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Abstract
The matter distribution of the extremely high-energy and dense plasma inside a supermassive rotating black hole has been 
theoretically investigated, starting from Einstein’s equation with the source term, in the coordinate close to the free-falling frame 
along the geodesics of interior matter, where the state of the force balance can be described with the formalism of modified 
Newtonian dynamics. For a model of equal-rotation velocity of matter, where the main component of plasma is rotating around 
a common axis with the same velocity close to the light velocity, with a high Lorentz factor (gamma rate), it is concluded that the 
matter distribution is condensed to a region with a much smaller radius than that of the event horizon of the Kerr spacetime. The 
gravitational waves that are generated from the condensed matter region due to the orbital motion of the binary, return towards 
the source, after ceasing at the critical sphere in the vacuum region of spinning Kerr spacetime. At the stage where returning 
waves encounter with foreword waves, the gravitational waves are deformed to standing waves that carry no energy outside of 
the event horizon. We conclude that no gravitational wave is radiated from the supermassive black hole binary.
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1. Introduction
1.1. Relation to Current  Studies
Direct observations of gravitational waves (GWs) by LIGO 
[1,2,3] have opened a new avenue for the quest of GWs, after 
,the first indication was made by Einstein [4]. The LIGO team 
has frequently reported the detection of GWs generated by the 
mergers of black hole (BH) binaries. The objects of mergers of 
BHs have been estimated to be in the mass range of a star or 
intermedium masses less than 120M⦿. Through the history of the 
progression of theoretical studies on GWs, the LIGO results meet 
the expectation of  theorists, with no special room for argument. 
However, because BH mergers have not been directly confirmed 
by other means, except in the case of the neutron star merger [5], 
several works have attempted to investigate alternative objects 
such as the gravastar [6] or ultra-compact star [7,8] as mimics of 
a BH that has no event horizon, with similar density of matter to 
that of a BH. These alternatives have not yet been verified because 
of the current limits of the accuracy of observations. After a long 
history of studies on star tracking around SgrA* at the center of the 
Galaxy [9,10,11,12,13], the existence of the supermassive BH has 
been confirmed; recent results indicated a mass of (4.31±0.42)×106 

M⦿ [14], which was further improved to (4.28±0.31)×106 M⦿ 
[15].  Different from the star-tracking methods of the quest for the 
supermassive BH, we have proposed evidence for the existence of 
the supermassive Kerr BH binary (SMBHB) based on results from 
observations of decameter radio wave pulses (DRWP) at 21.86 
MHz from SgrA* [16]. Digitized data from observations whose 
signal-to-noise ratios are from 1/200 to 1/500 (i.e., extremely low) 
were transformed to Fourier-analyzed spectra; after sufficient 
averaging to eliminate background noise, the final data, called the 
BH code, were deciphered by applying the simulation technique 
to the original signals, which comprised two kinds of pulses; 
detected intrinsic pulse periods of (173±1) and (148±1) s show 
constant variation with common periods at 2,200±50 s. By 
attributing the pulses to spins of two Kerr BHs, we concluded that 
two supermassive BHs exist, temporarily called Gaa with the mass 
of (2.27±0.02)×106 M⦿ and Gab with the mass of (1.94±0.01)×106 
M⦿((4.21±0.03)×106 M⦿  in total), forming a binary system with 
an orbital period of around ~2,200 s. The orbital velocities of Gaa 
and Gab were also calculated as 18% and 22%, respectively, of 
the velocity of light. Interpretation [17] has been carried out for 
the evidence of the time varying emissions with regular period 
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of  2150±2.5sec observed by 1.3mm wavelength radio VLBI [18] 
, with time variation model of 1,3 mm wavelength radio wave 
sources associated with SMBHB orbital motions [17] whose 
parameters  are decided as results of  DRWP[16]. By this study 
to confirm the orbits parameters by coincidence between VLBI 
observations and DRWP results, we can state the existence of 
SMBHB at Sgr A* with such extreme parameters.

Thus far, when we apply the currently established theory of the 
generation of GWs from the binary BH without distinguishing 
between a star-mass BH binary (STM-BHB) and SMBHB, the 
existence of the above-described SMBHB system may not be 
accepted at all because of the extremely high rate of energy loss of 
the orbital motion due to the generation of GWs. However, if we 
have room to argue for the difference in the generation mechanism 
of GWs between the cases of STM-BHB and SMBHB, we could 
not abandon the proposal of the existence of the SMBHB at SgrA*. 
Thus, we presently have evidence with which pursuing the present 
study can be considered to be meaningful; that is, there has been 
no report of the merger of a SMBHB by ongoing observations of 
GWs, despite frequent reports of the merger of BHs of a STM-
BHB and an intermediate-mass BH binary [19]. The trial to 
observe the continuous GWs from the expected SMBHB has not 
been detected yet [20]. 

Currently we have thought that the most important references 
to the standpoint of claim of existence of SMBHB at SgrA* are 
the results of EHTC works [21,~26]. Though the EHTC forced 
to release the single image of BH shadow at SgrA* we are not 
able to accept the results because of clarifying discrepancy or 
erroneous conclusion. The erroneous conclusion is disclosed by 
Miyoshi et al [27] who pointed out that the EHTC made basic 
misunderstanding  for their mapping processes of the VLBI 
data which resulted construction of wrong image for shadow of 
black hole M87*[28,~33]. Miyoshi et al claim [27] that there is 
an inherent hole , of the data distribution versus viewing angle, 
that coincides with a size resembling the shadow of the black hole  
caused due to biased locations of  the global scale distribution of 
observation station of VLBI of the EHT. It is naturally adopted 
to the case of the SgrA* whose observation data are collected 
almost in the same periods with completely same VLBI system. 
Furthermore  we consider that  in the EHTC approach constructing 
image of the black hole shadow, the problem of the time variation 
of the observed data [34] is not solved even that is the principal 
cause for delaying the release of the image of the black hole 
shadow of SgrA*  about three years compared with the rerelease 
of M87*. 

1.2. The Purpose and Uniqueness of the Present Study
Thus, the purpose of the present study is to investigate a possible 
model that allows the stable existence of the extremely close case 
of the SMBHB without outward radiation of GWs. A significant 
step toward the purpose of the present study is to achieve a 
physically reasonable model for the distribution of collapsed matter 
as “inside matter” of the supermassive BH (IMSBH, hereafter). 

Current studies on the interior of the Kerr BH are described based 
on the anti-de-Sitter (Kerr-AdS) space time [e.g.35,36,37]. Such 
works for the interior of the Kerr BH generally concern with the 
stellar-mass BH, where the source energy tensor of the Einstein 
equation consist of the quantum dynamical wave equations 
for the quark–gluon plasma. In this work, for the case of the 
supermassive BH, the Kerr-AdS space time was not used. There 
are three reasons why we applied the present unique method 
without following the already established space time to investigate 
the interior of the Kerr BH. The first is because we are concerned 
with the supermassive BH, whose maximum possible density of 
interior matter is in a relatively tenuous state because the average 
density of the BH interior follows the inverse square law of the 
total mass. For example, in the case of a supermassive BH with 
mass of 106 M⦿, the density becomes 10-8 ~ 10-12 that of the stellar-
mass BH. Thus, we can apply classical dynamics to the rotating 
plasma as the interior matter of the BH. The second reason that 
we do not use the direct spacetime of the interior matter region 
of the BH, is in the coordinate system covering the wide range of 
space of the binary system. More specifically, the orbital motion 
of the binary can be described by Newtonian dynamics, while the 
generation of GWs caused by this orbital motion is exactly the 
subject of the general relativity governed by the spacetime around 
the source region. Rigorous connection of the dynamics of the two 
regimes is possible when we transform the physical processes to 
the quasi-Minkowsky coordinates that are selected as a common 
observation frame of the two regimes of physics. The third reason 
is that unlike the de-Sitter or anti-de-Sitter spacetime, whose 
curvature is controlled by vastly distributed inside matter, we seek 
the collapsed matter region, leaving a wide vacuum region on the 
inner side of the event horizon.

Accordingly, we selected observation coordinates that are not 
fixed to the BH but are close to the freefalling system following 
the geodesics of the corresponding BH interior. The analytical 
method to determine the force balance state is based on the quasi-
Minkowsky spacetime (QMST) that starts from Einstein’s gravity 
equation, setting the perturbation spacetime from the Minkowsky 
spacetime. The method to establish the forces follows that 
indicated by Einstein himself [38]. In the detailed phase, however, 
we have modified his processes from two aspects. First, contrary to 
the case of the present study with high-speed rotation of the inside 
plasma with a velocity close to that of light, Einstein selected in his 
lecture, the case of low-speed matter whose velocity is negligible 
compared to that of light. Second, regarding the function to set 
the source energy tensor, we applied the delta function for locally 
moving matter because the energy carried by moving matter works 
at the moment of mutual interaction only at a given point, unlike 
the case of gravity that shows effects of the interaction with matter 
located at remote places. The characteristic point of the present 
model is the assumption of the equal speed of matter rotation with 
quasi-light velocity, with a high relativistic gamma rate, in a range 
greater than 10, to increase momentum of the rotating matter. Then, 
in the model, the radius of the matter region is condensed from 
1/10 to 1/100 of the radius of the event horizon, maintaining the 
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observed mass and rotation parameters to describe Kerr spacetime 
in a vacuum region as the same as the observed values.

The studies from Sec.2 to Sec.4 concern with formation of IMSBH 
that is located deep inside of BH contacting with the boundary 
of Kerr spacetime that is characterized as vacuum solution, of 
the Einstein field equation, which is constructed with the mass 
and angular momentum of IMSBH; It should be emphasized 
that contents in Sec.2 to Sec.4 are not purposed to modify the 
orthodox form of the Kerr spacetime but for IMSBH inside of 
the Kerr spacetime. Then, in Sec.5 and Sec.6, the generation 
and propagation of GWs are analyzed over a wide vacuum area 
inside the region of the event horizon of Kerr spacetime. Current 
studies on the radiation of a GW from a BH state that there is no 
definite distinction between neutron stars concerning either quasi-
normal mode radiation [39,40] or radiation of GWs associated 
with the orbital motion or merger of compact objects [41,42]. 
More specifically, in the case of quasi-normal mode oscillation, 
the existence of the event horizon that distinguishes the BH from 
other compact stars such as neutron stars is considered. However, 
because there is no clear separation of the vacuum region from 
the matter distribution, oscillation of the event horizon is assumed 
simultaneously [43]. Thus, current studies on the radiation of a 
GW from a BH are not impeded by the existence of the event 
horizon; this may be accepted in the case of a stellar-mass BH, 
where the separation of the matter zone from the event horizon is 
not clearly discussed. 

In this study, we analyze the generation and propagation of 
GWs, for the IMSBHs isolated deep inside of surrounding Kerr 
spacetime of a supermassive BH. It is important that the result of 
the present study reveals that the sources of GW are not available 
outside of the event horizon of BH a priory; GWs are generated 
by the acceleration of the quadruple moment source formed by the 
binary configuration and their orbital motions of IMSBHs, but the 
propagation of the GW is controlled due to the constraint of the 
Kerr spacetime inside the event horizon. The waves are deformed 
to standing waves that are unable to carry energy outside, as 
described in Sec. 5. Thus, we conclude that no GW is radiated 
from the SMBHB, as described in Sec. 6.

2. Classical Approach to Analyze the Internal State of IMSBH
2.1. State of Matter Distribution
The average density of possible matter inside of a BH generally 
becomes milder as the mass becomes larger. The average density 
of a BH, where the matter radius is assumed to be close to the 
Schwarzschild radius rs with a spherically symmetric shape and 
total mass of M, can be simply estimated using:

where M⦿ is the solar mass, and ρ⦿ is the average density of the 
solar-mass BH with Schwarzschild radius rs⦿=2GM⦿ ⁄ c2.  In Figure 
1, the interior state of  possible matter of a BH is given in terms 
of the estimated average density of the matter region (top panel) 
and the average separation distance of baryon (bottom panel) for 
the assumed matter radius close to the event horizon; furthermore, 
the average particle distance d is calculated from d=N(1⁄3)  for the 
number density N of neutrons for regime I and ions for regime II. 
The mutual distance of particles in regime I covers the distance 
range less or close to the neutron radius rn, reflecting the state of 
quark–gluon plasmas that are described by quantum mechanical 
theory; whereas, the particle distance in regime II is larger than 
104 rn, suggesting high-density plasma that can be described by 
classical plasma physics.

For the plasma state in regime II, we assume iron ions throughout 
this work, considering that the matter is in the final stages where 
energy is provided only by gravity; possible accreting components 
with atomic nuclei lighter than those of iron are considered to be 
fractional and to arrive at the final stage after a relatively short 
period of nuclear fusion. The mutual distance of particles in 
regime I in Figure 1 covers the state of a stellar-mass BH, while 
the particle distance in regime II is for the supermassive BH. These 
interior states of matter show a clear contrast to the states of the 
stellar-mass BH, regime I in the bottom panel of Figure 1, whose 
masses are smaller than 100M⦿, where the average separation 
distance of particles is less or close to the neutron radius rn.  This 
state is currently considered as quark–gluon plasma by quantum 
mechanics. To describe the interior state of a supermassive BH 
with a mass larger than 105 M⦿, we can therefore consider states of 
plasma whose physics can be described using classical mechanics.

2.2. Description of Dynamics of IMSBH by Bridging Einstein’s 
Equation to the Modified Newtonian Dynamics
2.2.1. Basic equations
We start with the Einstein equation to find the spacetime of the 
present study for the supermassive BH which consists of Kerr 
spacetime for vacuum solution of the Einstein equation and a 
spacetime for IMSBH which is located inside region of Kerr 
spacetime with assumed spherical boundary; that is.

where Rjk,R,gjk,and Tjk are the Ricci tensor, scalar Ricci, metric 
describing spacetime, and the source energy tensor, respectively; 
and κ is Einstein’s coefficient that connects energy to the four-
dimensional curvature providing forces. Because the regions of  
vacuum and distributed matter are clearly separated in the present 
model, we can rewrite eq.(2.2) as
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where superscripts (K) and (M) are for the Kerr spacetime and 
IMSBH, respectively. Hereafter we concentrate to the space time 
of IMSBH before arriving at Sub. Sec 3.5 where we consider the 
boundary of the Kerr spacetime and IMSBH. 

To find the spacetime of IMSBH, we have started with a standpoint 
to search for suitable coordinates to describe the dynamics of 
plasma as IMSBH. Then, we select a coordinate close to the 
freefall system to observe the balance in the forces in the regime 
of classical dynamics; hence, the spacetime is expressed by 

perturbation of the Minkowsky spacetime. We determine the 
perturbation terms by following the methods of Einstein, who 
demonstrated the connection to Newtonian dynamics of matter, 
for weak fields, starting from the Einstein equation with source 
energy tensor [38]. 
 
When we express the anti-covariant vector in the coordinate of 
the IMSBH, as x(M)i (coordinate x(M)i hereafter) geodetics in the 
spacetime of the IMSBH can be written as:
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For the geodesic of IMSBH given by Eq. (2.4), we obtain the geodesic in Eq. (2.5) with the transformed affine coefficient given in Eq. 
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with density ρ from Eq. (2.7) as:

 

 12  
 

 

 

 

 

 

 

 

 

 

 

 

 

For the geodesic of IMSBH given by Eq. (2.4), we obtain the geodesic in Eq. (2.5) with 

the transformed affine coefficient given in Eq. (2.6), corresponding to the geodesic in 

our selected QMST. Then, we can observe the force balance acting on a group of test 

particles with density   from Eq. (2.7) as: 

     
   
          

   
  

   
                                                                 (    ) 

As described in the following sections, the force balance detected in the QMST is 

endorsed as the true state of force balance in IMSBH. From the geodesics of the 

IMSBH given in Eq. (2.4), the forces working on test particles with density   and the 
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Figure 2: Configurations between the source point rs  and the observation point r0b. Case 1: r0b is located outside of the source region. 
Case 2: r0b is located inside the source  region; this is the case of the present study.

 

 12  
 

 

 

 

 

 

 

 

 

 

 

 

 

For the geodesic of IMSBH given by Eq. (2.4), we obtain the geodesic in Eq. (2.5) with 

the transformed affine coefficient given in Eq. (2.6), corresponding to the geodesic in 

our selected QMST. Then, we can observe the force balance acting on a group of test 

particles with density   from Eq. (2.7) as: 

     
   
          

   
  

   
                                                                 (    ) 

As described in the following sections, the force balance detected in the QMST is 

endorsed as the true state of force balance in IMSBH. From the geodesics of the 

IMSBH given in Eq. (2.4), the forces working on test particles with density   and the 

force balance states are: 

 

Figure 2. Configurations between the source point    and the observation point    . 

Case 1:     is located outside of the source region. Case 2:     is located inside the 

source  region; this is the case of the present study. 

 

  ( )      
  ( ) 

                
( )   ( ) 

     
( ) 

                                         (    ) 

For        ⁄  in Eq. (2.5), which expresses the geodesic in QMST, we can determine 

the following relation: 



Volume 6 | Issue 1 | 284Eart & Envi Scie Res & Rev,  2023

 

 13  
 

    
      

  (
   

  ( )  *   
  ( ) 

      
  ( )   

   ( ) 

                                             (    )      

Considering the time-stationary condition (see Appendix A), the first term on the right-

hand side of the above equation vanishes, as: 

 
  (

   
  ( )  *                                                                                   (    ) 

Then, Eq. (2.19), which reveals the force balance state in the IMSBH, produces the 

result to Eq. (2.20) as: 

    
                                                                                              (    ) 

Once Eq. (2.22) is confirmed, we can further realize, for QMST, that: 

    
   
     

 

                                                                                    (    ) 

The above-described logic indicates that the force balance of IMSBH is strictly 

reflected by the force balanced state described by QMST. Furthermore, because 

  ( )   ⁄  and   ( )   ⁄  are not necessarily zero for all of those terms, we should 

select the following in Eq. (2.19): 

   
( )                                                   (    )                                          

More specifically, around the point of the force balance, we can describe the dynamics 

in the IMSBH by applying the approximation on the frame of QMST. 

 

 

2.2.3. Einstein’s approach [  ].   
Substituting     to both sides of Eq. (2.15), we obtain the equation that was originally 

shown by Einstein as: 

 

        
 
  

                                                                       (    ) 

Because         , it follows from Eq. (2.25) that: 

      
                                                                                    (    )                                                             
Then, by inserting this    into Eq. (2.15), it follows that 

More specifically, around the point of the force balance, we can describe the dynamics in the IMSBH by applying the approximation on 
the frame of QMST.

2.2.3. Einstein’s approach [38].  
Substituting ηjk to both sides of Eq. (2.15), we obtain the equation that was originally shown by Einstein as:

 

 13  
 

    
      

  (
   

  ( )  *   
  ( ) 

      
  ( )   

   ( ) 

                                             (    )      

Considering the time-stationary condition (see Appendix A), the first term on the right-

hand side of the above equation vanishes, as: 

 
  (

   
  ( )  *                                                                                   (    ) 

Then, Eq. (2.19), which reveals the force balance state in the IMSBH, produces the 

result to Eq. (2.20) as: 

    
                                                                                              (    ) 

Once Eq. (2.22) is confirmed, we can further realize, for QMST, that: 

    
   
     

 

                                                                                    (    ) 

The above-described logic indicates that the force balance of IMSBH is strictly 

reflected by the force balanced state described by QMST. Furthermore, because 

  ( )   ⁄  and   ( )   ⁄  are not necessarily zero for all of those terms, we should 

select the following in Eq. (2.19): 

   
( )                                                   (    )                                          

More specifically, around the point of the force balance, we can describe the dynamics 

in the IMSBH by applying the approximation on the frame of QMST. 

 

 

2.2.3. Einstein’s approach [  ].   
Substituting     to both sides of Eq. (2.15), we obtain the equation that was originally 

shown by Einstein as: 

 

        
 
  

                                                                       (    ) 

Because         , it follows from Eq. (2.25) that: 

      
                                                                                    (    )                                                             
Then, by inserting this    into Eq. (2.15), it follows that 

Because ηij ηij=4, it follows from Eq. (2.25) that:

   -☐ γ =         

Then, by inserting this ☐γ into Eq. (2.15), it follows that

 

 14  
 

      
                                             

                                                                                                 (    )      
where 

          
 
                                                                                     (    ) 
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where            are the position vectors for the observation point and source position, 

respectively. Then, the scalar distance     between the observation point and source 

point is given as: 
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With respect to the two categories of configurations between source    and observation 

point     depicted in Figure 2, we are concerned with case 2. The perturbation metric 

   (   ) given by Eq. (2.30) is subject to the condition of inside the source region; that 

is, we cannot avoid the point where       in the processes of the integration to 

describe the metric of IMSBH. 

 

2.3. Perturbation Metrics of IMSBH in QMST  

2.3.1. Rotating state of IMSBH 

We start with the metric in QMST given by Eq. (2.8) that is understood as spacetime 

transformed from that of IMSBH; by rewriting to the spherical coordinates, we obtain: 
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Further, we consider the case of a supermassive BH where the IMSBH rotates with a 

constant velocity   , associated with additional components that have random thermal 

velocity    . Then, for the rotating component,    can be express by: 
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2.3.2. Setting of source function for rotating IMSBH 

The setting of the energy as the source function in the second of Eq. (2.3) is basically 

guided by Einstein’s concept [  ], where the energy expression is generalized from the 

case of special relativity as: 
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where   and p are the density at rest for ponderable matter and total pressure, which 

constitute the hydrodynamic component and magnetic energy, respectively. Considering 

the case of high velocity where (   ⁄ )   , we can define the energy density of 

plasma dynamics   for the IMSBH in the QMST frame as: 

 

 15  
 

     (     )      (     )    (     )     

 (     )                                 (    ) 
Further, we consider the case of a supermassive BH where the IMSBH rotates with a 

constant velocity   , associated with additional components that have random thermal 

velocity    . Then, for the rotating component,    can be express by: 

                          
                                                                           (    ) 

For this case, Eq. (2.32) is rewritten as: 

     (      )      (     )    (     )                                             (    ) 
where 

         (     ) (
  
 )

 
                                                                           (    ) 

When we find    for     , and     , considering      , under the condition 

    , it follows that: 

 

     (  (   ⁄ )     )                               (    )  

  

The present study is carried out in a coordinate system   (   ⁄ )     . Hereafter, 

we take d   as: 

     [  (
  
 )

 
]                                                                                     (    ) 

 

2.3.2. Setting of source function for rotating IMSBH 

The setting of the energy as the source function in the second of Eq. (2.3) is basically 

guided by Einstein’s concept [  ], where the energy expression is generalized from the 

case of special relativity as: 

           
   
     

 

                                                                         (    ) 

where   and p are the density at rest for ponderable matter and total pressure, which 

constitute the hydrodynamic component and magnetic energy, respectively. Considering 

the case of high velocity where (   ⁄ )   , we can define the energy density of 

plasma dynamics   for the IMSBH in the QMST frame as: 

Further, we consider the case of a supermassive BH where the IMSBH rotates with a constant velocity vφ, associated with additional 
components that have random thermal velocity vth. Then, for the rotating component, vφ can be express by:

κT  .                                                                               (2.26)      
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where ζ is the ratio of the plasma component, which is responsible for systematic flow, 

while the ratio (   ) is for the themal component;   𝜇𝜇 ⁄   with permittivity 𝜇𝜇  of the 

magnetic field in vacuum, is the energy density of the magnetic field generated by 

possible electric currents in the plasma distributed in IMSBH. Because generation of the 

magnetic field energy is directly related to the stage of the charge separation in the 

plasma, the existence of the magnetic energy is independently given to the mass of the 

matter.  In addition, relating to Eqs. (2.37) and (2.39),    we define  Lorentz factors,     

and      as: 
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i.e., the plasma components of the rate   take systematic motion in the azimuthal 

direction   with velocity   , which is close to the velocity of light c, while components 

with rate (   ) are in a state of thermal motion with thermal velocity    , which is 

also close to c. The dynamics of these plasma components are all under the effects of 

the magnetic field   and intense gravitational force. 

 

We start with the Cartesian coordinates for space, which are transformed to spherical 

coordinates as subsidiary coordinates in cases when the expression becomes tractable. 

To set the source energy density following Einstein’s constant, given in the second of 

Eq. (2.3), we consider that room remains to modify the coefficient with a related 

function to connect the energy tensor      to match the description of Newtonian 

dynamics of the plasma. The modification also remains for the effects of source terms 

that have two categories. The first category is for the gravity that has remote effects; and 

the second is for local dynamical forces in plasma that have no remote influence. In the 

latter case, the source tensor     is selected for local effects at    by introducing (  
  ) , where           are, respectively, the general position vector and the vector to 

indicate a specific position within the source plasma. 

 

where ζ is the ratio of the plasma component, which is responsible for systematic flow, while the ratio (1-ζ) is for the themal component; 
B2 ⁄ μ0 , with permittivity μ0 of the magnetic field in vacuum, is the energy density of the magnetic field generated by possible electric 
currents in the plasma distributed in IMSBH. Because generation of the magnetic field energy is directly related to the stage of the charge 
separation in the plasma, the existence of the magnetic energy is independently given to the mass of the matter.  In addition, relating to 
Eqs. (2.37) and (2.39),   we define  Lorentz factors, γφ

* and γth
* as:
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To set the source energy density following Einstein’s constant, given in the second of 

Eq. (2.3), we consider that room remains to modify the coefficient with a related 

function to connect the energy tensor      to match the description of Newtonian 

dynamics of the plasma. The modification also remains for the effects of source terms 

that have two categories. The first category is for the gravity that has remote effects; and 

the second is for local dynamical forces in plasma that have no remote influence. In the 

latter case, the source tensor     is selected for local effects at    by introducing (  
  ) , where           are, respectively, the general position vector and the vector to 
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i.e., the plasma components of the rate ζ take systematic motion 
in the azimuthal direction φ with velocity vφ, which is close to the 
velocity of light c, while components with rate (1-ζ) are in a state 
of thermal motion with thermal velocity vth, which is also close 
to c. The dynamics of these plasma components are all under the 
effects of the magnetic field B and intense gravitational force.

We start with the Cartesian coordinates for space, which are 
transformed to spherical coordinates as subsidiary coordinates 
in cases when the expression becomes tractable. To set the 
source energy density following Einstein’s constant, given in the 

second of Eq. (2.3), we consider that room remains to modify the 
coefficient with a related function to connect the energy tensor Tjk   
to match the description of Newtonian dynamics of the plasma. 
The modification also remains for the effects of source terms that 
have two categories. The first category is for the gravity that has 
remote effects; and the second is for local dynamical forces in 
plasma that have no remote influence. In the latter case, the source 
tensor Tjk is selected for local effects at rs by introducingδ(r-rs), 
where r  and rs are, respectively, the general position vector and 
the vector to indicate a specific position within the source plasma.
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where 𝜆𝜆 is a factor introduced to bridge the result of Einstein’s gravity equation and 
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where the – sign of ∓ is for i=1 and the + sign is for i=2. The last term of the right-hand side of Eq. (2.58) can be rewritten, taking a 
spherical coordinate transformation, as:
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We are concerned with the case in which       .;when integrating the second and 

third terms of the right-hand side of Eq. (2.57), and the second terms of the right-hand 

sides of Eqs. (2.58) and (2.61), all these terms are subject to the singularity problem 

where     approaches                close to     in the denominator of the integrand. 

Specifically, for an example case of the second term on the right-hand side of Eq. 

(2.57), the result is obtained by applying the method of the Cauchy integral (see 
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where   is the imaginary unit. Using the same procedure to realize Eq. (2.62), Eq. (2.61) 
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Because the right-hand sides of Eqs. (2.62) and (2.63) are expressed as imaginary 

quantities, we should select the coefficient 𝜆𝜆 such that    𝜆𝜆 is real, as will be discussed 

in the next section. 
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3. Calculation of the Distribution Limit of IMSBH
3.1. Force Balance in IMSBH with Formulae Bridged to 
Modified Newtonian Dynamics
3.1.1. Basic current to find the force balance formulae from the 
geodesics in QMST
The dynamics working in IMSBH cannot be described unless we 

use the exact coordinate system fixed to IMSBH. However, we can 
observe the state of the force balance in IMSBH in the coordinate 
by which the geodesic is expressed in Eq. (2.5), which is close to 
the freefalling system in IMSBH, though the expressions of forces 
are modified from the actual forces operating on the plasma. The 
forces Fi observed in the coordinate system corresponding to Eq. 
(2.5), that is modified from real forces working in IMSBH, can be 
then realized as:
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The first term of the right-hand side of Eq. (3.3) is expressed by setting i = 0 in Eq. 

(2.56) as: 
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Collecting the first to fourth terms on the right-hand side of Eq. (3.3), the force   

working on the IMSBH, i.e., iron plasma, is expressed considering homogeneously 

distributed    as: 
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where the velocity vector is   (            ⁄        (  )⁄⁄ )       
 (     ⁄ )   For the first term on the right-hand side of Eq. (3.12), which corresponds to 

the Newtonian gravitational force and is intensified by (  (   ⁄ ) ) times as a result 

of the modification of general relativity, we can find the gravity constant as: 
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and   becomes the same as that in Einstein’s lecture [  ]  
We understand that the manipulation of 𝜆𝜆  follows the concept of the selection of 

Einstein’s к value, i.e., we can redefine к depending on     for consistency with 

Newtonian dynamics, to bridge the results of Einstein’s equation to modified 

Newtonian dynamics. For smooth bridging to the modified Newtonian dynamics of the 

expression regarding the second and third terms on the right-hand side of Eq. (3.12), we 

require: 
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3.1.2. Freedom of selection of coefficient of the source term in Einstein equation 

 At this stage, we are allowed further freedom to consider the Lorentz factor      at each 

i.e., the fourth term on the right-hand side of Eq. (3.3) represents the Coriolis force when we select the coordinate system on the rotating 
frame.
Moreover, the last two terms on the right-hand side of Eq. (3.3) vanish because γii terms are time-stationary, i.e.,
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and   becomes the same as that in Einstein’s lecture [  ]  
We understand that the manipulation of 𝜆𝜆  follows the concept of the selection of 

Einstein’s к value, i.e., we can redefine к depending on     for consistency with 

Newtonian dynamics, to bridge the results of Einstein’s equation to modified 

Newtonian dynamics. For smooth bridging to the modified Newtonian dynamics of the 

expression regarding the second and third terms on the right-hand side of Eq. (3.12), we 

require: 
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Considering Eq. (2.60), the third term of the right-hand side of Eq. (3.3) is expressed as: 
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As explained in Appendix D, Eq. (3.9) can be rewritten using expressions for regular 

vector analyses as: 
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i.e., the fourth term on the right-hand side of Eq. (3.3) represents the Coriolis force 

when we select the coordinate system on the rotating frame. 

Moreover, the last two terms on the right-hand side of Eq. (3.3) vanish because     

terms are time-stationary, i.e., 
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and к becomes the same as that in Einstein’s lecture [38].
We understand that the manipulation of λ follows the concept of the selection of Einstein’s к value, i.e., we can redefine к depending on 
γij for consistency with Newtonian dynamics, to bridge the results of Einstein’s equation to modified Newtonian dynamics. For smooth 
bridging to the modified Newtonian dynamics of the expression regarding the second and third terms on the right-hand side of Eq. (3.12), 
we require:
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3.1.2. Freedom of selection of coefficient of the source term in Einstein equation 

 At this stage, we are allowed further freedom to consider the Lorentz factor      at each 

3.1.2. Freedom of selection of coefficient of the source term in Einstein equation
At this stage, we are allowed further freedom to consider the Lorentz factor γφ

*2 at each term of Eq. (3.12); the constraint to our selection 
within the freedom will be given by parameters of the BH. Regarding the first term in Eq. (3.12), we separate γφ

*2 by introducing 
constants γφG

*  and γφM
*, as:
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term of Eq. (3.12); the constraint to our selection within the freedom will be given by 

parameters of the BH. Regarding the first term in Eq. (3.12), we separate      by 

introducing constants              , as: 
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Then, applying the newly selected constants given by Eqs. (3.14) and (3.15), we can 

rewrite Eq. (3.12) as the relation: 
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where         .  Under the freedom of the mathematical selection to share the 

coefficient      at each term in Eq. (3.12), we selected one of the possible cases that 

corresponds to the increment of the matter density   to    due to the relativistic effects 

of the high-speed rotation of the matter with velocity close to that of light. Because    

is close to c, the gravity term in Eq. (3.16) increases to      ; this difference from the 

pure Newtonian expression of gravity is also attributed to the effect of the general 

relativity that reflects the QMST selected for the observation of dynamics of IMSBH. 

 

3.2. Detail of Balance of Forces in IMSBH 

3.2.1. Modified Newtonian gravity  

By setting     in Eq. (3.17), we realize the situation of force balance in the IMSBH 

as follows: 
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where ρM= ργ*
φM.  Under the freedom of the mathematical selection 

to share the coefficient γφ
*2 at each term in Eq. (3.12), we selected 

one of the possible cases that corresponds to the increment of the 
matter density ρ to ρM due to the relativistic effects of the high-
speed rotation of the matter with velocity close to that of light. 
Because vφ is close to c, the gravity term in Eq. (3.16) increases 
to 2γ*

φG; this difference from the pure Newtonian expression of 
gravity is also attributed to the effect of the general relativity that 

reflects the QMST selected for the observation of dynamics of 
IMSBH.

3.2. Detail of Balance of Forces in IMSBH
3.2.1. Modified Newtonian gravity 
By setting F=0 in Eq. (3.17), we realize the situation of force 
balance in the IMSBH as follows:
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The first term on the left-hand side expresses the gravity field   , which is radially 

directed toward the center of the spherically distributed IMSBH, and can be expressed 

for       as follows: 
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Instead of calculating this directly, we employ the analysis method of Gauss’s theorem 

for integration, starting from Poisson’s formalism for flux of gravity field  , expressed 

by: 
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which gives a relation of volume integration as: 

∭           ∭                                                                    (    ) 

For the gravity field  , we can apply the Stokes theorem: 

∭          ∬                                                                      (    ) 

Then, from Eqs. (3.18), (3.20), and (3.21), it follows that: 
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where r is the radial distance defined in the local spherical coordinates, whose origin is 

set at the center of the IMSBH. 

 

3.2.2. Lorentz force due to rotating plasma of IMSBH 

Because plasma creates toroidal flow, the toroidal electric current    is raised due to 

possible differential velocities of the average motion between iron ions and electrons, as 

follows: 

   ̂  (              ) ̂                                                                       (    ) 
where   ,                  and  ̂ are the number density of iron ions, number density 

of electrons, ionization number of iron ions, rotation velocity of ions, rotation velocity 

of electrons, electric charge unit, and unit vector in the   direction of the spherical 

The first term on the left-hand side expresses the gravity field           gr, which is radially directed toward the center of the spherically 
distributed IMSBH, and can be expressed for vφ ≈ c as follows:

 

 25  
 

 [(   )(          ⁄ )      (    *        (
  
         *]               (    ) 

The first term on the left-hand side expresses the gravity field   , which is radially 

directed toward the center of the spherically distributed IMSBH, and can be expressed 

for       as follows: 

        *∫
   (  )
   

   +                                                                      (    ) 

Instead of calculating this directly, we employ the analysis method of Gauss’s theorem 

for integration, starting from Poisson’s formalism for flux of gravity field  , expressed 

by: 

                                                                                         (    ) 
which gives a relation of volume integration as: 

∭           ∭                                                                    (    ) 

For the gravity field  , we can apply the Stokes theorem: 

∭          ∬                                                                      (    ) 

Then, from Eqs. (3.18), (3.20), and (3.21), it follows that: 

    *∫   
(  )

   
   +      ∭   (  )     

                                               (    ) 

where r is the radial distance defined in the local spherical coordinates, whose origin is 

set at the center of the IMSBH. 

 

3.2.2. Lorentz force due to rotating plasma of IMSBH 

Because plasma creates toroidal flow, the toroidal electric current    is raised due to 

possible differential velocities of the average motion between iron ions and electrons, as 

follows: 

   ̂  (              ) ̂                                                                       (    ) 
where   ,                  and  ̂ are the number density of iron ions, number density 

of electrons, ionization number of iron ions, rotation velocity of ions, rotation velocity 

of electrons, electric charge unit, and unit vector in the   direction of the spherical 

Instead of calculating this directly, we employ the analysis method of Gauss’s theorem for integration, starting from Poisson’s formalism 
for flux of gravity field g, expressed by:

 

 25  
 

 [(   )(          ⁄ )      (    *        (
  
         *]               (    ) 

The first term on the left-hand side expresses the gravity field   , which is radially 

directed toward the center of the spherically distributed IMSBH, and can be expressed 

for       as follows: 

        *∫
   (  )
   

   +                                                                      (    ) 

Instead of calculating this directly, we employ the analysis method of Gauss’s theorem 

for integration, starting from Poisson’s formalism for flux of gravity field  , expressed 

by: 

                                                                                         (    ) 
which gives a relation of volume integration as: 

∭           ∭                                                                    (    ) 

For the gravity field  , we can apply the Stokes theorem: 

∭          ∬                                                                      (    ) 

Then, from Eqs. (3.18), (3.20), and (3.21), it follows that: 

    *∫   
(  )

   
   +      ∭   (  )     

                                               (    ) 

where r is the radial distance defined in the local spherical coordinates, whose origin is 

set at the center of the IMSBH. 

 

3.2.2. Lorentz force due to rotating plasma of IMSBH 

Because plasma creates toroidal flow, the toroidal electric current    is raised due to 

possible differential velocities of the average motion between iron ions and electrons, as 

follows: 

   ̂  (              ) ̂                                                                       (    ) 
where   ,                  and  ̂ are the number density of iron ions, number density 

of electrons, ionization number of iron ions, rotation velocity of ions, rotation velocity 

of electrons, electric charge unit, and unit vector in the   direction of the spherical 

which gives a relation of volume integration as:

 

 25  
 

 [(   )(          ⁄ )      (    *        (
  
         *]               (    ) 

The first term on the left-hand side expresses the gravity field   , which is radially 

directed toward the center of the spherically distributed IMSBH, and can be expressed 

for       as follows: 

        *∫
   (  )
   

   +                                                                      (    ) 

Instead of calculating this directly, we employ the analysis method of Gauss’s theorem 

for integration, starting from Poisson’s formalism for flux of gravity field  , expressed 

by: 

                                                                                         (    ) 
which gives a relation of volume integration as: 

∭           ∭                                                                    (    ) 

For the gravity field  , we can apply the Stokes theorem: 

∭          ∬                                                                      (    ) 

Then, from Eqs. (3.18), (3.20), and (3.21), it follows that: 

    *∫   
(  )

   
   +      ∭   (  )     

                                               (    ) 

where r is the radial distance defined in the local spherical coordinates, whose origin is 

set at the center of the IMSBH. 

 

3.2.2. Lorentz force due to rotating plasma of IMSBH 

Because plasma creates toroidal flow, the toroidal electric current    is raised due to 

possible differential velocities of the average motion between iron ions and electrons, as 

follows: 

   ̂  (              ) ̂                                                                       (    ) 
where   ,                  and  ̂ are the number density of iron ions, number density 

of electrons, ionization number of iron ions, rotation velocity of ions, rotation velocity 

of electrons, electric charge unit, and unit vector in the   direction of the spherical 

 

 25  
 

 [(   )(          ⁄ )      (    *        (
  
         *]               (    ) 

The first term on the left-hand side expresses the gravity field   , which is radially 

directed toward the center of the spherically distributed IMSBH, and can be expressed 

for       as follows: 

        *∫
   (  )
   

   +                                                                      (    ) 

Instead of calculating this directly, we employ the analysis method of Gauss’s theorem 

for integration, starting from Poisson’s formalism for flux of gravity field  , expressed 

by: 

                                                                                         (    ) 
which gives a relation of volume integration as: 

∭           ∭                                                                    (    ) 

For the gravity field  , we can apply the Stokes theorem: 

∭          ∬                                                                      (    ) 

Then, from Eqs. (3.18), (3.20), and (3.21), it follows that: 

    *∫   
(  )

   
   +      ∭   (  )     

                                               (    ) 

where r is the radial distance defined in the local spherical coordinates, whose origin is 

set at the center of the IMSBH. 

 

3.2.2. Lorentz force due to rotating plasma of IMSBH 

Because plasma creates toroidal flow, the toroidal electric current    is raised due to 

possible differential velocities of the average motion between iron ions and electrons, as 

follows: 

   ̂  (              ) ̂                                                                       (    ) 
where   ,                  and  ̂ are the number density of iron ions, number density 

of electrons, ionization number of iron ions, rotation velocity of ions, rotation velocity 

of electrons, electric charge unit, and unit vector in the   direction of the spherical 



Volume 6 | Issue 1 | 292Eart & Envi Scie Res & Rev,  2023

For the gravity field g, we can apply the Stokes theorem:
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3.2.2. Lorentz force due to rotating plasma of IMSBH
Because plasma creates toroidal flow, the toroidal electric current Iφ is raised due to possible differential velocities of the average motion 
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where Ni, Ne,n,viφ, veφ,e, and φ are the number density of iron ions, number density of electrons, ionization number of iron ions, rotation 
velocity of ions, rotation velocity of electrons, electric charge unit, and unit vector in the φ direction of the spherical coordinate, 
respectively. Because of the charge neutrality, nNi=Ne, Eq. (3.24) is rewritten as:
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where N0 is the ion number density at r = rMc. Furthermore, we assume the electric 
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with a constant rate    and power index 𝛿𝛿 in the range of   𝛿𝛿   . Then, the plasma 
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We here propose a ratio αc (r)= (viφ-veφ) ⁄ viφ  for the electric current generation efficiency due to differences in the velocities between 
ions and electrons; furthermore, we assume that the ratio αc (r) depends on distance r in general. Using this ratio, the toroidal current i 
(=Iφ φ ) is given by:
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where r and θ are unit vectors in the radial and polar angle directions, respectively; and Iφ is given by Eq. (3.26). In Eq. (3.27), the 
modified vector potential A*

φ  is Aφ ⁄ I0  with respect to the vector potential Aφ and current density I0 at r = rMc; these are described in detail 
in Appendix E, where values of A*

φ⁄r, ∂A*
φ ⁄  ∂r,  Br,and Bθ are given normalized by μ0 I0 rMc, with the unit 4π×10-7  V s/m2 for μ0=4π×10-7  

H⁄m, with current density I0  (A⁄m2) and core radius rMc  (m)   of the IMSBH, i.e., the plasma region. As also described in Appendix E, 
the density of plasma distribution is assumed to be:
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with a constant rate α0 and power index δ in the range of 0 ≤ δ ≤ 1. Then, the plasma density and the current density are expressed as 
ρM=ρ0M (rMc⁄r)

2 and Iφ= I0 (rMc⁄r)
2+δ, respectively.

For the generated magnetic fields, we set a constraint that the fields are frozen in the rotating plasma, i.e., magnetic field B satisfies the 
frozen-in condition with respect to v = vφ  φ as follows:
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The first term on the left-hand side expresses the gravity field   , which is radially 
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where r is the radial distance defined in the local spherical coordinates, whose origin is 

set at the center of the IMSBH. 

 

3.2.2. Lorentz force due to rotating plasma of IMSBH 

Because plasma creates toroidal flow, the toroidal electric current    is raised due to 

possible differential velocities of the average motion between iron ions and electrons, as 

follows: 
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where   ,                  and  ̂ are the number density of iron ions, number density 

of electrons, ionization number of iron ions, rotation velocity of ions, rotation velocity 

of electrons, electric charge unit, and unit vector in the   direction of the spherical 
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For the generated magnetic fields, we set a constraint that the fields are frozen in the 

rotating plasma, i.e., magnetic field   satisfies the frozen-in condition with respect to 

     ̂ as follows: 
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In the case of the frozen-in magnetic field, the toroidal motion of plasma moves with 

the magnetic field. Thus, there is no electric field without raising relative motion 

between the plasma and the magnetic field. 

The second term on the right-hand side of Eq. (3.17) is rewritten as follows: 
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with ion plasma angular frequency    , which is given by      √           for    

indicated with the unit     . The normalized magnetic field intensities    and    are 

given in Figure 3. 

As the first step to construct a model for the total force balance of the plasma in the 

IMSBH, Eq. (3.18) can be further rewritten considering the Lorentz term with condition 

       as: 
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with ion plasma angular frequency ωpi, which is given by 5.61π√(nNi)×10-2 / s for Ni indicated with the unit 1/m3. The normalized 
magnetic field intensities Br and Bθ are given in Figure 3.
As the first step to construct a model for the total force balance of the plasma in the IMSBH, Eq. (3.18) can be further rewritten 
considering the Lorentz term with condition vφ  ≈ c  as:
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Figure 3.  

Poloidal magnetic field generated by toroidal current in IMSBH for the case of    
    𝛿𝛿   : (a) magnitude of   component    normalized by 𝜇𝜇        which has unit 

              for 𝜇𝜇           ⁄ , with current density    (   ⁄ ) and core 

radius    ( ); (b) magnitude of the radial component   , also normalized by 𝜇𝜇      ; 

(c) direction of magnetic field expressed in r–  plane in terms of vectors normalized by 

the magnitude at each given point, indicated by the orange circles. The magnetic field 

lines are drawn approximately by connecting the tip to the end of the nearest vectors 

with each other. 

 

 

              *∫   
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   +

 [(   )(     ⁄ )    

  (    *]                                                                              

    

Figure 3: Poloidal magnetic field generated by toroidal current in IMSBH for the case of αc=αc0,δ=0: (a) magnitude of θ component 
Bθ normalized by μ0 I0 rMc, which has unit 4π×10-7  Wb/m2 for μ0 = 4π×10-7  H⁄m, with current density I0 (A⁄m2) and core radius rMc 
(m); (b) magnitude of the radial component Br, also normalized by μ0 I0 rMc; (c) direction of magnetic field expressed in r–θ plane in 
terms of vectors normalized by the magnitude at each given point, indicated by the orange circles. The magnetic field lines are drawn 
approximately by connecting the tip to the end of the nearest vectors with each other.
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3.3. Solution of Dynamic Balance Equations 

3.3.1. Balance in r-direction  

From Eq. (3.32), we can obtain equations of the force balance for the r-direction: 
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where         ⁄  with respect to the thermal velocity    . We will describe   ( ) in 

detail at the end of this section. 

Considering diamagnetic effects for the thermal components of plasma, we assume r 

dependence of the total thermal pressure    as: 
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3.3.2. Balance in θ-direction. 

 Because we assume that         ⁄ , the force balance in the θ-direction, obtained 

from Eq. (3.34), is given by: 
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where ξ = vth
2 ⁄ c2  with respect to the thermal velocity vth. We will describe GM(r) in detail at the end of this section.

Considering diamagnetic effects for the thermal components of plasma, we assume r dependence of the total thermal pressure P  as:
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where 𝑃0𝑐2 is the total pressure at 𝑟=𝑟𝑀𝑐. Then, we can rewrite Eq. (3.35) as:
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3.3. Solution of Dynamic Balance Equations 

3.3.1. Balance in r-direction  

From Eq. (3.32), we can obtain equations of the force balance for the r-direction: 
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3.3.2. Balance in θ-direction. 

 Because we assume that         ⁄ , the force balance in the θ-direction, obtained 

from Eq. (3.34), is given by: 
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Then, 

3.3.2. Balance in θ-direction.
 Because we assume that ∂ρ ⁄ ∂θ = 0 , the force balance in the θ-direction, obtained from Eq. (3.34), is given by:

 

 29  
 

 
     
  ,*        

   
 (

  
 

  
   

 

  )+  ̂ *        (   
    

   
  
  
 

 )  
   

 

  +  ̂-

                     
                                                                                  (3.34) 

3.3. Solution of Dynamic Balance Equations 

3.3.1. Balance in r-direction  

From Eq. (3.32), we can obtain equations of the force balance for the r-direction: 

 

 
    

   ( ) 
    

  * (   )       
 

     
 

   
+ 

    
 *       

   
(
  
 

  
   

 

  )+

                                                                                    (    ) 
where         ⁄  with respect to the thermal velocity    . We will describe   ( ) in 

detail at the end of this section. 

Considering diamagnetic effects for the thermal components of plasma, we assume r 

dependence of the total thermal pressure    as: 

   (   )       
  
     

 

   
 (   

 

  )   
                               (    )  

where      is the total pressure at      . Then, we can rewrite Eq. (3.35) as: 

 
       ( ) 

      
 

       
    
 *       

   
(
  
 

  
   

 

  )+                  (    ) 

3.3.2. Balance in θ-direction. 

 Because we assume that         ⁄ , the force balance in the θ-direction, obtained 

from Eq. (3.34), is given by: 

  
    *

   
 

   
+ 

     
  *    

    
      ( )  

   
(
  
 

 
    
     

   
 

   )+

                          (    ) 
Here, we use an approximation form with assumption     (    ⁄ )  (see Appendix 

F), as: 

 ( )  
   

(
  
 

 
    
     

   
 

   )      
    
                               (    ) 

Then, 

 

 29  
 

 
     
  ,*        

   
 (

  
 

  
   

 

  )+  ̂ *        (   
    

   
  
  
 

 )  
   

 

  +  ̂-

                     
                                                                                  (3.34) 

3.3. Solution of Dynamic Balance Equations 

3.3.1. Balance in r-direction  

From Eq. (3.32), we can obtain equations of the force balance for the r-direction: 

 

 
    

   ( ) 
    

  * (   )       
 

     
 

   
+ 

    
 *       

   
(
  
 

  
   

 

  )+

                                                                                    (    ) 
where         ⁄  with respect to the thermal velocity    . We will describe   ( ) in 

detail at the end of this section. 

Considering diamagnetic effects for the thermal components of plasma, we assume r 

dependence of the total thermal pressure    as: 

   (   )       
  
     

 

   
 (   

 

  )   
                               (    )  

where      is the total pressure at      . Then, we can rewrite Eq. (3.35) as: 

 
       ( ) 

      
 

       
    
 *       

   
(
  
 

  
   

 

  )+                  (    ) 

3.3.2. Balance in θ-direction. 

 Because we assume that         ⁄ , the force balance in the θ-direction, obtained 

from Eq. (3.34), is given by: 

  
    *

   
 

   
+ 

     
  *    

    
      ( )  

   
(
  
 

 
    
     

   
 

   )+

                          (    ) 
Here, we use an approximation form with assumption     (    ⁄ )  (see Appendix 

F), as: 

 ( )  
   

(
  
 

 
    
     

   
 

   )      
    
                               (    ) 

Then, 

Here, we use an approximation form with assumption η = η0 (r ⁄ rMc)
δ (see Appendix F), as:
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Figure 3.  

Poloidal magnetic field generated by toroidal current in IMSBH for the case of    
    𝛿𝛿   : (a) magnitude of   component    normalized by 𝜇𝜇        which has unit 

              for 𝜇𝜇           ⁄ , with current density    (   ⁄ ) and core 

radius    ( ); (b) magnitude of the radial component   , also normalized by 𝜇𝜇      ; 

(c) direction of magnetic field expressed in r–  plane in terms of vectors normalized by 

the magnitude at each given point, indicated by the orange circles. The magnetic field 

lines are drawn approximately by connecting the tip to the end of the nearest vectors 

with each other. 
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Because Eq. (3.41) includes singularities at     and    , we should modify the 

expression for a realistic model of the magnetic field energy caused by the thermal 

component of plasma. Specifically, we assume that the   dependence of     ( )    ⁄  is: 

 

Figure 4. Magnetic field energy density    ( ) 𝜇𝜇 ⁄  versus polar angle  , taking    
      [         ] [    (  )  𝜇𝜇 ⁄ ]⁄  as a parameter. We consider results 

corresponding to    less than 0.2 to be acceptable as approximately independent to   in 

Eq. (3.34). 
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Because Eq. (3.41) includes singularities at θ=0 and θ=π, we should modify the expression for a realistic model of the magnetic field 
energy caused by the thermal component of plasma. Specifically, we assume that the θ dependence of Bth

2 (θ) ⁄ (2μ0) is:
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As an allowable approximation for this setting of the model using Eq. (3.42), we select θ0=5°. In this model, it is favorable that the Bth
2 

(θ) ⁄ 2μ0  value is less dependent on θ to endorse a spherical shape of IMSBH. In Figure 4, examples for low-β cases where ρvφ
2∙ ( ζγφ

*+η0 
KB ) ⁄ [Bth

0 (θ0 ) ⁄ 2μ0]  is in the range of 0.05–0.25 are presented. For these cases, we observe a weak θ dependence, where we expect to 
simplify the force balance condition in the r-direction by approximating independence of θ.

3.3.3. Radius of IMSBH rMc.

Corresponding to Eq. (3.28), the density in the IMSBH is:
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where         ⁄ . As discussed in Appendix F, in detail, we apply the 

approximation regarding the last term in the bracket of the third term on the left-hand 

side of Eq. (3.46) as: 
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As will be discussed in Sec 4.2., the systematic rotation flow of plasma is tightly 

controlled by the extremely intense gravity in IMSBH. Therefore, we consider an 

extremely low rate for   , which also produces a low  .  

Figure 4: Magnetic field energy density BH
2 (θ) ⁄ μ0  versus polar angle θ, taking βe= ρM vφ

2∙[ζγφ
*+η0 KB ] ⁄ [B2

H0 θ0 ⁄ 2μ0]  as a parameter. 
We consider results corresponding to βe less than 0.2 to be acceptable as approximately independent to θ in Eq. (3.34).
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Then, the rotation parameter is calculated from Eq. (3.50), with Eq. (3.49) for       as 
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For a sufficiently high γφ
* value, Eq. (3.49) gives the result as follows:
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3.5. Angular Velocity of Vacuum in Kerr Spacetime
For a vacuum region, which envelops IMSBH, we are concerned with the Kerr spacetime [44] that is given in spherical coordinates, in 
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IMSBH should harmonize with the angular velocity of vacuum space of Kerr spacetime 

Ω; that is, when we observe the rotation of the IMSBH in the frame of the QMST, as is 

the case of the present study of plasma, the proper four-dimensional distance    
corresponding to  the surface of the IMSBH for time passage      has a common 
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where                 
In the present study, we assumed fast rotation of the IMSBH with velocity       on 

the left-hand side of Eq. (3.57); we can find angular velocity   of the rotation of the 

vacuum. Kerr spacetime at the boundary extremely close to the singular point of the 

spacetime as: 
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We understand that the high angular velocity    (   (   ⁄     ))  observed in 

QMST corresponding to the spacetime of the IMSBH occurs as the low angular rotation 

where rg = 2GM/c2, a = ɑ=J/Mc, Σ=r 2+a2cos2θ, and Δ = r2−rrg + a2. When we consider an extremely collapsed IMSBH radius rMc, Eq. 
(3.54) is expressed as an asymptotic case where r approaches rMc (≪a) , except for  a polar angle range  ,(𝜋/2+𝑟/𝑎)>θ>𝜋/2−𝑟/𝑎,   as 
follows:
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We understand that the high angular velocity    (   (   ⁄     ))  observed in 

QMST corresponding to the spacetime of the IMSBH occurs as the low angular rotation 
We understand that the high angular velocity ΩMc (= vφ ⁄ (rMc sinθ)) observed in QMST corresponding to the spacetime of the IMSBH 
occurs as the low angular rotation velocity given by Eq. (3.58) in vacuum spacetime due to differences in time passages  between
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Figure 5. Results of numerical calculation for the ratio of radii     ⁄  based on Eq. 

(3.53) versus the Lorentz factor    , which is proportional to the energy of the rotating 

iron ion energy   as       (        ) eV, related to the angular momentum of 

rotating plasma with velocity extremely close to that of light, and considering ζ, the rate 

of the rotating plasma component to the total plasma, as a parameter. 
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(3.53) versus the Lorentz factor    , which is proportional to the energy of the rotating 

iron ion energy   as       (        ) eV, related to the angular momentum of 

rotating plasma with velocity extremely close to that of light, and considering ζ, the rate 
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4. Numerical Results of the Ratio of IMSBH Radius and Event Horizon Radius
4.1. Possible Rotating Plasma Energy
In Figure 5, the ratio of the event horizon radius rE and that of IMSBH rMc is presented as a result of Eq. (3.53), with ζ (= 0.1~ 0.9) as a 
parameter that shows the rate of the rotating plasma component in total plasma. IMSBH radius  rMc decreases when the rotation velocity 
increases with a larger gamma rate; furthermore, the ratio also depends on the rate of the rotation component ζ. The abscissa of Figure 5 
expressed by the Lorentz factor (gamma rate γφ

*), in the case of velocity extremely close to c, is proportional to the energy of the rotating 
iron plasma in IMSBH; i.e., the energy Ɛ is given by:
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for iron ion mass      . Taking         as approximately 56 GeV, Ɛ of the rotating 

plasma for     is       (        ) eV. Therefore, in the case of              
   , where      ⁄  becomes 50 (    is condensed to 1/50 of   ), the condensed plasmas 

are rotating with energy             . For the case of the condensed plasma region 

of the IMSBH, the density and Figure 5, which corresponds to iron ion energy   as 

      (        ) eV. 

 

 

 

Figure 6. Density 

of ions versus the 

gamma rate of 

rotating iron 

plasma, taking 

for iron ion mass miron. Taking miron c
2 as approximately 56 GeV, Ɛ of the rotating plasma for γφ

* is Ɛ = γφ
*×(5.6×1010 ) eV. Therefore, in 

the case of ζ=0.7 at γφ
*=175, where rE ⁄ rMc  becomes 50 (rMc is condensed to 1/50 of rE), the condensed plasmas are rotating with energy 

9.80×1012  eV. For the case of the condensed plasma region of the IMSBH, the density and average mutual distance of the iron ions are 
calculated as given in Figures 6 and 7, respectively.   As shown in Figure 6, the density for the above-described case of ζ=0.7, rE  ⁄ rMc  = 
50 at γφ

*=175 becomes 3.59×1031/cm3. We can confirm, for this extremely high-density state, that the plasma is still in a gaseous state 
where particles are not bound by each other, as revealed in Figure 7, where the mutual distance of the ions is indicated as 3.03×10-11 cm, 
i.e., approximately 2.4×106 times the quantum mechanically estimated iron ion radius with energy 9.80×1012  eV.

Figure 5: Results of numerical calculation for the ratio of radii rE  ⁄ rM  based on Eq. (3.53) versus the Lorentz factor γφ
*, which is 

proportional to the energy of the rotating iron ion energy Ɛ as Ɛ = γφ
*× (5.6×1010 ) eV, related to the angular momentum of rotating 

plasma with velocity extremely close to that of light, and considering ζ, the rate of the rotating plasma component to the total plasma, 
as a parameter.
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Figure 6: Density of ions versus the gamma rate of rotating iron plasma, taking the rate of the rotating component ζ as a parameter. The 
abscissa is the same as that in Figure 5, which corresponds to iron ion energy Ɛ as Ɛ=γφ

*×(5.6×1010) eV.
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Figure 7. Average mutual distance of ions taking the rate of the rotating component   as 

a parameter. The abscissa corresponds to the energy   of the rotating iron plasma, 

      (        ) eV. It is confirmed that the plasma is still in a gaseous state, 

where the mutual distance of ions with energy             , for example, is indicated 

to be               or approximately        times the quantum mechanically 

estimated iron ion radius. 

 

 Figure 8.     Comparison of the Coulomb potential energy and gravitational potential 

energy working on the electrons of rotating plasma in IMSBH. The left-hand panel 

Figure 7: Average mutual distance of ions taking the rate of the rotating component ζ as a parameter. The abscissa corresponds to the 
energy Ɛ of the rotating iron plasma, Ɛ = γφ

*×(5.6×1010) eV. It is confirmed that the plasma is still in a gaseous state, where the mutual 
distance of ions with energy 9.80×1012  eV, for example, is indicated to be 3.03×10-11 cm, or approximately 2.4×106 times the quantum 
mechanically estimated iron ion radius.
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Figure 8: Comparison of the Coulomb potential energy and gravitational potential energy working on the electrons of rotating plasma in 
IMSBH. The left-hand panel shows the Coulomb potential energy between an electron and the nearest ion or electron versus the rotation 
energy of plasma given by the gamma rate γφ

* that gives energy Ɛ = γφ
*×(5.6×1010) eV. The right-hand panel shows the gravitational 

potential energy working on an electron of rotating plasma, with the same abscissa as the left-hand panel. 
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4.2. Intense Gravity and Low η
Figure 8 presents a comparison of the potential energies of the 
Coulomb force and the gravity working on an electron of the 
rotating plasma in the IMSBH. It is remarkable that the motion 
of electrons is absolutely governed by gravity. Specifically, when 
we select the example case where ζ=0.7 and γφ

*=175 with rE ⁄ 
rMc =50, the Coulomb potential energy is 4.75 keV, whereas the 
gravitational potential energy is 24.6 MeV. Because of the basic 
nature of gravity, particles move with the same velocity when 
the dynamics is controlled by gravity. From Eq. (3.33), η ≈1 by 
αc=2.73×10-14 for the same example case of ζ=0.7 and γφ

*=175 
with rE  ⁄ rMc =50. We may use this low rate of the current generation 
as a reference point to consider the effects of the Lorentz force in 
the IMSBH.

5. Generation of GW
5.1. Solution of GW under Transverse Traceless Gauge
5.1.1. Start point
As motivation for the present study, we are concerned with the 
generation of GWs, focusing on the possible SMBHB that we have 
proposed for SgrA* at the center of the Milky Way Galaxy. The 
configuration of the Kerr SMBHB is depicted in Figure 9 where 
the relations of the radii of the IMSBHs are estimated to be in the 
range of 1/10 to 1/100 of the radii of the event horizons based on 
the results of the present study (see Eq. (3.53) and Figure 5). As 
the source of GWs, IMSBHs are at positions far from the event 
horizons in the interior of the BH; the effect of orbital motion on 
the source does not arrive at the event horizon directly. We should 
separate the dynamical processes that may be raised at the event 
horizon and the processes that initiate GWs in the source region, 

which is not like the case of the stellar-mass BH where generation 
of a GW is considered without separation of the source matter 
and the existing event horizon. When we consider a possible case 
raised by our observation of the SMBHB at SgrA*[16], the speed 
of the source movement is less than 21% of the velocity of light; 
then, we can follow the classical quadrupole moment theory, as 
presented by Einstein, rather than the current post-Newtonian 
or post-Minkowskian expansion theory [42]. We begin with the 
orthodox GW generation theory by following the established 
method of the GW theory, albeit with some differences in details.

5.1.2. Description with transverse traceless gauge
In the main two fields of the theory of the generation of GW from 
compact objects, i.e., the quasi-normal mode oscillation and the 
merger of spiraling compact objects, the present study of GW 
generation belongs to the latter case. However, we are seeking the 
possibility of no GW for the case of a SMBHB. Unlike most of the 
current works, we consider the interior of a supermassive BH as 
propagation media of GWs. Before focusing on the coordinates to 
describe the real configuration given in Figure 9, we start with an 
arbitrary coordinate in the Minkowsky spacetime ηij  with Cartesian 
coordinate (x0,x1,x2,x3). This is possible when we observe a freefall 
system that moves along the geodesic of the BH spacetime. In this 
coordinate, the linearized perturbation of the spacetime metric hij 
of GW, related to the spacetime metric gij, is expressed as:

By following the procedure of the deduction of the spacetime to 
describe GWs, as given in Appendix G, we approach the basic 
equation as:
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Figure 9.   

Configuration of the SMBHB system at SgrA* for investigation of generation of GW in 

the present study. Members of binary Gaa with mass (         )        and Gab 

with mass (         )        orbit with period of            and velocities of 

(         )        ⁄ (     ) and (         )         (     )⁄ , 

respectively. The orbital radii of Gaa and Gab were estimated to be           and 

           , respectively; Gaa and Gab are associated with event horizons with radii 

of          and               respectively [  ] 
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where 

        
 
                                          (   ) 

with trace         . To approach Eq. (5.3), we apply the Lorentz gauge: 

    
                                                        (   ) 

Figure 9: Configuration of the SMBHB system at SgrA* for investigation of generation of GW in the present study. Members of 
binary Gaa with mass (2.27±0.02)×106 M⦿ and Gab with mass (1.94±0.01)×106 M⦿ orbit with period of 2,200±50 s and velocities of 
(5.40±0.15)×104  km⁄s (0.18c)and(6.31±0.03)×104  km⁄s (0.21c) , respectively. The orbital radii of Gaa and Gab were estimated to be 
1.89×107  and 2.21×107 km, respectively; Gaa and Gab are associated with event horizons with radii of 3.83×106 and  3.21×106  km, 
respectively [16]
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with trace h = ηij hij. To approach Eq. (5.3), we apply the Lorentz gauge:
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considering the freedom for φij.
When we seek a coordinate where h’=0 for the transformed trace h’ corresponding to h in Eq. (5.3), a new coordinate system (x’0,x’1,x’2,x’3) 
that is introduced with a small deviation ξ μ is required as:
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Associated with this additional constraint, we find the basic equation of the GW components in a traceless (h’=0 ) frame (see Appendix 
G).

As given in Eq. (G6) in Appendix G, Eq. (5.3) is transformed to the new coordinates as:
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where   is the imaginary unit, and    and   
  are four-dimensional vectors to express 

 harmonic waves. Then, the processes to set      and      are carried out in the 
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In the case of a plane wave (  
          

   ), for the propagation of GWs in the 

region located a long distance away from the source, it is indicated from Eq. (5.15) that 

   
   ,    

      
      

   , and    
   . From the symmetry of the spacetime 

tensor    
     

 , we can see the commonly known characteristics of the transverse 

traceless (TT) expression. Because we are concerned with the propagation near the 

source region, it would be accurate to use Eq. (5.15) without the plane wave 

approximation, but we assume the local plane wave front for each propagating 

direction.  

 

5.2. Generation of GWs from Quadrupole Source 

We now consider the system depicted in Figure 9 for binary BHs whose IMSBH 

regions are condensed to radii ranging from 1/10 to 1/100 of the event horizons (see 

Sec. 3), i.e., we set the final coordinate system described in Sec. 5.1.2 as identical to 

that describing the generation of GW, which is associated here with the configuration in 

Figure 9; hereafter, we express the member BH as Gam that represents  Gaa and Gab, 

by  taking ―m‖ as ― a ― and ―b‖ ,respectively. 

where i is the imaginary unit, and km and km’ are four-dimensional vectors to express  harmonic waves. Then, the processes to set φ’=0 
and h’=0 are carried out in the frame given by Eqs. (5.9) and (5.10), as described in Appendix H. It is indicated that A0ν’= 0, and only 
two independent components are allowed among Aμν’. When we select A11’ and A12’ as independent amplitudes to decide φ11’ and φ12’, 
the other amplitudes are given by:
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of GWs in the region located a long distance away from the source, 
it is indicated from Eq. (5.15) that A13’=0, A13’= -A11’, A23’=0, and 
A33’=0. From the symmetry of the spacetime tensor A21’=A12’, 
we can see the commonly known characteristics of the transverse 
traceless (TT) expression. Because we are concerned with the 
propagation near the source region, it would be accurate to use Eq. 
(5.15) without the plane wave approximation, but we assume the 
local plane wave front for each propagating direction. 
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whose IMSBH regions are condensed to radii ranging from 1/10 
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configuration in Figure 9; hereafter, we express the member BH 
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“b” ,respectively.
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Figure 10. Coordinate systems of orbiting binary Gam (m indicates a or b) to describe 

the generation and propagation of GWs. The basic configuration of the Gaa and Gab 

orbits in Figure 9 are described as Gam in the Cartesian coordinate system 

( (  )  (  )  (  )), whose origin is at the center of the orbits. The orbiting IMSBH of 

Gam moves in the direction of the  (  )  axis of the Cartesian coordinate system 

( (  )  (  )  (  )), where the center of the IMSBH of Gam, with radius      is located in 

the direction of the  (  ) axis where Gam has orbital radius     . The position in the 

interior of the Kerr BH within the event horizon is expressed by vector    , defined 

from the center of the IMSBH, as described by the Cartesian coordinate system 

( ( )  ( )  ( )), whose origin is at the center of the IMSBH; axes  ( )  ( )      ( ) are 

defined in parallel directions to  (  )  (  )      (  ), respectively. The vector     is also 

described in spherical coordinates (     ), as transformed from the coordinate system 

( ( )  ( )  ( )). 
 

 

Further, we follow the established expression of the generation of GWs, projecting    
  

to the TT gauge given by Eq. (5.15) that is connected to: 
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Figure 10: Coordinate systems of orbiting binary Gam (m indicates a or b) to describe the generation and propagation of GWs. The 
basic configuration of the Gaa and Gab orbits in Figure 9 are described as Gam in the Cartesian coordinate system (x(or),y(or),z(or)), whose 
origin is at the center of the orbits. The orbiting IMSBH of Gam moves in the direction of the y(ts) axis of the Cartesian coordinate system 
(x(ts),y(ts),z(ts)), where the center of the IMSBH of Gam, with radius rMc, is located in the direction of the x(ts) axis where Gam has orbital 
radius RGam. The position in the interior of the Kerr BH within the event horizon is expressed by vector rob, defined from the center of 
the IMSBH, as described by the Cartesian coordinate system (x(c),y(c),z(c)), whose origin is at the center of the IMSBH; axes x(c),y(c),and 
z(c) are defined in parallel directions to x(ts),y(ts) and z(ts), respectively. The vector rob is also described in spherical coordinates (r,θ,φ), as 
transformed from the coordinate system (x(c),y(c),z(c)).
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Further, we follow the established expression of the generation of GWs, projecting φij’ to the TT gauge given by Eq. (5.15) that is 
connected to:
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Then, in Eq. (5.16), hij
TT is expressed for the Gam system following the standard method, where the source function is expressed by the 

retarded function as:
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where    
(  )       

(  )  are vectors of the observation point and source position, 

respectively, in the orbiting system defined from the origin of the coordinate at the 

center of the binary orbits; and     |   
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(  )|. Integration of Eq. (5.17) is carried 

out, with: 
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(  )                        (    ) 
Following Einstein’s original expression, it becomes standard procedure to consider the 

quadruple moment for the source of GW. In the present work, we cannot simply apply 

the remote approximation for the proximity to the source but it becomes clear after a 

mathematical manipulation that we can use the same formula for the case of remote 

source approximation, as commonly utilized in the general formula of GW generation 

(see Appendix I). Specifically: 
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where     |   |    |  |, and     |      |. In Eq. (5.19), all vectors are defined 

from the center of the IMSBH, and     is the time passage at the observation point. 

Concerning the time passage    at the source point, we have the alternative expression: 
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where            ⁄ . 

 

5.3. Case of SMBHB 

We apply the results given by Eq. (5.19) (or Eq. (5.20), which are equivalent) to the 

case of the supermassive BH shown in Figure 9, taking the Cartesian coordinate for 

space with the origin at the center of the orbits of the two members of the BH Gam. 

where rob
(or)  and rs

(or) are vectors of the observation point and source position, respectively, in the orbiting system defined from the origin 
of the coordinate at the center of the binary orbits; and ros = |rob

(or) - rs
(or)|. Integration of Eq. (5.17) is carried out, with:
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5.3. Case of SMBHB 

We apply the results given by Eq. (5.19) (or Eq. (5.20), which are equivalent) to the 

case of the supermassive BH shown in Figure 9, taking the Cartesian coordinate for 

space with the origin at the center of the orbits of the two members of the BH Gam. 

where tob = ts + ros  ⁄ c.

5.3. Case of SMBHB
We apply the results given by Eq. (5.19) (or Eq. (5.20), which are 
equivalent) to the case of the supermassive BH shown in Figure 
9, taking the Cartesian coordinate for space with the origin at the 
center of the orbits of the two members of the BH Gam. Further, 
for detailed description of GW propagation in the Kerr BH interior, 
we depict additional coordinate systems in Figure 10, where the 

coordinates for Gam orbital system and for the interior vacuum 
region of the Kerr BH located outside of each IMSBH of Gam are 
indicated together.

As discussed in Sec. 5.1.2 for determining a TT gauge, we 
concentrated on the two basic spacetimes hxx

TT (rob) and hxy
TT (rob) 

to express the generated GW, as follows:
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where x and y are the same as  (  ) and  (  ), respectively, as components of     
(  ). 

In Eqs. (5.21) and (5,22),   
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(  ) can be rewritten as: 
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where   
( )       

( ) are components of the source position vector measured from the 

center of the IMSBH in the new coordinates ( ( )  ( )  ( )) (see Appendix I), and 

     and      are the orbital radius  and angular velocity, respectively, of the orbiting 

BH Gam. Following the configuration in Figure 10, we obtain the relations: 
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where x and y are the same as x(or) and y(or), respectively, as components of rorb
(or) .

In Eqs. (5.21) and (5,22), xs
(or)  and ys

(or) can be rewritten as:
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where xs
(c)  and ys

(c) are components of the source position vector measured from the center of the IMSBH in the new coordinates 
(x(c),y(c),z(c)) (see Appendix I), and RGam and Ωorb are the orbital radius  and angular velocity, respectively, of the orbiting BH Gam. 
Following the configuration in Figure 10, we obtain the relations:
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Figure 11.  

Equal-phase circle of GW propagating at polar angle    generated from IMSBH.  GWs 

that propagate radially in the   (0–   )⁄  direction take the same phase for a given   

homogeneously without dependence on the rotation direction  , i.e., equal-phase lines 

form a circle. 

We assume the spin axis of IMSBH is directed perpendicular to the orbital plane of the 

binary; then, the azimuth is          for angular velocity    and phase angle   . 

As described in Appendix J, the integrations of Eqs. (5.21) and (5.22) are given as 

functions of the observation point at distance    , measured from the center of the 

IMSBH at time    , as: 
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Figure 11: Equal-phase circle of GW propagating at polar angle θ, generated from IMSBH.  GWs that propagate radially in the θ (0–π  
⁄ 2 ) direction take the same phase for a given θ homogeneously without dependence on the rotation direction φ, i.e., equal-phase lines 
form a circle. The spin axis of IMSBH is directed perpendicular to the orbital plane of the binary; then, the azimuth is φ = Ωs t + φ0 for 
angular velocity Ωs and phase angle φ0.

As described in Appendix J, the integrations of Eqs. (5.21) and (5.22) are given as functions of the observation point at distance rob, 
measured from the center of the IMSBH at time tob, as:
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where vGam is the orbital velocity of Gam. The initial average phase ((2Ωorb αMc rMc) ⁄ c is given by ΦI = 2αMc π, with a factor αMc(0<αMc<1) 
to be calculated to give the representative source position in IMSBH within radius rMc.
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additional coordinate systems in Figure 10, where the coordinates for Gam orbital 

system and for the interior vacuum region of the Kerr BH located outside of each 

IMSBH of Gam are indicated together. 
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where x and y are the same as  (  ) and  (  ), respectively, as components of     
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center of the IMSBH in the new coordinates ( ( )  ( )  ( )) (see Appendix I), and 

     and      are the orbital radius  and angular velocity, respectively, of the orbiting 

BH Gam. Following the configuration in Figure 10, we obtain the relations: 
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6. Propagation of GW in the Interior Region of a Kerr BH
6.1. GW in the Rotating Frame of Kerr BH
To investigate the propagation characteristics of the generated GW, we introduce a vector kob to describe the wave number  for hxx

TT and 
hxy

TT, given by Eqs. (5.26) and (5.27) as:
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 defining Ω = dφ ⁄ dt with respect to coordinate φ (see Eq. (3.54)); the coordinate to describe Eq. (6.5) becomes consistent with those of 
Eqs. (6.1) and (6.2) when we translate from the Cartesian to spherical coordinates (see Appendix K); that is:
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With the configuration in Figure 11, the propagation of the wave front of GW was 

analyzed as a function of the distance r from the center of IMSBH of radius     with the 

wavelength characterized by a propagating direction given by the polar angle θ; the 

equal-phase line of the propagating GW forms a circle along the direction of the 

azimuth    
We do not address the calculation processes of energy transport or the work action of 

the generated GW but simply discuss the propagation of GW in terms of       and      . 

Therefore, we construct a function to simplify the description for the propagation of 

GW with spacetime       and      , as follows: 
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where k(θ) is a newly introduced function that satisfies relations 
k⏊=k(θ)sinθ and kZ = k(θ)cosθ.

With the configuration in Figure 11, the propagation of the wave 
front of GW was analyzed as a function of the distance r from the 
center of IMSBH of radius rMc with the wavelength characterized 
by a propagating direction given by the polar angle θ; the equal-
phase line of the propagating GW forms a circle along the direction 
of the azimuth φ.

We do not address the calculation processes of energy transport 
or the work action of the generated GW but simply discuss the 
propagation of GW in terms of hrr

TT and hrφ
TT. Therefore, we 

construct a function to simplify the description for the propagation 
of GW with spacetime hrr

TT and hrφ
TT, as follows:
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where   is the unit of the complex quantity again. 

The velocity of the generated GW propagating through a vacuum region of the interior 

Kerr BH is calculated. Eqs. (6.6), (6.7), and (6.9) are described by the coordinate close 

to the freefall system where we apply QMST, which becomes the observation platform 

following the geodesic of BH. Then, transformation to the spacetime for the vacuum 

region in the interior of Kerr BH is required. With respect to the four-dimensional 

proper length described by Eq. (6.5) for the Kerr BH spacetime, we can find the 

common proper length given in the QMST as follows: 

 
Figure 12 Calculated velocity of GW propagating in the interior region of Kerr BH. 

Results are given in r–θ cross section, including spin axis for   = 8 (see Eq. (6.17) and 
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where i is the unit of the complex quantity again.
The velocity of the generated GW propagating through a vacuum 
region of the interior Kerr BH is calculated. Eqs. (6.6), (6.7), 
and (6.9) are described by the coordinate close to the freefall 
system where we apply QMST, which becomes the observation 

platform following the geodesic of BH. Then, transformation to 
the spacetime for the vacuum region in the interior of Kerr BH 
is required. With respect to the four-dimensional proper length 
described by Eq. (6.5) for the Kerr BH spacetime, we can find the 
common proper length given in the QMST as follows:

▁

Figure 12: Calculated velocity of GW propagating in the interior region of Kerr BH. Results are given in r–θ cross section, including 
spin axis for AΩ= 8 (see Eq. (6.17) and Figure 13), with IMSBH radius rMc ⁄ rE =1⁄50. The GW velocity is indicated as gray code, from 
pure white for light velocity to pure black for null velocity. The GWs that propagate radially in the direction of the polar angle θ cease 
to propagate at (r ,θF ), corresponding to F2=0 (see Eq. (6.12)) before arriving at the event horizon.
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Figure 13), with IMSBH radius      ⁄     ⁄   The GW velocity is indicated as gray 

code, from pure white for light velocity to pure black for null velocity. The GWs that 

propagate radially in the direction of the polar angle   cease to propagate at (  ,   ), 
corresponding to      (see Eq. (6.12)) before arriving at the event horizon. 
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where         in Eq. (6.5) are rewritten as          , respectively, for the case of BH, 

and    is set to zero because the phase of the GW varies as a function of           

propagating in the direction with fixed angle  . In Eq. (6.10),    is defined to simplify 

the expression of Eq. (6.5), as follows: 
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When we try to find the relation of the linear transformation, it follows that: 
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Based on Eq. (6.10), the result is given by: 
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(see Eq. (2.39) for    ). Using the transformation relations given by Eqs. (6.12) and 

(6.13), the propagating GW given by Eq. (6.9) is expressed, in the interior region of the 

BH that is given by the Kerr spacetime, with the form of the WKB approximation, as 

follows: 

where t and r in Eq. (6.5) are rewritten as tB and rB, respectively, for the case of BH, and dθ is set to zero because the phase of the GW 
varies as a function of tB and rB propagating in the direction with fixed angle θ. In Eq. (6.10), F2 is defined to simplify the expression of 
Eq. (6.5), as follows:
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As discussed in Appendix L, the normalized amplitude    observable in Kerr spacetime 

is estimated as: 
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where          ( )   ⁄ . It is clear that  (       ) becomes zero at two characteristic 

points, at         the event horizon that is given by    . In Figure 12, the GW 

velocity given by Eq. (6.16) is shown with gray code from 0 to near light velocity for 

the case in which the radius of IMSBH is       ⁄      ⁄ . All GWs radiated from 

IMSBH stop before arriving at the event horizon. Before arriving at the stopping point, 

GWs propagate in the range from the direction of the spin axis to its vertical; the 

calculated results show that the propagation distance in the vertical direction is shorter 

than in the direction parallel to the rotation axis. To express the stopping points of GWs 

clearly, the lines where we can see     are presented in Figure 13, where the lines are 

indicated in     domain with the parameter   , which describes the spatial dependence 

of   given with the following function (see both the top and bottom panels of Figure 

13) 
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where    is the angular velocity at the event horizon. 
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where    is the angular velocity at the event horizon. 

As discussed in Appendix L, the normalized amplitude AB observable in Kerr spacetime is estimated as:
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where    is the angular velocity at the event horizon. 

The propagation velocity V(tob, r, θ) of this GW at point t = tob at r in the direction with polar angle θ that is measured from the direction 
of the spin axis is then given by:
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where    is the angular velocity at the event horizon. 

where 2Ωorb γφ
* ⁄ k(θ) = c. It is clear that V(tob, r, θ) becomes zero 

at two characteristic points, at F=0 and the event horizon that is 
given by ∆=0. In Figure 12, the GW velocity given by Eq. (6.16) 
is shown with gray code from 0 to near light velocity for the case 
in which the radius of IMSBH is rMc  ⁄ rE  =1⁄50. All GWs radiated 
from IMSBH stop before arriving at the event horizon. Before 
arriving at the stopping point, GWs propagate in the range from the 
direction of the spin axis to its vertical; the calculated results show 

that the propagation distance in the vertical direction is shorter 
than in the direction parallel to the rotation axis. To express the 
stopping points of GWs clearly, the lines where we can see F=0 are 
presented in Figure 13, where the lines are indicated in r,θ domain 
with the parameter AΩ, which describes the spatial dependence of 
Ω given with the following function (see both the top and bottom 
panels of Figure 13)
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where    is the angular velocity at the event horizon. where ΩE is the angular velocity at the event horizon.

As given by Eq. (6.15), the amplitude of a GW diverges to infinity at the event horizon. The calculated results given in the top panel of 
Figure 13 show, however, that in all cases, GWs stop before approaching the event horizon by encountering F=0 lines.

6.2. Return of GW from Stopping Points
The GWs propagating in the direction of the polar angle range 0 ≤ θ ≤ 90°  start returning from the point where they cease to proceed, 
taking reciprocal paths with the wave function given by:
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It is a significant principle that the propagating wave does not accumulate the phase 

value because the wave maintains progress with the condition of the phase, as: 
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At a given time and space, the return wave      encounters the outgoing wave: 

 

 51  
 

As given by Eq. (6.15), the amplitude of a GW diverges to infinity at the event horizon. 

The calculated results given in the top panel of Figure 13 show, however, that in all 

cases, GWs stop before approaching the event horizon by encountering     lines. 

 

6.2. Return of GW from Stopping Points 

The GWs propagating in the direction of the polar angle range          start 

returning from the point where they cease to proceed, taking reciprocal paths with the 

wave function given by: 

          0 .∫             
     

  
 ∫  ( )√     

   

   
    

      /1    …………(    ) 

It is a significant principle that the propagating wave does not accumulate the phase 

value because the wave maintains progress with the condition of the phase, as: 

∫             
     

   
 ∫  ( )√     

   

   
             ………………………………  (    ) 

 

At a given time and space, the return wave      encounters the outgoing wave: 

 

 50  
 

         0 .∫             
   

  
 ∫  ( )√     

 

   
   

     /1                   (    ) 

As discussed in Appendix L, the normalized amplitude    observable in Kerr spacetime 

is estimated as: 

    
       

  
   

(     )
 
                                     (    ) 

The propagation velocity  (       ) of this GW at point       at   in the direction 

with polar angle   that is measured from the direction of the spin axis is then given by: 

 (       )  
         

 ( )
√ 
        √                               (    ) 

where          ( )   ⁄ . It is clear that  (       ) becomes zero at two characteristic 

points, at         the event horizon that is given by    . In Figure 12, the GW 

velocity given by Eq. (6.16) is shown with gray code from 0 to near light velocity for 

the case in which the radius of IMSBH is       ⁄      ⁄ . All GWs radiated from 

IMSBH stop before arriving at the event horizon. Before arriving at the stopping point, 

GWs propagate in the range from the direction of the spin axis to its vertical; the 

calculated results show that the propagation distance in the vertical direction is shorter 

than in the direction parallel to the rotation axis. To express the stopping points of GWs 

clearly, the lines where we can see     are presented in Figure 13, where the lines are 

indicated in     domain with the parameter   , which describes the spatial dependence 

of   given with the following function (see both the top and bottom panels of Figure 

13) 

, 
 

   
     

     
    [   (

 
  

  *]                             (    ) 

where    is the angular velocity at the event horizon. 
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where    is the angular velocity at the event horizon. 
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It is a significant principle that the propagating wave does not accumulate the phase value because the wave maintains progress with the 
condition of the phase, as:
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At a given time and space, the return wave      encounters the outgoing wave: 

At a given time and space, the return wave HB,R encounters the outgoing wave:
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Figure 13.  Top 

panel: Stopping 

line     of 

GW plotted in 

the      plane 

in the interior 

region of Kerr 

BH, where the 

radial distance r 

is given in the 

ordinate in 

terms of the 

ratio to the 

event horizon 

  . The 

parameter    of 

the stopping 

lines represents 

the spatial dependence of the spin angular velocity. Bottom panel: Spatial dependence 

of the spin angular velocity with    of 5–20, showing the range of variation of the spin 

angular velocity from the value at the event horizon to the rotation at the position of 

IMSBH.  
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The radial distance is given in the abscissa in terms of    ⁄  along the spin axis. Then, 

the forward-progressing wave encounters the returning waves at each moment, as: 

Figure 13: Top panel: Stopping line F=0 of GW plotted in the r-θ  plane in the interior region of Kerr BH, where the radial distance r is 
given in the ordinate in terms of the ratio to the event horizon rE. The parameter AΩ of the stopping lines represents the spatial dependence 
of the spin angular velocity. Bottom panel: Spatial dependence of the spin angular velocity with AΩ of 5–20, showing the range of 
variation of the spin angular velocity from the value at the event horizon to the rotation at the position of IMSBH.The radial distance is 
given in the abscissa in terms of r ⁄ rE  along the spin axis. 
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The radial distance is given in the abscissa in terms of    ⁄  along the spin axis. Then, 

the forward-progressing wave encounters the returning waves at each moment, as: 

Then, the forward-progressing wave encounters the returning waves at each moment, as:
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At this encounter state, the initial phases of each wave,           and          , 

are generally independent. In the present situation, however,     and     are defined as 

the average propagation time differences around a sphere-shaped source within IMSBH 

that always give the same values; the phase angles                 are also the same 

because they are selected from the spinning IMSBH, which is assumed to be in 

complete symmetry with the azimuth direction. Then, Eq. (6.21) gives the result: 
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which shows that GWs are deformed to standing waves that can no longer carry energy. 

7. Discussion 

7.1. Problem of Angular Momentum to Describe Kerr Spacetime 

In the present study, one of the significant points is that GW forms a standing wave, so 

dissipation of the orbiting energy of the binary is avoided; this fact is strictly related to 

the existence of the wide vacuum region inside the Kerr BH, as suggested in the present 

work for the condensation of IMSBH. The essence of the argument of condensation is 

in the property of the rotation parameter   defined in Eq. (3.50), which is repeated in a 

simple form here as: 

   
                                                  (   ) 

When we assume a homogeneous rigid state model rotating with angular velocity    and 

with a constant density    the expression of Eq. (7.1) is given, normalized by the 

Schwarzschild radius   , as follows: 
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At this encounter state, the initial phases of each wave, ΦIR - 2φ0bR and ΦIF - 2φ0bF, are generally independent. In the present situation, 
however, ΦIR and ΦIF are defined as the average propagation time differences around a sphere-shaped source within IMSBH that always 
give the same values; the phase angles 2φ0bR  and 2φ0bF are also the same because they are selected from the spinning IMSBH, which is 
assumed to be in complete symmetry with the azimuth direction. Then, Eq. (6.21) gives the result:
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which shows that GWs are deformed to standing waves that can no longer carry energy.

7. Discussion
7.1. Problem of Angular Momentum to Describe Kerr Spacetime
In the present study, one of the significant points is that GW forms a standing wave, so dissipation of the orbiting energy of the binary is 
avoided; this fact is strictly related to the existence of the wide vacuum region inside the Kerr BH, as suggested in the present work for 
the condensation of IMSBH. The essence of the argument of condensation is in the property of the rotation parameter as ɑ defined in Eq. 
(3.50), which is repeated in a simple form here as:
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When we assume a homogeneous rigid state model rotating with angular velocity Ω  and with a constant density ρ, the expression of Eq. 
(7.1) is given, normalized by the Schwarzschild radius rg, as follows:
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where              are the radius of the assumed IMSBH and the representative rotation 

velocity selected at the equator surface, respectively. In so far as we maintain the 

constraint of the low-velocity model, we have (   ⁄ )    ⁄  ,considering the case of 

matter distribution where the radius is close to the event horizon    (    ⁄ ); thus, we 

cannot approach the case of the maximum rotation where (   ⁄ )    ⁄   
To lose this constraint, we selected a fast rotation model that comprises a fluid with 

constant rotation velocity    and angular momentum that admits the relativistic 

approach to realize the same rotation parameter  , even though the radius     of 

IMSBH becomes small because of condensation. Specifically: 
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where  √  (   ⁄ ) ⁄  is given by     (see Eq.(2.39)). However, the rationale to accept 

the concept expressed by Eq. (7.3) is not simple because there is the question of what is 

increased to maintain a constant rotation parameter under the situation of shrinking    . 

Considering only J in Eq. (7.3), the angular momentum increases because the Lorentz 

factor     increases 

matter density from   to      as relativistic effects. However, in Eq. (7.1), it becomes a 

subject of argument that the mass   could also be increased as     ; therefore, the 

rotation parameter   would neither be increased nor would it remain constant for 

decreasing matter region radius    , even in the case of high-speed rotation of the 

IMSBH. 

 

When the equal-rotation velocity model is selected, as is the case in this study, the 

rotation parameter corresponding to Eq. (7.3) is: 
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where rMc  and vφ  are the radius of the assumed IMSBH and the 
representative rotation velocity selected at the equator surface, 
respectively. In so far as we maintain the constraint of the low-
velocity model, we have arg<1/5 ,considering the case of matter 
distribution where the radius is close to the event horizon 𝑟E 
=(𝑟𝑔/2); thus, we cannot approach the case of the maximum 
rotation where (𝑎/rg)=1/2.

To lose this constraint, we selected a fast rotation model that 
comprises a fluid with constant rotation velocity vφ and angular 
momentum that admits the relativistic approach to realize the 
same rotation parameter 𝑎, even though the radius rMc of IMSBH 
becomes small because of condensation. Specifically:
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where 1 ⁄                         is given by γφ
* (see Eq.(2.40)). However, the 

rationale to accept the concept expressed by Eq. (7.3) is not simple 
because there is the question of what is increased to maintain ɑ 
constant rotation parameter under the situation of shrinking rMc. 
Considering only J in Eq. (7.3), the angular momentum increases 
because the Lorentz factor γφ

* increases matter density from ρ 
to ργφ

* as relativistic effects. However, in Eq. (7.1), it becomes 
a subject of argument that the mass M could also be increased as 

Mγφ
*; therefore, the rotation parameter ɑ would neither be increased 

nor would it remain constant for decreasing matter region radius 
rMc, even in the case of high-speed rotation of the IMSBH.

When the equal-rotation velocity model is selected, as is the case 
in this study, the rotation parameter corresponding to Eq. (7.3) is:
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where  √  (   ⁄ ) ⁄  is given by     (see Eq.(2.39)). However, the rationale to accept 

the concept expressed by Eq. (7.3) is not simple because there is the question of what is 
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At this encounter state, the initial phases of each wave,           and          , 

are generally independent. In the present situation, however,     and     are defined as 

the average propagation time differences around a sphere-shaped source within IMSBH 

that always give the same values; the phase angles                 are also the same 

because they are selected from the spinning IMSBH, which is assumed to be in 

complete symmetry with the azimuth direction. Then, Eq. (6.21) gives the result: 
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which shows that GWs are deformed to standing waves that can no longer carry energy. 

7. Discussion 

7.1. Problem of Angular Momentum to Describe Kerr Spacetime 

In the present study, one of the significant points is that GW forms a standing wave, so 

dissipation of the orbiting energy of the binary is avoided; this fact is strictly related to 

the existence of the wide vacuum region inside the Kerr BH, as suggested in the present 

work for the condensation of IMSBH. The essence of the argument of condensation is 

in the property of the rotation parameter   defined in Eq. (3.50), which is repeated in a 

simple form here as: 
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When we assume a homogeneous rigid state model rotating with angular velocity    and 

with a constant density    the expression of Eq. (7.1) is given, normalized by the 

Schwarzschild radius   , as follows: 
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When we assume a homogeneous rigid state model rotating with angular velocity    and 

with a constant density    the expression of Eq. (7.1) is given, normalized by the 

Schwarzschild radius   , as follows: 

where M = (4πR3 ⁄ 3) ρ assuming homogeneous ρ. Because Eq. (7.4) is simply expressed ,for vφ ≈ c ,as:
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there is no room for explicit expression of ρ* ( =  ρ ⁄ √(1-(vφ⁄c)2 ) in 
Eqs. (7.4) and (7.5). We must then consider the rotation parameter 
a without the relation to the increase in density; that is, it should 
be understood that a is realized only in the form rMc γφ

*, which 

is also endorsed in the present study as given by Eq. (3.53). The 
underlying physics of the constancy of rMc γφ

* for high-speed 
rotation is, therefore, the Lorentz shortening of the length of the 
distributing range of the matter along the rotation direction.
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Figure 14: Index St versus power index α showing the density distribution of IMSBH as ρ = ρ0 (rMc ⁄ r)
α.St is given by Eq. (7.10) under the 

constraint of the maximum rotation (a = rE), which indicates a critical point at 0.25 where the IMSBH radius rMc becomes equal to the 
event horizon radius rE, with γφ

*=1 and vφ ⁄ c=0.5. The differential length dl of an arc on rotating matter that is set in a parallel direction 
to the rotation direction is expressed by:
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where dl0 is the differential arc length in the case of non-rotation that can be expressed as dl0 = rMc0 dφ for the radius rMc0 of the matter 
region in the static case with differential azimuth angle dφ. Then, the radius rMc  of the rotating matter region is given as:
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7.2. Effect of Matter Distribution on the Rotation Parameter
Although we assume a case of constant and homogeneous 
density distribution in Eqs. (7.2), (7.4), and (7.5), to simplify the 
discussion, we need to consider the cases of the density distribution 
functions ρ = ρ0 (rMc ⁄ r)2 in the present study. Therefore, the general 
case must be discussed here, with ρ = ρ0 (rMc ⁄ r)

   (where αρ is an 

arbitrary constant), which reflects the spacetime of IMSBH and 
affects the calculations of the rotation parameter and the radius of 
the IMSBH.
When we assume a constant rotation velocity vφ, the rotation 
parameter depending on the density distribution function is given 
as a ratio to rg by:
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For the case of maximum rotation (ɑ ⁄ rg=1⁄2) of a Kerr BH, we define an index St, corresponding to Eq. (7.9), as:

ɑ ⁄ rg  =

αρ
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The index St is 0.25 when rMc is extremely close to the event 
horizon at which rMc ≈ rE, rg = 2rE,γφ

*≈1,and vφ  ⁄ c = 0.5. If St >0.25, 
we can find the solution for vϕ ⁄ c ≈ 1, such as  γφ

* >1 with rMc < rE, 
i.e., the surface of the IMSBH is clearly inside the event horizon 
and apart from the event horizon even for the maximum case 
of rMc. In Figure 14, St is exhibited as a function of αρ. Passing 
the boundary formed by the singular point at αρ=3, the features 
of St reveal different αρ dependences. That is, for αρ higher than 
3, the index remains in a range from ≈ 0.25 to 0.5, over most of 
the range; and at αρ=4.646, it is exactly 0.25 where  rMc ≈ rE. We 
should note that for this high αρ value, there exist an extremely 
high intensity of the gravity that would be completely different 
from the orthodox Newtonian gravity which results distribution of 
matter with density distribution function ρ = ρ0 (rMc ⁄ r)  .

7.3 . Role of QMST
To solve the state of local force balance in the IMSBH starting 
from the Einstein equation given in the second of Eq.(2.3), we 
have employed the QMST that is set in the frame close to a system 
of free falling system following the geodesics in IMSBH. As has 
been described in Sub Sec. 2.2.2 , we can observe the state of the 
force balance in IMSBH even though we cannot obtain the real 
spacetime of IMSBH; as has been described in Sub Sec.3.3.3, we 
are able to find the key relation to find rMc as consequence of the 
quest to find the force balance in IMSBH observed from QMST. It 
should be noted that the usage of QMST in Sec.2 is, therefore, not 
to be purposed to construct the spacetime of IMSBH but to describe 
the geodesic observed from a frame close to the freefalling system 
; that is, we have derived formulae to express the force balance in 
IMSBH observed in  QMST based on the metrics to describe the 
geodesics. 

In Sec.5, we utilized QMST to describe the GWs which are 
generated from IMSBH and propagate through internal vacuum 
region of Kerr BH. In this case, we take QMST as a frame of 
observation where the gravity is observed as  weak field even that 
is intense enough in the frame of the spacetime of IMSBH and 
in Kerr. spacetime. Due to this rationale we have translated the 
expression for time and space as given from Eqs. (6.10) to (6.15) 
to describe the phase and amplitude of the propagating GWs inside 
of the BH with intense gravity fields.

8. Conclusion
The motivation of the present study was to investigate the proposal 
of the existence of a SMBHB at SgrA* based on the observation 
of decameter radio wave pulses independent of the established 
method of tracking stars surrounding Sgr A*. The most critical 
issue of the present study relating to our observed SMBHB 
with an extremely close situation is energy dissipation due to 
the generation of GW. When we apply the current GW theory 
and evidences of the generation of GW reported by LIGO to the 
observed system, SMBHB will merge within a few hours[45]. 
However, before we abandon the observed SMBHB as erroneous, 
we have reinvestigated the present concept of the generation of 
GWs from a BH. The following questions remain for studies of the 

generation of GWs from a BH: 1) all results reported by LIGO at 
present are GWs from the mergers of star mass objects; 2) sources 
endorsed by theory assume star mass binaries of less than 200 solar 
masses; and 3) all theories of GWs tacitly assume no remarkable 
separation between the distribution of matter as GW sources and 
positions of the event horizons of BHs. We restricted our argument 
to the case of a supermassive BH whose possible matter density 
becomes milder than that of a stellar-mass BH so that we could 
apply the classical theory of plasma dynamics and try to find the 
possibility of separation of the matter region (IMSBH) from the 
event horizon, where GWs generated at matter sources cease to 
propagate toward the outside so as not to cross the event horizon.
Various studies have addressed the interior of a BH using a family 
of spacetime AdS3, for example, but we selected a unique way 
aiming to find a collapsed matter region deep inside of vacuum 
space in the interior region of a Kerr BH (IMSBH). To investigate 
the separation of the IMSBH within the event horizon, we selected 
a coordinate QMST, which is close to the freefall system in 
IMSBH where the spacetime can be described as perturbation 
from the Minkowsky spacetime. Although we could not express 
the exact form for forces described in the spacetime of IMSBH, we 
could observe a state of force balances that strictly reflect radius 
of matter distribution region in IMSBH. The results of the force 
balance were obtained through methods of analysis of classical 
plasma physics characterized by modified Newtonian dynamics, 
arriving eventually from Einstein’s equation for weak gravity 
fields given with QMST. The result shows that the collapsed radius 
of the IMSBH depends on the increased rotation energy of matter 
as mi c

2 γφ
* for the iron ion mass mi with Lorentz factor γφ

*  .with 
rotation velocity close ot the light velocity.

From the expression of the force balance state in the IMSBH, we 
obtained results of the collapsed radius rMc for matter distribution 
with respect to the radius of the event horizon rE, for Kerr spacetime 
which envelop the IMSBH thickly in the end point of inside vacuum 
region, as rMc =(8⁄πζ)∙rE √(1-(vφ  ⁄ c)2  for the rotating velocity vφ 
that is assumed close to the light velocity c and rate ζ of rotating 
plasma. The original cause of the contraction of IMSBH is the 
gravity by which the matter is condensed, finding a balance point 
by the centrifugal force due to systematic rotation of plasma and 
the pressure that gains energy converted from increased gravity. 
For the balance system consisting of pure kinetic forces, however, 
we cannot endorse the final balance point. The present study 
suggests that the runaway state of the contraction of the IMSBH 
is avoided as associated with the generated Lorentz force induced 
by electric currents that are raised in parallel to the toroidal motion 
of the plasma. The investigation to determine the precise limit for 
the final stable state will be deferred for future work considering 
the electric current formations with many possible effects. We 
assumed a range of contractions of the matter radius from 1/10 to 
1/100 of the event horizon radius by considering a high Lorentz 
factor  γφ

*   corresponding to the systematic rotation of the iron 
ion with energy from approximately 500 Gev to 10 TeV. This high 
plasma energy is thought to have only kinetic origin, including the 
Lorentz force without nuclear fusion, because of the assumption of 
the final stage of matter as iron plasma.

αρ

αρ
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From the member of the binary BH orbiting with speeds of 18 and 
21% of the light, GWs are generated starting from the IMSBH. 
We followed the established generation theory of GWs, starting 
from Einstein’s quadruple pole source description. The theory 
of the generation of GWs has proceeded independently of the 
recently developing advanced theory relating to post-Newtonian 
or post-Minkowskian approaches because the orbiting speeds of 
the sources are still in the range in which we can apply the non-
relativistic case.

Although the generated GWs expressed with the TT gauge consist 
of  two fundamental components, these are expressed by one wave 
formula using a complex exponential function because the present 
study is focused on the propagation features rather than actions of 
GWs. After generation from condensed IMSBH sources, the waves 
propagate through the vacuum spacetime of the interior region of 
the Kerr BH toward the event horizon from the sources at IMSBH 
located deep inside. In rotating Kerr vacuum spacetime, there are 
two characteristic points where the propagation of GWs cease. 
One is the exact event horizon, and the other is the characteristic 
zone controlled by the angular velocity of the vacuum region, as 
indicated by the F or F2 function (see Eq. (6.11)), that is expressed 

in terms of the radial distance r and polar angle θ. Although the 
wave amplitude transformed to the interior Kerr spacetime shows 
singularity to journey to infinity at the event horizon, GWs are 
stopped at the F zero point before approaching the event horizon.
The GWs meet with the F zero point returning toward the 
starting points associated with the initial phase; the returning and 
forwarding GWs interact to form standing waves at each encounter 
point. Thus, the GWs in the interior region of the Kerr BH are 
unable to carry energy from the source. Therefore, for the case of 
a supermassive BH, we can determine a model where generated 
GWs are not radiated outside the event horizon and do not damp 
the orbital motion even for extremely close binaries.
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Appendix A
We start with Eq. (2.16) in the main text by changing tensor index from  (μ,ν) to (α,β) as:
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Following Eq. (2.28) in the main text, which is repeated here as:

we calculate Tjk
*, starting with Tjk, as given from Eqs. (2.41)–(2.47) in the main text. The scalar T in Eq. (B1) is given as:

It follows that:
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Appendix D 

The right-hand side of Eq. (3.9) in the main text can be rewritten when we apply the 

regular vector expression as: 

where -xse and xse are the limits of the source region for the coordinate xs. Therefore, we can define the existence of matter with density 
ρ confined within the source region as:
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(2.45)Because η12=η21=0, it follows from Eq. (2.45) in the main text that:

Inserting T in Eq. (B1), we have Tjk 
* as follows:
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We can confirm that Eq. (D1) is equivalent to   (  ⁄ )  𝜆𝜆             , as described 

by Eq. (3.10) in the main text. 

 

 

Appendix E 

Regarding Eq. (2.32) in the main text, the plasma of IMSBH rotates in all regions with 

constant velocity    around a common axis with different angular velocity   as: 

 

Figure E.  

The configuration within an IMSBH describing  the source point    and the observation 

point     on the Cartesian coordinates (x,y,z). Angles between vectors  ̂ and   ,  ̂ and 

   , and     and    are given by               , respectively, for the case where     

and    are expressed in spherical coordinates as (   ,    ,    ) and (  ,   ,   ), 

respectively. 

 

 

 

Figure E. 
The configuration within an IMSBH describing  the source point rs and the observation point rob on the Cartesian coordinates (x,y,z). 
Angles between vectors z  and rs, z  and rob, and rob and rs are given by θs ,θob,and  Θ, respectively, for the case where rob and rs are 
expressed in spherical coordinates as (rob, θob, φob) and (rs, θs, φs), respectively.

 ̂  ̂

We can confirm that Eq. (D1) is equivalent to  - ( i ⁄ 4) ρ2 λ∙ζγφ
*2 rotv× v, as described by Eq. (3.10) in the main text.▁
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Regarding Eq. (2.32) in the main text, the plasma of IMSBH rotates in all regions with constant velocity vφ around a common axis with 
different angular velocity Ω as:
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When we apply the basic relationship of vector analyses, it follows that:

This is further rewritten as:
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Associated with this toroidal flow of plasma, toroidal electric currents may easily be 

raised, as given by Eq. (3.26), which we repeat here as: 
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where   ( ) expresses the rate of the velocity difference between ions and electrons; we 

assume that most ions are     , with fairly large integer n, because of ionization under 

extremely high temperatures. We must then consider the electromagnetic Lorentz force 

         due to magnetic field   generated by the current given in Eq. (E2). 

Specifically,   ( rot ) can be found by introducing the vector potential, as: 
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where     is the same as the expression of Eq. (2.30) in the main text, and    is the 

current at position   , where                   . When we set     within the 

source region, we cannot avoid including  (   )  at         then the integration of Eq. 

(E3) was carried out by applying the expansion of     ⁄  into the series of polynomials 

containing Legendre functions. For this expansion purpose, we rewrite     ⁄ , 

considering the relation of vectors     and    given in Figure E, as follows: 
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where αc (r) expresses the rate of the velocity difference between ions and electrons; we assume that most ions are Fe(n+), with fairly 
large integer n, because of ionization under extremely high temperatures. We must then consider the electromagnetic Lorentz force Fem 
= I×B due to magnetic field B generated by the current given in Eq. (E2). Specifically, B (=rotA) can be found by introducing the vector 
potential, as:
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where ros is the same as the expression of Eq. (2.31) in the main text, and Is is the current at position rs, where x = xs, y = ys,and z = zs. 
When we set rob within the source region, we cannot avoid including A(rob), at rob= rs,  then the integration of Eq. (E3) was carried out 
by applying the expansion of 1 ⁄ ros  into the series of polynomials containing Legendre functions. For this expansion purpose, we rewrite 
1 ⁄ ros, considering the relation of vectors rob and rs given in Figure E, as follows:
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raised, as given by Eq. (3.26), which we repeat here as: 
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extremely high temperatures. We must then consider the electromagnetic Lorentz force 

         due to magnetic field   generated by the current given in Eq. (E2). 
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. For the expressions given by Eqs. (E4) and (E5), the polynomial expansion is 

established as an application of the Legendre function,   ( ), of the n-th order by 

setting the argument x to be     , corresponding to Eqs. (E4) and (E5), respectively, as: 
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Because the dependence of   (    ) on the arguments    and    is complicated, as 

expressed by Eq. (E6), we applied numerical integration for integration by     and     

after finding the analytic formulae for integration by     for Eq. (E10). Then, we arrive 

at the equations for    ⁄        ⁄ , and    (   )  ⁄ , which become elements to 

calculate       ; i.e., by rewriting     and     as r and    respectively, it follows 

that: 
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Because the dependence of Pn (cosΘ) on the arguments θs and φs is complicated, as expressed by Eq. (E6), we applied numerical 
integration for integration by dθs and dφs after finding the analytic formulae for integration by drs for Eq. (E10). Then, we arrive at the 
equations for Aφ⁄r,(∂Aφ)⁄(∂r ), and (∂Aφ)⁄((r∂θ), which become elements to calculate B=rotA; i.e., by rewriting rob and θob as r and θ, 
respectively, it follows that:
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In Eqs. (E11)–(E13), the expansions of the Legendre function   (    )  are 

approximated by stopping the expansion at n = 6, and differentiation    ( )   ⁄  was 

directly performed to the expanded polynomial   ( ) of the Legendre function. 

By the numerical integration of             with respect to Eqs. (E11)–(E13), we have 

the results of the generated magnetic field in spherical coordinates as: 

   (    )  
    
    

  
  

   
                                                                       (   ) 

and 

   (    )   
  
  

   
                                                                          (   ) 

 

 72  
 

  
 

        
  (    )∫ ∫ {∑*     

(   )(     ) (
   
 )

 
                                                        

 

   

  

 

 

 

  
   (

 
   

*
 
+  (    )}                      (   ) 

 

   
          

  ∫ ∫ {∑*  (    ) 
(   )(     ) (

   
 )

    

   

  

 

 

 

  
   (

 
   

*
   

+    (    )}                     (   ) 

and 

   
           

  (    )∫ ∫ {∑*     
(   )(     ) (

   
 )

  

   

  

 

 

 

  
   (

 
   

*
 
+    

( )
  } (    )                   (   ) 

where 

 (    )
                       

    (    )                                                                 (   ) 
In Eqs. (E11)–(E13), the expansions of the Legendre function   (    )  are 

approximated by stopping the expansion at n = 6, and differentiation    ( )   ⁄  was 

directly performed to the expanded polynomial   ( ) of the Legendre function. 

By the numerical integration of             with respect to Eqs. (E11)–(E13), we have 

the results of the generated magnetic field in spherical coordinates as: 

   (    )  
    
    

  
  

   
                                                                       (   ) 

and 

   (    )   
  
  

   
                                                                          (   ) 

 

 72  
 

  
 

        
  (    )∫ ∫ {∑*     

(   )(     ) (
   
 )

 
                                                        

 

   

  

 

 

 

  
   (

 
   

*
 
+  (    )}                      (   ) 

 

   
          

  ∫ ∫ {∑*  (    ) 
(   )(     ) (

   
 )

    

   

  

 

 

 

  
   (

 
   

*
   

+    (    )}                     (   ) 

and 

   
           

  (    )∫ ∫ {∑*     
(   )(     ) (

   
 )

  

   

  

 

 

 

  
   (

 
   

*
 
+    

( )
  } (    )                   (   ) 

where 

 (    )
                       

    (    )                                                                 (   ) 
In Eqs. (E11)–(E13), the expansions of the Legendre function   (    )  are 

approximated by stopping the expansion at n = 6, and differentiation    ( )   ⁄  was 

directly performed to the expanded polynomial   ( ) of the Legendre function. 

By the numerical integration of             with respect to Eqs. (E11)–(E13), we have 

the results of the generated magnetic field in spherical coordinates as: 

   (    )  
    
    

  
  

   
                                                                       (   ) 

and 

   (    )   
  
  

   
                                                                          (   ) 

 

 72  
 

  
 

        
  (    )∫ ∫ {∑*     

(   )(     ) (
   
 )

 
                                                        

 

   

  

 

 

 

  
   (

 
   

*
 
+  (    )}                      (   ) 

 

   
          

  ∫ ∫ {∑*  (    ) 
(   )(     ) (

   
 )

    

   

  

 

 

 

  
   (

 
   

*
   

+    (    )}                     (   ) 

and 

   
           

  (    )∫ ∫ {∑*     
(   )(     ) (

   
 )

  

   

  

 

 

 

  
   (

 
   

*
 
+    

( )
  } (    )                   (   ) 

where 

 (    )
                       

    (    )                                                                 (   ) 
In Eqs. (E11)–(E13), the expansions of the Legendre function   (    )  are 

approximated by stopping the expansion at n = 6, and differentiation    ( )   ⁄  was 

directly performed to the expanded polynomial   ( ) of the Legendre function. 

By the numerical integration of             with respect to Eqs. (E11)–(E13), we have 

the results of the generated magnetic field in spherical coordinates as: 

   (    )  
    
    

  
  

   
                                                                       (   ) 

and 

   (    )   
  
  

   
                                                                          (   ) 

 

 72  
 

  
 

        
  (    )∫ ∫ {∑*     

(   )(     ) (
   
 )

 
                                                        

 

   

  

 

 

 

  
   (

 
   

*
 
+  (    )}                      (   ) 

 

   
          

  ∫ ∫ {∑*  (    ) 
(   )(     ) (

   
 )

    

   

  

 

 

 

  
   (

 
   

*
   

+    (    )}                     (   ) 

and 

   
           

  (    )∫ ∫ {∑*     
(   )(     ) (

   
 )

  

   

  

 

 

 

  
   (

 
   

*
 
+    

( )
  } (    )                   (   ) 

where 

 (    )
                       

    (    )                                                                 (   ) 
In Eqs. (E11)–(E13), the expansions of the Legendre function   (    )  are 

approximated by stopping the expansion at n = 6, and differentiation    ( )   ⁄  was 

directly performed to the expanded polynomial   ( ) of the Legendre function. 

By the numerical integration of             with respect to Eqs. (E11)–(E13), we have 

the results of the generated magnetic field in spherical coordinates as: 

   (    )  
    
    

  
  

   
                                                                       (   ) 

and 

   (    )   
  
  

   
                                                                          (   ) 

 

 72  
 

  
 

        
  (    )∫ ∫ {∑*     

(   )(     ) (
   
 )

 
                                                        

 

   

  

 

 

 

  
   (

 
   

*
 
+  (    )}                      (   ) 

 

   
          

  ∫ ∫ {∑*  (    ) 
(   )(     ) (

   
 )

    

   

  

 

 

 

  
   (

 
   

*
   

+    (    )}                     (   ) 

and 

   
           

  (    )∫ ∫ {∑*     
(   )(     ) (

   
 )

  

   

  

 

 

 

  
   (

 
   

*
 
+    

( )
  } (    )                   (   ) 

where 

 (    )
                       

    (    )                                                                 (   ) 
In Eqs. (E11)–(E13), the expansions of the Legendre function   (    )  are 

approximated by stopping the expansion at n = 6, and differentiation    ( )   ⁄  was 

directly performed to the expanded polynomial   ( ) of the Legendre function. 

By the numerical integration of             with respect to Eqs. (E11)–(E13), we have 

the results of the generated magnetic field in spherical coordinates as: 

   (    )  
    
    

  
  

   
                                                                       (   ) 

and 

   (    )   
  
  

   
                                                                          (   ) 

Because current Is is expressed assuming that the current intensity is proportional to the plasma number density and velocity difference 
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In Eqs. (E11)–(E13), the expansions of the Legendre function Pn (cosΘ) are approximated by stopping the expansion at n = 6, and 
differentiation (∂Pn (x))⁄∂x was directly performed to the expanded polynomial Pn (x) of the Legendre function.

By the numerical integration of dθs  and dφs with respect to Eqs. (E11)–(E13), we have the results of the generated magnetic field in 
spherical coordinates as:
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                                                                          (   ) The numerical results of Br and Bθ are given in Figure 3 for δ=0 in the main text, where quantities are normalized by μ0 I0 rMc, with the 

unit 4π×10-7  Wb/m2 for the current density I0 (A ⁄ m2) and core radius rMc  (m)   of the IMSBH.
The Lorenz force caused by the toroidal currents and generated magnetic fields is:
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where r and θ are the unit vector in the radial and polar angle directions, respectively.
In the main text, normalized Aφ is expressed by defining Aφ
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In Figure F, the calculation results of FLr and FLθ are presented for three example cases of δ=0~0.2. Among these results, we selected the 
case of δ=0 with a standpoint to evaluate the range of divergence versus r/rMc. As given in the panels of δ=0, the estimated approximation 
functions that represent the FLr and FLθ functions are:
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Figure F: Calculation results of functions FLr and FLθ versus polar angle θ with radial position r⁄rMc  as a parameter. Results are shown 
for three cases of δ from 0 to 0.2, as given in the corresponding panel. The case of δ=0 is selected as the suitable case containing an 
approximation function of the θ dependence, which is close to that of the mechanical terms in the force balance equations. In these 
selected cases, the approximation functions are shown in the corresponding panels by pure red curves
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Appendix G 

Starting with Eq. (5.1) in the main text, the Einstein tensor     is realized with the Ricci 

tensor     and scaler Ricci  , which are expressed by: 
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At this stage, we apply gauge selection following the orthodox method of the reduction 

of GWs. When we follow the Lorentz gauge, which allows 

When we introduce a new tensor φjk, as:
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Then, hμν, as given by Eq. (5.1) in the main text, is related to hij
’ in the transformed coordinates as:
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More specifically, because             for nonzero terms, Eq. (  ) is equivalent 
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’,Aμν, and Bμ are 

amplitudes of the corresponding harmonic wave expressions. Corresponding to Eq. (H8), therefore, we have:
▁
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Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as: 

                                                                                 (   ) 
The relation in Eq. (H19) is rewritten, considering    
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From this relationship, we can find constraints for Aμν
’  and Aμν as A0ν

’ = 0 and Aoν  =0, respectively, for suitable values of Bν as functions 
of B0 that satisfy:
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Further constraints to Aμν
’  and Aμν can be found when we investigate the Lorentz gauge given by ∂φμν

’ ⁄ ∂x’ν )=0 and  ∂φμν  ⁄ ∂xν  = 0, in 
terms of Eqs. (H12a)  and (H12b), i.e.,

 

 78  
 

where   is the imaginary unit, and    is a four-dimensional wavenumber of the 

harmonic waves. In Eq. (     ),    
     , and   amplitudes of the corresponding 

harmonic wave expressions. Corresponding to Eq. (  ), therefore, we have: 

   
       (                       )                                          (   ) 

From this relationship, we can find constraints for    
          as    

             
   respectively, for suitable values of    as functions of    that satisfy: 

                                                                                       (   ) 
Further constraints to    

          can be found when we investigate the Lorentz gauge 

given by     
     ⁄               ⁄   , in terms of Eqs. (    )     (    ) , 

i.e., 

      
           (                       )                                    (   ) 

Then, it is required that: 

     
                                                                                (   ) 

The traces       
  and        are expressed by: 

      
        

  (                                )                            (   ) 
Then, the traceless condition is confirmed for the case: 

(                                )                                           (   ) 
Specifically, for          

     which is equivalent to      and     , it is 

required that: 

      
        

        
        

        
                                       (   ) 

Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as: 

                                                                                 (   ) 
The relation in Eq. (H19) is rewritten, considering    

     as follows: 

   
     

     
                                                                               (   ) 

Further, considering all possible constraints at this stage, given by    
             

 ,      
   , and Eq. (H.19), we have the following four linear equations: 

   
        

        
   

  
    

    
    

    
    

   
  

    
    

    
    

    
   

  
    

    
    

    
    

   
                          

}
 

 
                                           (    ) 

Then, it is required that:

 

 78  
 

where   is the imaginary unit, and    is a four-dimensional wavenumber of the 

harmonic waves. In Eq. (     ),    
     , and   amplitudes of the corresponding 

harmonic wave expressions. Corresponding to Eq. (  ), therefore, we have: 

   
       (                       )                                          (   ) 

From this relationship, we can find constraints for    
          as    

             
   respectively, for suitable values of    as functions of    that satisfy: 

                                                                                       (   ) 
Further constraints to    

          can be found when we investigate the Lorentz gauge 

given by     
     ⁄               ⁄   , in terms of Eqs. (    )     (    ) , 

i.e., 

      
           (                       )                                    (   ) 

Then, it is required that: 

     
                                                                                (   ) 

The traces       
  and        are expressed by: 

      
        

  (                                )                            (   ) 
Then, the traceless condition is confirmed for the case: 

(                                )                                           (   ) 
Specifically, for          

     which is equivalent to      and     , it is 

required that: 

      
        

        
        

        
                                       (   ) 

Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as: 

                                                                                 (   ) 
The relation in Eq. (H19) is rewritten, considering    

     as follows: 

   
     

     
                                                                               (   ) 

Further, considering all possible constraints at this stage, given by    
             

 ,      
   , and Eq. (H.19), we have the following four linear equations: 

   
        

        
   

  
    

    
    

    
    

   
  

    
    

    
    

    
   

  
    

    
    

    
    

   
                          

}
 

 
                                           (    ) 

The traces ημν φμν' and ημν φμν are expressed by:

 

 78  
 

where   is the imaginary unit, and    is a four-dimensional wavenumber of the 

harmonic waves. In Eq. (     ),    
     , and   amplitudes of the corresponding 

harmonic wave expressions. Corresponding to Eq. (  ), therefore, we have: 

   
       (                       )                                          (   ) 

From this relationship, we can find constraints for    
          as    

             
   respectively, for suitable values of    as functions of    that satisfy: 

                                                                                       (   ) 
Further constraints to    

          can be found when we investigate the Lorentz gauge 

given by     
     ⁄               ⁄   , in terms of Eqs. (    )     (    ) , 

i.e., 

      
           (                       )                                    (   ) 

Then, it is required that: 

     
                                                                                (   ) 

The traces       
  and        are expressed by: 

      
        

  (                                )                            (   ) 
Then, the traceless condition is confirmed for the case: 

(                                )                                           (   ) 
Specifically, for          

     which is equivalent to      and     , it is 

required that: 

      
        

        
        

        
                                       (   ) 

Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as: 

                                                                                 (   ) 
The relation in Eq. (H19) is rewritten, considering    

     as follows: 

   
     

     
                                                                               (   ) 

Further, considering all possible constraints at this stage, given by    
             

 ,      
   , and Eq. (H.19), we have the following four linear equations: 

   
        

        
   

  
    

    
    

    
    

   
  

    
    

    
    

    
   

  
    

    
    

    
    

   
                          

}
 

 
                                           (    ) 

 

 78  
 

where   is the imaginary unit, and    is a four-dimensional wavenumber of the 

harmonic waves. In Eq. (     ),    
     , and   amplitudes of the corresponding 

harmonic wave expressions. Corresponding to Eq. (  ), therefore, we have: 

   
       (                       )                                          (   ) 

From this relationship, we can find constraints for    
          as    

             
   respectively, for suitable values of    as functions of    that satisfy: 

                                                                                       (   ) 
Further constraints to    

          can be found when we investigate the Lorentz gauge 

given by     
     ⁄               ⁄   , in terms of Eqs. (    )     (    ) , 

i.e., 

      
           (                       )                                    (   ) 

Then, it is required that: 

     
                                                                                (   ) 

The traces       
  and        are expressed by: 

      
        

  (                                )                            (   ) 
Then, the traceless condition is confirmed for the case: 

(                                )                                           (   ) 
Specifically, for          

     which is equivalent to      and     , it is 

required that: 

      
        

        
        

        
                                       (   ) 

Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as: 

                                                                                 (   ) 
The relation in Eq. (H19) is rewritten, considering    

     as follows: 

   
     

     
                                                                               (   ) 

Further, considering all possible constraints at this stage, given by    
             

 ,      
   , and Eq. (H.19), we have the following four linear equations: 

   
        

        
   

  
    

    
    

    
    

   
  

    
    

    
    

    
   

  
    

    
    

    
    

   
                          

}
 

 
                                           (    ) 

Then, the traceless condition is confirmed for the case:

 

 78  
 

where   is the imaginary unit, and    is a four-dimensional wavenumber of the 

harmonic waves. In Eq. (     ),    
     , and   amplitudes of the corresponding 

harmonic wave expressions. Corresponding to Eq. (  ), therefore, we have: 

   
       (                       )                                          (   ) 

From this relationship, we can find constraints for    
          as    

             
   respectively, for suitable values of    as functions of    that satisfy: 

                                                                                       (   ) 
Further constraints to    

          can be found when we investigate the Lorentz gauge 

given by     
     ⁄               ⁄   , in terms of Eqs. (    )     (    ) , 

i.e., 

      
           (                       )                                    (   ) 

Then, it is required that: 

     
                                                                                (   ) 

The traces       
  and        are expressed by: 

      
        

  (                                )                            (   ) 
Then, the traceless condition is confirmed for the case: 

(                                )                                           (   ) 
Specifically, for          

     which is equivalent to      and     , it is 

required that: 

      
        

        
        

        
                                       (   ) 

Relative to Eq. (H19), the imaginary part of Eq. (H17) is rewritten as: 

                                                                                 (   ) 
The relation in Eq. (H19) is rewritten, considering    

     as follows: 

   
     

     
                                                                               (   ) 

Further, considering all possible constraints at this stage, given by    
             

 ,      
   , and Eq. (H.19), we have the following four linear equations: 

   
        

        
   

  
    

    
    

    
    

   
  

    
    

    
    

    
   

  
    

    
    

    
    

   
                          

}
 

 
                                           (    ) 

Specifically, for A’=ημν Aμν’= 0, which is equivalent to φ’= 0 and h’=0, it is required that:
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The relation in Eq. (H19) is rewritten, considering A00’= 0, as follows:
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Further, considering all possible constraints at this stage, given by A0ν’ = 0 and Aoν  = 0, kν Aμν
’ = 0, and Eq. (H.19), we have the following 

four linear equations:
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2 2 2

Here, we are allowed the freedom to select two amplitudes of the metric, among Aμν
’, as arbitrary values; then, the remaining Aμν

’ can 
be fixed by solving Eq. (H.22) as functions of the two selected arbitrary Aμν

’. We then select A11’ and A12’ as independent amplitudes to 
decide φ11’ and φ12’. More specifically, the linear equation Eq. (H.22) is rewritten for the four unknowns A13’,A22’,A23’,and A33’ as:
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Whole equations in Eq. (H.24) are given as Eq. (5.15) in the main text. 

 

 

Appendix I 

We start with the retarded potential formulation given as Eq. (5.17) in the main text: 

   
  (   )

    
  ∫

   (   
(  )        

 )   (   
(  )    

(  ))
    

   
(  )                                 (  ) 

 

 79  
 

Here, we are allowed the freedom to select two amplitudes of the metric, among    
   as 

arbitrary values; then, the remaining    
  can be fixed by solving Eq. (H.22) as functions 

of the two selected arbitrary     
   We then select    

  and    
  as independent 

amplitudes to decide    
  and    

 . More specifically, the linear equation Eq. (H.22) is 

rewritten for the four unknowns    
     

     
         

  as: 

(
                  
     

                
          

         
         

          
             

       
   

)

(

 
   

 

    
 

   
 

    
 )

  (
    

 

   
    

    
    

 

   
    

 

 

)                                    (   ) 

with solutions: 

   
     

    
    

    
 

  
                                    

   
   

(  
     

  )   
     

   
    

 

  
     

               

   
   (  

 

  
 )

(  
     

  )   
    

   
    

 

  
     

       

   
  

(  
     

  )   
     

   
    

 

  
     

                  

                      

}
 
 
 
 

 
 
 
 

                                   (    ) 

Whole equations in Eq. (H.24) are given as Eq. (5.15) in the main text. 

 

 

Appendix I 

We start with the retarded potential formulation given as Eq. (5.17) in the main text: 

   
  (   )

    
  ∫

   (   
(  )        

 )   (   
(  )    

(  ))
    

   
(  )                                 (  ) 

 

 79  
 

Here, we are allowed the freedom to select two amplitudes of the metric, among    
   as 

arbitrary values; then, the remaining    
  can be fixed by solving Eq. (H.22) as functions 

of the two selected arbitrary     
   We then select    

  and    
  as independent 

amplitudes to decide    
  and    

 . More specifically, the linear equation Eq. (H.22) is 

rewritten for the four unknowns    
     

     
         

  as: 

(
                  
     

                
          

         
         

          
             

       
   

)

(

 
   

 

    
 

   
 

    
 )

  (
    

 

   
    

    
    

 

   
    

 

 

)                                    (   ) 

with solutions: 

   
     

    
    

    
 

  
                                    

   
   

(  
     

  )   
     

   
    

 

  
     

               

   
   (  

 

  
 )

(  
     

  )   
    

   
    

 

  
     

       

   
  

(  
     

  )   
     

   
    

 

  
     

                  

                      

}
 
 
 
 

 
 
 
 

                                   (    ) 

Whole equations in Eq. (H.24) are given as Eq. (5.15) in the main text. 

 

 

Appendix I 

We start with the retarded potential formulation given as Eq. (5.17) in the main text: 

   
  (   )

    
  ∫

   (   
(  )        

 )   (   
(  )    

(  ))
    

   
(  )                                 (  ) 

 

 79  
 

Here, we are allowed the freedom to select two amplitudes of the metric, among    
   as 

arbitrary values; then, the remaining    
  can be fixed by solving Eq. (H.22) as functions 

of the two selected arbitrary     
   We then select    

  and    
  as independent 

amplitudes to decide    
  and    

 . More specifically, the linear equation Eq. (H.22) is 

rewritten for the four unknowns    
     

     
         

  as: 

(
                  
     

                
          

         
         

          
             

       
   

)

(

 
   

 

    
 

   
 

    
 )

  (
    

 

   
    

    
    

 

   
    

 

 

)                                    (   ) 

with solutions: 

   
     

    
    

    
 

  
                                    

   
   

(  
     

  )   
     

   
    

 

  
     

               

   
   (  

 

  
 )

(  
     

  )   
    

   
    

 

  
     

       

   
  

(  
     

  )   
     

   
    

 

  
     

                  

                      

}
 
 
 
 

 
 
 
 

                                   (    ) 

Whole equations in Eq. (H.24) are given as Eq. (5.15) in the main text. 

 

 

Appendix I 

We start with the retarded potential formulation given as Eq. (5.17) in the main text: 

   
  (   )

    
  ∫

   (   
(  )        

 )   (   
(  )    

(  ))
    

   
(  )                                 (  ) 

Appendix I

г

(See the main text for all notations relating to Eqs. (5.17) and (5.18).) As given in Figure I, four Cartesian coordinate systems with 
supporting spherical coordinates are set to describe an orbiting IMSBH: specifically, the coordinate system (x(or),y(or),z(or)) describes the 
entire binary orbits and coordinate system (x(ts),y(ts),z(ts)) describes the interior of the Kerr BH and IMSBH of Gam, where the y(ts) axis 
rotates with phase angle Ωorb ts:
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where      is the orbital radius of BH Gam. In the coordinate given by Eq. (I2), we 

rewrite Eq. (I1) as: 
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where RGam is the orbital radius of BH Gam. In the coordinate given by Eq. (I2), we rewrite Eq. (I1) as:

We start with the retarded potential formulation given as Eq. (5.17) in the main text:

Whole equations in Eq. (H.24) are given as Eq. (5.15) in the main text.

with solutions:
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Figure I: Coordinate systems for orbiting IMSBH of the binary supermassive BHs whose orbits are described in the Cartesian coordinate 
system (x(or),y(or),z(or)) with the origin given at the center of the binary orbits. The center of IMSBH that is assumed to be spherical with 
radius rMc is located in the direction of the y(ts) axis with distance RGam, i.e., the orbit radius of BH Gam; the Cartesian coordinate 
system (x(ts)),y(ts),z(ts)), whose origin is set as coinciding with the center of the binary orbits, is defined so that the x(ts)  and y(ts) axes are 
in the orbital plane, setting y(ts) to coincide with the moving radius of the orbiting Gam. The Cartesian coordinate system (x(c),y(c),z(c)) is 
defined by setting the origin at the center of the orbiting IMSBH. The directions of all axes are set parallel to the corresponding axes 
of the (x(ts)),y(ts),z(ts)) coordinate system. The source position in IMSBH given by the position vector гs is expressed by the Cartesian 
coordinate system (x’,y’,z’ ) defined by rotating the (x(c),y(c),z(c)) system with respect to the fixed origin at the center of IMSBH so that 
the z’ axis coincides with vector гob. In this (x’,y’,z’)   coordinate system, the integration of Eq. (I1) can be expressed with simple steps 
by transforming to spherical coordinates.
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Figure I. Coordinate systems for orbiting IMSBH of the binary supermassive BHs 

whose orbits are described in the Cartesian coordinate system ( (  )  (  )  (  )) with 

the origin given at the center of the binary orbits. The center of IMSBH that is assumed 

to be spherical with radius     is located in the direction of the  (  ) axis with distance 

    , i.e., the orbit radius of BH Gam; the Cartesian coordinate system 

( (  )  (  )  (  )), whose origin is set as coinciding with the center of the binary orbits, 

is defined so that the  (  )       (  )  axes are in the orbital plane, setting   (  )  to 

coincide with the moving radius of the orbiting Gam. The Cartesian coordinate system 

( ( )  ( )  ( )) is defined by setting the origin at the center of the orbiting IMSBH. The 

directions of all axes are set parallel to the corresponding axes of the ( (  )  (  )  (  )) 

coordinate system. The source position in IMSBH given by the position vector    is 

expressed by the Cartesian coordinate system (        )  defined by rotating the 

( ( )  ( )  ( )) system with respect to the fixed origin at the center of IMSBH so that 

the    axis coincides with vector    . In this (        )  coordinate system, the 

integration of Eq. (I1) can be expressed with simple steps by transforming to spherical 

coordinates. 
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When we rewrite the integration given by Eq. (I3) in coordinates ( (  )  (  )  (  )) to 

the expression in the (        ) coordinate system, it follows that: 
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Using Eq. (I10), we can rewrite Eq. (I8) by expanding     ⁄  to the first order of      ⁄ , 
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Because the second term on the right-hand side of Eq. (I12) vanishes for integration by 

    in the range of        , we have the same result with the case of the remote 

source approximation, given by: 
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Because     and     do not vary when the coordinates are transformed from (        ) 
to ( (  )  (  )  (  )), we can express Eq. (I14) in the form of an orbiting binary as: 
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Because the second term on the right-hand side of Eq. (I12) vanishes for integration by θos in the range of 0≤θos≤π, we have the same 
result with the case of the remote source approximation, given by:

Using dVs' for integration of the first term, it follows that:
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where rs,θos,and φs are spherical coordinates related to (x',y',z' ) as:

When we rewrite the integration given by Eq. (I3) in coordinates (x(ts),y(ts),z(ts)) to the expression in the (x',y',z' ) coordinate system, it 
follows that:
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For the source term in Eq. (I14), we can apply Einstein’s quadrupole theorem to the 

IMSBH of Gam in the binary orbit as: 
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This result is given as Eq. (    ) in the main text. 

 

 

 

 

Appendix J 

For Eqs. (5.19) and (5.20) in the main text, we have approximated expressions by taking 
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Differentiating by   , Eqs. (J1) and (J2) are rewritten as: 
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Because ros and rob do not vary when the coordinates are transformed from (x',y',z' ) to (x(or),y(or),z(or) ), we can express Eq. (I14) in the 
form of an orbiting binary as:

For the source term in Eq. (I14), we can apply Einstein’s quadrupole theorem to the IMSBH of Gam in the binary orbit as:
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where               are the orbiting radii of the BH Gam and the angular velocity, 

respectively. We calculated GW in the region inside the event horizon of the Kerr BH, 

where the radius of the event horizon    is in the range of                , with 

respect to the radius     of the IMSBH as the source. In this case, the distribution of the 

source is not simply considered as a point; we should consider the distribution of the 

source within the range       . Then, applying the same processes for treating 

    |      | , as is the case in Appendix I, where we selected local spherical 

coordinates to express    
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( ), Eqs. (J3) and (J4) are rewritten by expanding     

to the first order of      ⁄  as follows: 
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Differentiating by   , Eqs. (J1) and (J2) are rewritten as: 

For Eqs. (5.19) and (5.20) in the main text, we have approximated expressions by taking x=RGam cos(Ωorb ts )  and y=RGam sin(Ωorb ts ), 
considering RGam≫xs

(c) , and RGam≫ys
(c) , as:

This result is given as Eq. (5.19) in the main text.

where RGam  and Ωorb are the orbiting radii of the BH Gam and the angular velocity, respectively. We calculated GW in the region inside 
the event horizon of the Kerr BH, where the radius of the event horizon rE is in the range of 100rMc>rE>10rMc, with respect to the radius 
rMc of the IMSBH as the source. In this case, the distribution of the source is not simply considered as a point; we should consider the 
distribution of the source within the range rMc ≥ rs. Then, applying the same processes for treating ros=|rob-rs |, as is the case in Appendix I, 
where we selected local spherical coordinates to express dVs

(or) =dVs
(c), Eqs. (J3) and (J4) are rewritten by expanding ros to the first order 

of rs ⁄ rob  as follows:

г г г
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When we estimate the term               ⁄  at the phase of the sinusoidal function, the 

value is clarified to be less than      in the case of the present binary system. 

Accordingly, we can only consider the term      (        ⁄ ) in the phase of the 

sinusoidal function. As results of the integration in Eqs. (J7) and (J8), we have: 
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where M is the total mass of the BH, given by: 
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with respect to the radius     of the IMSBH, simply assuming a homogeneous state of 

the matter. 

When we apply the Schwarzschild radius    (   )   ⁄ , orbital velocity       and 

initial average phase   , the results can be rewritten as follows: 
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When we estimate the term               ⁄  at the phase of the sinusoidal function, the 

value is clarified to be less than      in the case of the present binary system. 

Accordingly, we can only consider the term      (        ⁄ ) in the phase of the 

sinusoidal function. As results of the integration in Eqs. (J7) and (J8), we have: 
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with respect to the radius     of the IMSBH, simply assuming a homogeneous state of 

the matter. 

When we apply the Schwarzschild radius    (   )   ⁄ , orbital velocity       and 

initial average phase   , the results can be rewritten as follows: 
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Appendix K 

Eqs. (6.1) and (6.2) in the main text are given in Cartesian coordinates with the origin at 

the center of the orbits of the binary BH, as depicted in Figure 10 of the main text, 

where the spherical coordinates whose origin is at the center of the IMSBH are defined. 

These two coordinates are related as follows: 
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For the spacetime of the GWs hxx
TT and hxy

TT, we applied the transformation to include expressions in the spherical coordinates at a given 
plane with a fixed θ. Following the formula of the transformation of the tensor, the transformed tensors hrr

TT,hrφ
TT,and hφφ

TT are expressed 
as:
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with respect to the radius rMc of the IMSBH, simply assuming a homogeneous state of the matter.
When we apply the Schwarzschild radius rg=(2GM) ⁄ c2 , orbital velocity vGam, and initial average phase ΦI, the results can be rewritten 
as follows:
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To determine the above relations, we utilized the expressions in Eqs. (5.26) and (5.27) 

in the main text for    
   (     

  ) and    
  , respectively. The relations in Eqs. (K6) and 

(K7) are given as Eqs. (6.6) and (6.7), respectively, in the main text, setting   to be an 

arbitrary constant     Notably, the phase is rewritten in the expression of Eqs. (6.6) and 

(6.7) through the argument given in Eq. (6.4). 
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As expressed by Eq. (6.9) in the main text, we have a compact form that describes the 

two basic components of GW as: 
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Because the GW equation given by Eq. (L1) is an expression in QMST, transformation 
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the event horizon to determine the real amplitude of GW in the BH. To prepare for this 

purpose, we rewrite H in Eq. (L1) as: 
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From Eq. (L3), we calculated        ⁄  considering the relation given in Eq. (6.13) in 

the main text; the result gives: 
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By translating the spacetime in Eq. (L2) to the Kerr spacetime, we obtained the results 

for the amplitude given by Eq. (6.15) in the main text. 
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By translating the spacetime in Eq. (L2) to the Kerr spacetime, we obtained the results for the amplitude given by Eq. (6.15) in the main 
text.

From Eq. (L3), we calculated (∂rQM)⁄(∂rB) considering the relation given in Eq. (6.13) in the main text; the result gives:
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