hf. (K8)

cos2¢@ — hT sm2<p

To determine the above relations, we utilized the expressions in Eqgs. (5.26) and (5.27) in the main text for h ™ (=-hyyTT ) and thTT,
respectively. The relations in Egs. (K6) and (K7) are given as Egs. (6.6) and (6.7), respectively, in the main text, setting ¢ to be an
arbitrary constant @ . Notably, the phase is rewritten in the expression of Egs. (6.6) and (6.7) through the argument given in Eq. (6.4).

Appendix L

As expressed by Eq. (6.9) in the main text, we have a compact form that describes the two basic components of GW as:

= hE‘IT +1i hg‘(}[}‘ = A+ cos(2Qorptob — KobTob + @1 — 200p)
+iA ’ Sin(Z-Q'orbtob - kobrob + CDI - 2(p0b) . (Ll)

Because the GW equation given by Eq. (L1) is an expression in QMST, transformation is required for the expression in spacetime of the
Kerr BH for the vacuum region inside the event horizon to determine the real amplitude of GW in the BH. To prepare for this purpose,
we rewrite H in Eq. (L1) as:

TT
hIT = KIT < h )
rr T hTT

= h’g-r[l + itan(z-ﬂorbtob - l(obrob + CDI - 2(p0b)]. (LZ)

This is a kind of degenerated expression of GW in the observation frame, where we can observe the spin motion of Kerr BH in QMST
(QM in following equations). Between the QMST and the spacetime of the vacuum region inside the event horizon of Kerr BH (B), the
four-dimensional proper length is co-occupied as:

vZ z
—c?(1 - C—(g) ~dtgy + drgy = —c?dtg - F? + Zdrﬁ : (L3)
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The GW spacetime (h_ ™) in QMST is transformed to the expression in the Kerr spacetime as:

arQM ) arQM

hTT
arB arB

(B)rr

= hiT (L4)

From Eq. (L3), we calculated (0r,/(0r,) considering the relation given in Eq. (6.13) in the main text; the result gives:

—_— X
hg‘]g‘)rr =hi"- A (L5)

By translating the spacetime in Eq. (L2) to the Kerr spacetime, we obtained the results for the amplitude given by Eq. (6.15) in the main
text.
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