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Abstract
Introducing a new boundary condition at infinity for electromagnetic theory.The theory of mutual energy flow using electromagnetic 
fields.The electromagnetic waves of the dual planar antenna, including self energy flow and mutual energy, have been successfully 
calculated. Among them, self energy flow is reactive power. Mutual energy flow is active power, which is generated from the 
source and annihilated at the sink.According to Maxwell’s electromagnetic theory, or classical electromagnetic theory, posits 
that a changing current on an antenna induces an electromagnetic wave that can propagate in space. When this wave reaches 
a receiving antenna, it transfers electromagnetic energy and momentum, allowing the reception of signals. However, the author 
challenges this standard description, aligning with Wheeler Feynman’s absorber theory. According to this theory, the radiation 
from a transmitting antenna is influenced not only by its own changing current but also by the current changes of the remote 
receiving antenna, the absorber’s charge, and environmental materials.The author supports Wheeler Feynman’s perspective and 
introduces a new electromagnetic theory. In this theory, all transmitting and receiving antennas, as well as radiation and absorber 
materials, are assumed to be near the origin. The key assumption is that no material on an infinitely large sphere can absorb 
electromagnetic waves, preventing the transmission of electromagnetic energy to infinity. This idea is integrated into Maxwell’s 
electromagnetic theory by adding a boundary condition, contradicting the theory’s original Sliver-Muller radiation condition, 
which requires a good absorber material in the far field. The author proposes relaxing Maxwell’s equations, specifically the 
mutual energy principle equivalent to Maxwell’s equation, to incorporate the new boundary condition that radiation should 
not overflow the universe. This relaxation results in a novel electromagnetic theory. By introducing this additional boundary 
condition, the author aims to provide a more accessible description of the entire electromagnetic theory. While the author 
initially presented their theory from an energy conservation standpoint, emphasizing its adherence to the law of conservation of 
energy, adding the new boundary condition may offer readers a more easily acceptable perspective.

Keywords: Poynting Theorem, Sliver-Muller, Boundary Conditions, Maxwell Equation, Quasi static, Magnetic Quasi-Static, 
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1. Introduction
This author put forward the mutual energy theorem in 1987 [1-3]. 
Later, this author found that the theorems similar to the mutual 
energy theorem are all called reciprocity theorems. Among them 
is the time-domain reciprocity theorem proposed by Welch 
in 1960 [4]. Rumsey proposed a new reciprocity theorem in 
1963 [5]. The correlation reciprocity theorem proposed by de 
Hoop [6]. Since 2015, this author has found this problem, that 
is, the positioning of the same electromagnetic field formula is 
different. Others call it the reciprocity theorem, while this author 
calls it the mutual energy theorem. The reciprocity theorem is 
equivalent to some kind of Green’s function, which is positioned 
as a mathematical formula to help solve Maxwell’s equation, 
not a physical theorem. The mutual energy theorem is an energy 
theorem, so it is also a physical theorem. After finding this 

problem, this author began to further study this problem. He 
hopes to find out whether this formula is the energy theorem 
or the reciprocity theorem. Through research, it is found that 
this theorem is not only the energy theorem, but also the energy 
conservation law. It is not only the energy conservation law, 
but also there is an energy flow theorem. Therefore, this energy 
conservation law is actually a localized energy conservation law. 
It is a strong law of conservation of energy.

Therefore, this author further proposed the mutual energy 
flow theorem and interpreted quantum mechanics with mutual 
energy flow [7]. This interpretation is close to the transactional 
interpretation of quantum mechanics proposed by Cramer [8, 9]. 
Both believe that the advanced wave is an objective physical 
reality. The proposal of transactional interpretation is based 
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on Wheeler Feynman’s absorber theory [10, 11]. The absorber 
theory is put forward based on the principle of a-action-at-
distance [12-14]. This author agrees with many viewpoints of the 
absorber theory, that is, the absorber material does not passively 
receive electromagnetic waves, but receives electromagnetic 
waves by radiating advanced waves.

On the basis of absorber theory and transactional interpretation, 
this author further improved his own theory on electromagnetic 
mutual energy and mutual energy flow, put forward the Huygens 
principle based on the mutual energy flow theorem [15, 16] the 
theory of macroscopic electromagnetic waves composed of 
photons [17] The wave-particle duality theory of mutual energy 
flow corresponding to Schrodinger equation [15]. This author 
further studies and proposes a new class of Green functions to 
solve the electromagnetic problem [18]. This author also extends 
this theory to electromagnetic stress flow and Newton’s Third 
Law at a long distance [19]. And some other applications [20, 
21].

This paper attempts to re-establish the electromagnetic theory 
of mutual energy proposed by this author. This time, this 
author proposes a new axiom that electromagnetic waves do 
not overflow the universe. This can also be regarded as a new 
electromagnetic boundary condition. According to Maxwell’s 
electromagnetic theory, if an antenna has a change in current, 
the antenna will radiate electromagnetic waves. If we build a 
sphere with an infinite radius around the antenna, the energy 
flow density or Poynting vector of the electromagnetic wave 
will not be zero for the area of the whole sphere. This author 
believes that electromagnetic waves should not overflow the 
universe. There is a problem with Maxwell’s electromagnetic 
theory. Correction required. After correction, The average of the 
Poynting vector corresponding to the energy flow on the sphere 
with infinite radius must be zero.

Of course, this author does not want to deny Maxwell’s 
electromagnetic theory. This author finds that Maxwell’s 
electromagnetic theory actually implies a condition, that is, an 
absorber material that can completely absorb electromagnetic 
waves is uniformly arranged on a sphere with an infinite radius. 
This is achieved by the Sliver-Muller radiation condition. But 
for the real situation, the boundary of the universe is not always 
full of absorber materials. Especially for photons, they are 
always absorbed by an absorber charge. Photons are absorbed 
at one point when they radiate. Photons have nothing to do with 
whether the cosmic boundary is full of absorber materials. The 
new electromagnetic field theory established by this author is 
based on the condition that there is no absorber on the spherical 
surface with infinite radius. Of course, this boundary condition 
is not consistent with the Sliver-Muller radiation condition. 
Instead, offer a new boundary condition that the radiation does not 
overflow of the universe. The boundary condition of Maxwell’s 
electromagnetic theory can only take the Sliver-Muller radiation 
condition. Maxwell’s electromagnetic theory conflicts with the 
boundary condition that radiation does not overflow universe 
proposed by author. In order to solve this conflict, this author 
adds a relaxation process to Maxwell’s electromagnetic theory. 

Through this relaxation process, the electromagnetic equation 
releases another degree of freedom, which just allow to add the 
boundary condition that radiation does not overflow the universe.

In order to explain to the readers that this author is justified in 
doing so, this author first explains that Maxwell’s electromagnetic 
theory and magnetic quasi-static electromagnetic theory are 
completely different electromagnetic theories, so different 
symbols should be used to represent this electromagnetic field. 
That is, the lower case letters e and h are used to represent the 
radiated electromagnetic field satisfying Maxwell’s equation. Use 
E, H to represent quasi-static electromagnetic field or magnetic 
quasi-static electromagnetic field. The electromagnetic field 
theory proposed by this author has made a relaxation process for 
Maxwell’s electromagnetic field theory, and added the boundary 
condition that radiation does not overflow the universe, so that 
the symbols of E and H electromagnetic fields can be restored. 
This is because the electromagnetic field theory proposed by 
this author is closer to the quasi-static electromagnetic field, or 
magnetic quasi-static electromagnetic field.

Finally, this paper compares three kinds of electromagnetic 
fields, quasi-static electromagnetic field, Maxwell’s radiation 
electromagnetic field, and the radiation electromagnetic field 
proposed by this author. It shows that although the electromagnetic 
field proposed by this author is also a radiation electromagnetic 
field, it is closer to the quasi-static electromagnetic field, and 
even meets the same basic laws. Therefore, the electromagnetic 
field proposed by this author should be restored to use E and H.

Although the electromagnetic field proposed by this author 
has many better properties than Maxwell’s electromagnetic 
field, especially this new theory is suitable for explaining 
photons, photons are mutual energy flow (electromagnetic wave 
energy flow to be accurate), and explaining the wave particle 
duality problem. But at present, this author’s electromagnetic 
theory can not completely solve its electromagnetic field like 
Maxwell’s electromagnetic theory. Fortunately, this author’s 
electromagnetic field theory can draw on the calculation results 
of Maxwell’s electromagnetic theory. At this time, however, 
Maxwell’s equation does not appear as a physical law, but as an 
auxiliary mathematical tool. The laws of physics are still a new 
set of electromagnetic equations proposed by this author.

Contribution of this article:
1. A new electromagnetic field axiom or boundary condition has 
been proposed, which states that radiation cannot overflow the 
universe.
2. A relaxation process was proposed, which involves relaxing 
Poynting’s theorem and incorporating new boundary conditions 
to transition from Maxwell’s electromagnetic theory to this 
author’s electromagnetic theory.
3. A new method for calculating inductance has been proposed, 
in which the size of the device is large, so both retarded and 
advanced effects must be considered.
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2. Radiation Must not Spill Out of the Universe
2.1. Far Field Radiation Conditions of Maxwell’s Electro-
magnetic Theory
According to Maxwell’s electromagnetic theory, the following 
Sliver-Muller radiation boundary conditions are available for 
radiated electromagnetic fields [25],

3. A new method for calculating inductance has been proposed, in which the size of the 
device is large, so both retarded and advanced effects must be considered. 
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𝑟𝑟|𝑬𝑬| = 𝑞𝑞1 (1) 

  
 lim

𝑟𝑟→∞
𝑟𝑟|𝑯𝑯| = 𝑞𝑞2 (2) 

  
 lim
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 lim

𝑟𝑟→∞
𝑟𝑟(𝑯𝑯 − 1

η r̂ × 𝑯𝑯) = 0 (4) 
 

According to this boundary condition, the electromagnetic wave emitted from the 
source points in all directions. And the electric field and magnetic field are both  

 lim
𝑟𝑟→∞

|𝑬𝑬| ∼ 1
𝑟𝑟 (5) 

  
 lim

𝑟𝑟→∞
|𝑯𝑯| ∼ 1

𝑟𝑟 (6) 
 

"∼" means proportional. 
In the far field, the electric field and magnetic field are in phase. We know that the 

microwave antenna should be placed in the microwave anechoic chamber when measuring the 
pattern or other parameters of the microwave antenna. Very good electromagnetic wave 
absorbing materials must be placed on the wall of the microwave anechoic chamber. Only in 
this way can good measurement results be obtained. The wall with absorbing material is placed 
to make the electromagnetic wave radiated by the antenna meet the boundary conditions of 
the Sliver-Muller as much as possible. When we solve the same electromagnetic problem with 
Helmholtz equation, there are similar radiation conditions Sommerfeld radiation conditions. 
This condition, like the boundary condition of the Sliver-Muller, requires that the boundary of 
the universe be filled with absorbing materials, as shown in the figure 0. 

 
 

3. A new method for calculating inductance has been proposed, in which the size of the 
device is large, so both retarded and advanced effects must be considered. 

 
2  Radiation must not spill out of the universe 
 
 
2.1  Far field radiation conditions of Maxwell’s electromagnetic theory 
 
According to Maxwell’s electromagnetic theory, the following Sliver-Muller radiation 

boundary conditions [8] are available for radiated electromagnetic fields, 
 
 lim

𝑟𝑟→∞
𝑟𝑟|𝑬𝑬| = 𝑞𝑞1 (1) 

  
 lim

𝑟𝑟→∞
𝑟𝑟|𝑯𝑯| = 𝑞𝑞2 (2) 

  
 lim

𝑟𝑟→∞
𝑟𝑟(𝑬𝑬 − η𝑯𝑯 × r̂) = 0 (3) 

  
 lim

𝑟𝑟→∞
𝑟𝑟(𝑯𝑯 − 1

η r̂ × 𝑯𝑯) = 0 (4) 
 

According to this boundary condition, the electromagnetic wave emitted from the 
source points in all directions. And the electric field and magnetic field are both  

 lim
𝑟𝑟→∞

|𝑬𝑬| ∼ 1
𝑟𝑟 (5) 

  
 lim

𝑟𝑟→∞
|𝑯𝑯| ∼ 1

𝑟𝑟 (6) 
 

"∼" means proportional. 
In the far field, the electric field and magnetic field are in phase. We know that the 

microwave antenna should be placed in the microwave anechoic chamber when measuring the 
pattern or other parameters of the microwave antenna. Very good electromagnetic wave 
absorbing materials must be placed on the wall of the microwave anechoic chamber. Only in 
this way can good measurement results be obtained. The wall with absorbing material is placed 
to make the electromagnetic wave radiated by the antenna meet the boundary conditions of 
the Sliver-Muller as much as possible. When we solve the same electromagnetic problem with 
Helmholtz equation, there are similar radiation conditions Sommerfeld radiation conditions. 
This condition, like the boundary condition of the Sliver-Muller, requires that the boundary of 
the universe be filled with absorbing materials, as shown in the figure 0. 

 
 

According to this boundary condition, the electromagnetic wave emitted from the source points in all directions. And the electric 
field and magnetic field are both

"∼" means proportional.
In the far field, the electric field and magnetic field are in phase. 
We know that the microwave antenna should be placed in the 
microwave anechoic chamber when measuring the pattern 
or other parameters of the microwave antenna. Very good 
electromagnetic wave absorbing materials must be placed on the 
wall of the microwave anechoic chamber. Only in this way can 
good measurement results be obtained. The wall with absorbing 

material is placed to make the electromagnetic wave radiated by 
the antenna meet the boundary conditions of the Sliver-Muller 
as much as possible. When we solve the same electromagnetic 
problem with Helmholtz equation, there are similar radiation 
conditions Sommerfeld radiation conditions. This condition, 
like the boundary condition of the Sliver-Muller, requires that 
the boundary of the universe be filled with absorbing materials, 
as shown in the figure 0.

 
Figure  0: The microwave antenna needs to be placed in the microwave anechoic chamber for 

measurement. 
  
 
2.2  New boundary conditions 
 
We know that nothing can overflow the universe, here this author says that radiation 
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The above formula is obviously valid for magnetic quasi-static electromagnetic fields, or 
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Figure 0: The Microwave Antenna Needs to Be Placed in The Microwave Anechoic Chamber For Measurement

2.2. New Boundary Conditions
We know that nothing can overflow the universe, here this author says that radiation cannot overflow the universe, that means,
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Therefore, according to Maxwell’s electromagnetic theory, the energy flow of 
electromagnetic radiation field is bound to overflow the universe. When the radiation satisfies 
the Sliver-Muller boundary condition, the above equation also exists. This means that 
electromagnetic radiation can flow out of the universe. However, this author believes that this 
is a misunderstanding of Maxwell’s electromagnetic theory. Electromagnetic field radiation can 
not overflow the universe. this author puts forward a new law of electromagnetic field and 
adds the rule that radiation does not overflow the universe to the original classical 
electromagnetic theory as an axiom. We know that Maxwell’s electromagnetic theory has just 
been solved. Now there is a new constraint. The problem will definitely be " overreached" . 
Overdetermination will lead to unsolved problems. However, we can relax the original 
computing system appropriately, so that Maxwell’s classical electromagnetic theory can obtain 
a new degree of freedom through relaxation. In this way, our new axiom can be added. The 
new axiom can also be regarded as a new boundary condition. 

It is worth mentioning that the corresponding boundary condition of Maxwell’s 
electromagnetic radiation theory is the Sliver-Muller radiation boundary condition. This 
boundary condition actually means that the boundary of the universe is filled with materials 
that absorb electromagnetic waves. This is not always the case for boundary conditions in 
practice. Especially for photons of high-frequency radio waves, photons are always absorbed by 
an absorber charge, regardless of whether the cosmic boundary is full of absorber materials. 
Photons are only related to two current elements, one is the source of light, that is, the light 
source of photons, and the other is the sink, that is, the object that absorbs photons. Photons 
will be generated from the source and annihilated at the sink. The absorbing material on the 
boundary does not participate in the electromagnetic wave process of photons. Therefore, the 
Sliver-Muller condition is not suitable for electromagnetic systems containing a small number of 
photons. 

In addition, if the light source or transmitting antenna is not placed in the microwave 
anechoic chamber, but in space, the boundary of the universe in space is still considered to be 
translucent, so this does not conform to Maxwell’s electromagnetic theory and the 
Sliver-Muller boundary condition. Electromagnetic energy always overflows the universe this is 
not reasonable. 
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2.3. Mutual Energy Flow and Self Energy Flow Shall not Overflow The Universe

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
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The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

 
 

Figure  1: There are 𝑁𝑁 current sources in the space. The red one is the radiation source, 
which radiates the retarded wave, and the blue one is the sink, which radiates the advanced 
wave. 

  
We assume that there are 𝑁𝑁 current elements 𝑱𝑱𝑖𝑖, 𝑖𝑖 = 1,⋯𝑁𝑁. See 1. The red arrow 

represents the source and the blue arrow represents the sink. The radiation source outputs 
electromagnetic energy, and the sink absorbs electromagnetic energy. Retarded wave radiated 
by the source, advanced wave radiated by the sink. 

 
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (16) 
 

The superposition principle tells us  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,⋯𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖 (17) 

 
Substitute (16, 17) into (7) to get,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (18) 
 

The above formula can be divided into two formulas  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ 𝑑𝑑Γ = 0 (19) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (20) 
 

The two formulas above add up to (18). (19) can be rewritten as  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ = 0 (21) 
 

We define,  
 𝑺𝑺𝑚𝑚 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (22) 

 is mutual energy flow between 𝑱𝑱𝑖𝑖  and 𝑱𝑱𝑗𝑗. Formula (21) means that the mutual energy flow 
does not overflow the universe. Here Γ is a sphere with an infinite radius. Define,  

 𝑺𝑺𝑖𝑖 = ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ 𝑑𝑑Γ (23) 

Figure 1: There are N Current Sources in The Space. The Red one Is The Radiation Source, Which Radiates The Retarded Wave, 
And The Blue one is The Sink, Which Radiates The Advanced Wave

We assume that there are N current elements Ji,i=1,⋯N. See 1. 
The red arrow represents the source and the blue arrow represents 

the sink. The radiation source outputs electromagnetic energy, 
and the sink absorbs electromagnetic energy. Retarded wave 
radiated by the source, advanced wave radiated by the sink.

The superposition principle tells us

Substitute (16, 17) into (7) to get,

The above formula can be divided into two formulas

The two formulas above add up to (18). (19) can be rewritten as

We define, 

is mutual energy flow between Ji and Jj. Formula (21) means that the mutual energy flow does not overflow the universe. Here Γ is 
a sphere with an infinite radius. Define,

Si is the self energy flow corresponding to current element 
Ji. (20) means that the self energy flow cannot overflow the 
universe. Therefore, the boundary condition that radiation does 

not overflow the universe has now become two. Mutual energy 
flow does not overflow the universe and self energy flow does 
not overflow the universe.
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 𝑺𝑺𝑖𝑖 is the self energy flow corresponding to current element 𝑱𝑱𝑖𝑖. (20) means that the self 
energy flow cannot overflow the universe. Therefore, the boundary condition that radiation 
does not overflow the universe has now become two. Mutual energy flow does not overflow 
the universe and self energy flow does not overflow the universe. 

 

 
 

Figure  2: Assume that the current on circuit 𝐶𝐶1,𝐶𝐶2 are 𝐼𝐼1, 𝐼𝐼2.  
  
The figure 2 shows two cases. On the left is the self energy flow. If the self energy flow 

has a outward (red) radiation energy flow, there must be a time reversal energy flow, that is, a 
blue energy flow pointing to the current element. Therefore, although there is an outward 
radiating energy flow, this energy flow is offset by the inward energy flow. Maxwell’s 
electromagnetic theory does not support electromagnetic waves with time reversal. But if the 
electromagnetic wave is reactive power, it will transfer energy in the positive direction and 
negative direction in one period, and the average energy transferred is zero. This view of point 
will be discussed in detail later in this article. On the right side of the figure 2 is mutual energy 
flow. In the case of mutual energy flow, there are at least two current elements. The red one is 
the source, which radiates the retarded wave, and the blue one is the sink, which generates the 
advanced wave. Green is the mutual energy flow from the source to the sink. The mutual 
energy flow will be further explained later in this paper. The radiation source includes the 
primary coil of the transformer, the transmitting antenna, and the radiator charge. The sink 
includes a secondary coil of the transformer, a receiving antenna, and an absorber charge. The 
retarded wave and the advanced wave will not reach the remote boundary at the same time, 
because the retarded wave will reach the surface Γ at some time in the future, and the 
advanced wave will reach the surface Γ at some time in the past, so the retarded wave and 
the advanced wave will not reach the surface Γ at the same time, so the mutual energy flow 
must be zero on the surface Γ. That is, (21) must be true. 

The reader may ask, what if both current elements are radiation sources (or sink)? In 

Figure 2: Assume that the Current on Circuit C1,C2 are I1, I2.

The figure 2 shows two cases. On the left is the self energy flow. 
If the self energy flow has a outward (red) radiation energy flow, 
there must be a time reversal energy flow, that is, a blue energy 
flow pointing to the current element. Therefore, although there 
is an outward radiating energy flow, this energy flow is offset 
by the inward energy flow. Maxwell’s electromagnetic theory 
does not support electromagnetic waves with time reversal. But 
if the electromagnetic wave is reactive power, it will transfer 
energy in the positive direction and negative direction in one 
period, and the average energy transferred is zero. This view of 
point will be discussed in detail later in this article. On the right 
side of the figure 2 is mutual energy flow. In the case of mutual 
energy flow, there are at least two current elements. The red one 
is the source, which radiates the retarded wave, and the blue 
one is the sink, which generates the advanced wave. Green is 
the mutual energy flow from the source to the sink. The mutual 
energy flow will be further explained later in this paper. The 
radiation source includes the primary coil of the transformer, the 
transmitting antenna, and the radiator charge. The sink includes 
a secondary coil of the transformer, a receiving antenna, and an 
absorber charge. The retarded wave and the advanced wave will 
not reach the remote boundary at the same time, because the 
retarded wave will reach the surface Γ at some time in the future, 
and the advanced wave will reach the surface Γ at some time in 
the past, so the retarded wave and the advanced wave will not 

reach the surface Γ at the same time, so the mutual energy flow 
must be zero on the surface Γ. That is, (21) must be true.

The reader may ask, what if both current elements are radiation 
sources (or sink)? In this case, we can combine two sources into 
one source, and the situation on the left of the figure 2 has been 
met.

3. Neumann’s Law of Electromagnetic Induction
Next, we will derive the electromagnetic field theory of quasi-
static or magnetic quasi-static. Starting from Neumann’s 
electromagnetic field theory. From Neumann’s law of 
electromagnetic induction, we derive magnetic quasi-static, 
quasi-static electromagnetic theory. Then see how Maxwell 
developed his own theory of radiated electromagnetic fields from 
quasi-static electromagnetic fields. Here we say development, 
not derivation, because it is impossible to derive Maxwell’s 
radiation electromagnetic field theory from the quasi-static 
electromagnetic field theory. The transition from quasi-static 
electromagnetic field to radiated electromagnetic field can only 
be achieved through genius’s guess. The following is Faraday’s 
law of electromagnetic induction proposed by Neumann. Quasi-
static electromagnetic field is usually obtained from this as a 
starting point. The electromagnetic induction electromotive 
force is,
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Figure  3: Two circuits 𝐶𝐶1,𝐶𝐶2 assume that the current on circuit 1 is 𝐼𝐼1 , the current on circuit 
2 is 𝐼𝐼2 

  
Define magnetic vector,  
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Figure 3: Two Circuits C1,C2 Assume that the Current on Circuit 1 is I1, The Current on Circuit 2 is I2

Define magnetic vector, 

The induced electromotive force (24) can be written as,The induced electromotive force (24) can be written as,  
 ℰ2,1 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (26) 

 
Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (31) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (32) 

 
Consider,  
 ∮ 𝐶𝐶2
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field,  

The induced electromotive force (24) can be written as,  
 ℰ2,1 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (26) 

 
Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
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(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (32) 

 
Consider,  
 ∮ 𝐶𝐶2

(∇𝜓𝜓1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (33) 
 𝜓𝜓1 is a arbitory function, hence there is,  

 𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 = ∇𝜓𝜓1 (34) 

 
Assume,  
 𝜓𝜓1 = −𝜙𝜙1 (35) 

 
There is,  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (36) 

 
Define,  
 𝑬𝑬1

(𝐼𝐼) ≡ − 𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (37) 

 as an induced electric field. The superscript "(𝐼𝐼)" means induction. Define  
 𝑬𝑬1

(𝐶𝐶) ≡ −∇𝜙𝜙1 (38) 
 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic 
field,  

Consider the transformation from line current to body current

The vector potential can be rewritten as, 

The definition of considering electromotive force is,

Where E1 is the induced electric field generatedthe by the current J1. (24) can be rewritten as,

Assumption C2 is It’s a closed surface. The order of the differential and integral can be exchanged,

Or, 

Consider, 

 ψ1 is a arbitory function, hence there is,
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The induced electromotive force (24) can be written as,  
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Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
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Or,  
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(𝑬𝑬1 +
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Consider,  
 ∮ 𝐶𝐶2

(∇𝜓𝜓1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (33) 
 𝜓𝜓1 is a arbitory function, hence there is,  

 𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 = ∇𝜓𝜓1 (34) 

 
Assume,  
 𝜓𝜓1 = −𝜙𝜙1 (35) 

 
There is,  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (36) 

 
Define,  
 𝑬𝑬1

(𝐼𝐼) ≡ − 𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (37) 

 as an induced electric field. The superscript "(𝐼𝐼)" means induction. Define  
 𝑬𝑬1

(𝐶𝐶) ≡ −∇𝜙𝜙1 (38) 
 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic 
field,  

The induced electromotive force (24) can be written as,  
 ℰ2,1 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (26) 

 
Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
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𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (31) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (32) 

 
Consider,  
 ∮ 𝐶𝐶2

(∇𝜓𝜓1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (33) 
 𝜓𝜓1 is a arbitory function, hence there is,  

 𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 = ∇𝜓𝜓1 (34) 

 
Assume,  
 𝜓𝜓1 = −𝜙𝜙1 (35) 

 
There is,  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (36) 

 
Define,  
 𝑬𝑬1

(𝐼𝐼) ≡ − 𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (37) 

 as an induced electric field. The superscript "(𝐼𝐼)" means induction. Define  
 𝑬𝑬1

(𝐶𝐶) ≡ −∇𝜙𝜙1 (38) 
 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic 
field,  

The induced electromotive force (24) can be written as,  
 ℰ2,1 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (26) 

 
Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (31) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (32) 

 
Consider,  
 ∮ 𝐶𝐶2

(∇𝜓𝜓1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (33) 
 𝜓𝜓1 is a arbitory function, hence there is,  

 𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 = ∇𝜓𝜓1 (34) 

 
Assume,  
 𝜓𝜓1 = −𝜙𝜙1 (35) 

 
There is,  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (36) 

 
Define,  
 𝑬𝑬1

(𝐼𝐼) ≡ − 𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (37) 

 as an induced electric field. The superscript "(𝐼𝐼)" means induction. Define  
 𝑬𝑬1

(𝐶𝐶) ≡ −∇𝜙𝜙1 (38) 
 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic 
field,  

The induced electromotive force (24) can be written as,  
 ℰ2,1 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (26) 

 
Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (31) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (32) 

 
Consider,  
 ∮ 𝐶𝐶2

(∇𝜓𝜓1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (33) 
 𝜓𝜓1 is a arbitory function, hence there is,  

 𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 = ∇𝜓𝜓1 (34) 

 
Assume,  
 𝜓𝜓1 = −𝜙𝜙1 (35) 

 
There is,  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (36) 

 
Define,  
 𝑬𝑬1

(𝐼𝐼) ≡ − 𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (37) 

 as an induced electric field. The superscript "(𝐼𝐼)" means induction. Define  
 𝑬𝑬1

(𝐶𝐶) ≡ −∇𝜙𝜙1 (38) 
 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic 
field,  

The induced electromotive force (24) can be written as,  
 ℰ2,1 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (26) 

 
Consider the transformation from line current to body current  
 ∮ 𝐶𝐶1

⋯ 𝐼𝐼1𝑑𝑑𝒍𝒍1 →∭ 𝑉𝑉 ⋯ 𝑱𝑱1𝑑𝑑𝑑𝑑 (27) 
 

The vector potential can be rewritten as,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉1
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (28) 

 
The definition of considering electromotive force is,  
 ℰ2,1 ≡ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 (29) 
 

Where 𝑬𝑬1 is the induced electric field generatedthe by the current 𝑱𝑱1. (24) can be 
rewritten as,  

 ∮ 𝐶𝐶2
𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = − 𝑑𝑑

𝑑𝑑𝑑𝑑 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (30) 

 
Assumption 𝐶𝐶2 is It’s a closed surface. The order of the differential and integral can be 

exchanged,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍2 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (31) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (32) 

 
Consider,  
 ∮ 𝐶𝐶2

(∇𝜓𝜓1) ⋅ 𝑑𝑑𝒍𝒍2 = 0 (33) 
 𝜓𝜓1 is a arbitory function, hence there is,  

 𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 = ∇𝜓𝜓1 (34) 

 
Assume,  
 𝜓𝜓1 = −𝜙𝜙1 (35) 

 
There is,  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (36) 

 
Define,  
 𝑬𝑬1

(𝐼𝐼) ≡ − 𝜕𝜕
𝜕𝜕𝑑𝑑 𝑨𝑨1 (37) 

 as an induced electric field. The superscript "(𝐼𝐼)" means induction. Define  
 𝑬𝑬1

(𝐶𝐶) ≡ −∇𝜙𝜙1 (38) 
 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic 
field,  

Assume, 

There is, 

Define, 

 as an induced electric field. The superscript "(I)" means induction. Define

 as Coulomb electrostatic field. The superscript " (C)" means Coulomb. Define the magnetic field,

 𝑩𝑩1 ≡ ∇ × 𝑨𝑨1 (39) 
 as magnetic field. Thus  

 ∇ ⋅ 𝑩𝑩1 = 0 (40) 
  

 ∇ × 𝑬𝑬1 = ∇ × (−∇𝜙𝜙1 −
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = (−∇ × 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨1) = (− 𝜕𝜕
𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨1) (41) 

 
The above equation considers the mathematical formula,  
 ∇ × ∇𝜙𝜙1 = 0 (42) 
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 ∇ × 𝑬𝑬1 = ∇ × (−∇𝜙𝜙1 −
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = (−∇ × 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨1) = (− 𝜕𝜕
𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨1) (41) 

 
The above equation considers the mathematical formula,  
 ∇ × ∇𝜙𝜙1 = 0 (42) 

 
Considering (39), we obtain,  
 ∇ × 𝑬𝑬1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑩𝑩1 (43) 
 

Find the divergence of the formula (38),  
 ∇ ⋅ 𝑬𝑬1

(𝐶𝐶) = −∇ ⋅ ∇𝜙𝜙1 = −∇2𝜙𝜙1 (44) 
 

According to the electrostatic electromagnetic theory 𝜙𝜙1 meet Poisson equation,  
 ∇2𝜙𝜙1 = − 𝜌𝜌1

𝜖𝜖0
 (45) 

 
Thus,  
 ∇ ⋅ (𝜖𝜖0𝑬𝑬1

(𝐶𝐶)) = 𝜌𝜌1 (46) 
 

Consider,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉

𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (47) 

 
Take two curls to get,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (48) 

 
Consider,  
 ∇ ⋅ 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∇ ⋅∭ 𝑉𝑉

𝑱𝑱1
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4𝜋𝜋∭ 𝑉𝑉 ∇
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 (49) 

 
Among them, the following is considerred,  
 ∇ 1

𝑟𝑟 = −∇′ 1𝑟𝑟 (50) 
  

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 +∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (51) 

 
The right side of the above equation,  

 𝑩𝑩1 ≡ ∇ × 𝑨𝑨1 (39) 
 as magnetic field. Thus  

 ∇ ⋅ 𝑩𝑩1 = 0 (40) 
  

 ∇ × 𝑬𝑬1 = ∇ × (−∇𝜙𝜙1 −
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 𝑩𝑩1 ≡ ∇ × 𝑨𝑨1 (39) 
 as magnetic field. Thus  

 ∇ ⋅ 𝑩𝑩1 = 0 (40) 
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1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (51) 

 
The right side of the above equation,  
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Thus,  
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 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (48) 

 
Consider,  
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𝜇𝜇0
4𝜋𝜋 ∇ ⋅∭ 𝑉𝑉

𝑱𝑱1
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 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 (49) 

 
Among them, the following is considerred,  
 ∇ 1

𝑟𝑟 = −∇′ 1𝑟𝑟 (50) 
  

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 +∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (51) 

 
The right side of the above equation,  

Among them, the following is considerred,

The right side of the above equation,

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (52) 

 
Hence,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜌𝜌1 (54) 
 

We get  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌1)𝑑𝑑𝑑𝑑 (55) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (

1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 

 
It has taken into account that,  
 ∇2( 1

4𝜋𝜋𝑟𝑟) = −𝛿𝛿(𝒙𝒙 − 𝒙𝒙′) (60) 
 

Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
 ∇ × ∇ × 𝑨𝑨1 = ∇(−𝜇𝜇0𝜖𝜖0
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1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕
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Or,  
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1
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Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
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1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (
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4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0
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Since,  
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Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
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1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (
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Hence,  
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𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
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Hence,  
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Since,  
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It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
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Since,  
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1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 

 
It has taken into account that,  
 ∇2( 1

4𝜋𝜋𝑟𝑟) = −𝛿𝛿(𝒙𝒙 − 𝒙𝒙′) (60) 
 

Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
 ∇ × ∇ × 𝑨𝑨1 = ∇(−𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1) + 𝜇𝜇0𝑱𝑱1 (63) 

 
Or,  

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (52) 

 
Hence,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜌𝜌1 (54) 
 

We get  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌1)𝑑𝑑𝑑𝑑 (55) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (

1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 

 
It has taken into account that,  
 ∇2( 1

4𝜋𝜋𝑟𝑟) = −𝛿𝛿(𝒙𝒙 − 𝒙𝒙′) (60) 
 

Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
 ∇ × ∇ × 𝑨𝑨1 = ∇(−𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1) + 𝜇𝜇0𝑱𝑱1 (63) 

 
Or,  

It is considered above that Γ is taken outside J, so the above formula is 0. So we have,

Hence, 

Considering the continuity equation of current,

We get 

Or, 

Or, 

The above formula is the Lorenz gauge. Where it is considerred the definition,

Further consider, 

It has taken into account that,
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 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (52) 

 
Hence,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜌𝜌1 (54) 
 

We get  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌1)𝑑𝑑𝑑𝑑 (55) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (

1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 

 
It has taken into account that,  
 ∇2( 1

4𝜋𝜋𝑟𝑟) = −𝛿𝛿(𝒙𝒙 − 𝒙𝒙′) (60) 
 

Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
 ∇ × ∇ × 𝑨𝑨1 = ∇(−𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1) + 𝜇𝜇0𝑱𝑱1 (63) 

 
Or,  

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (52) 

 
Hence,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜌𝜌1 (54) 
 

We get  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌1)𝑑𝑑𝑑𝑑 (55) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (

1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 

 
It has taken into account that,  
 ∇2( 1

4𝜋𝜋𝑟𝑟) = −𝛿𝛿(𝒙𝒙 − 𝒙𝒙′) (60) 
 

Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
 ∇ × ∇ × 𝑨𝑨1 = ∇(−𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1) + 𝜇𝜇0𝑱𝑱1 (63) 

 
Or,  

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (52) 

 
Hence,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜌𝜌1 (54) 
 

We get  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌1)𝑑𝑑𝑑𝑑 (55) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (

1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 

 
It has taken into account that,  
 ∇2( 1

4𝜋𝜋𝑟𝑟) = −𝛿𝛿(𝒙𝒙 − 𝒙𝒙′) (60) 
 

Hence,  
 ∇2𝑨𝑨1 = −𝜇𝜇0𝑱𝑱1 (61) 

 
Since,  
 ∇ × ∇ × 𝑨𝑨1 = ∇(∇ ⋅ 𝑨𝑨1) − ∇2𝑨𝑨1 (62) 

 
Consider (57, 61),  
 ∇ × ∇ × 𝑨𝑨1 = ∇(−𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1) + 𝜇𝜇0𝑱𝑱1 (63) 

 
Or,  

 ∭ 𝑉𝑉 ∇′ ⋅ (
1
𝑟𝑟 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∮ Γ (

1
𝑟𝑟 𝑱𝑱1) ⋅ �̂�𝑛𝑑𝑑Γ = 0 

It is considered above that Γ is taken outside 𝑱𝑱, so the above formula is 0. So we have,  
 −∭ 𝑉𝑉 (∇′

1
𝑟𝑟 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (

1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (52) 

 
Hence,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇′
1
𝑟𝑟 ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟 ∇′ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (53) 

 
Considering the continuity equation of current,  
 ∇′ ⋅ 𝑱𝑱1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜌𝜌1 (54) 
 

We get  
 ∇ ⋅ 𝑨𝑨1 = − 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌1)𝑑𝑑𝑑𝑑 (55) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (

1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (56) 

 
Or,  
 ∇ ⋅ 𝑨𝑨1 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙1 (57) 

 
The above formula is the Lorenz gauge. Where it is considerred the definition,  
 𝜙𝜙1 ≡

1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (
1
𝑟𝑟 𝜌𝜌1)𝑑𝑑𝑑𝑑 (58) 

 
Further consider,  
 ∇2𝑨𝑨1 = ∇2 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0∭ 𝑉𝑉 ∇

2( 1
4𝜋𝜋𝑟𝑟)𝑱𝑱1𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0∭ 𝑉𝑉 (−𝛿𝛿(𝒙𝒙 − 𝒙𝒙′))𝑱𝑱1(𝒙𝒙′)𝑑𝑑𝑑𝑑 (59) 
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Hence, 

Since, 

Consider (57, 61), 

Or, 
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Or,  
 ∇ ×𝑯𝑯1 = 𝑱𝑱1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 (−𝜖𝜖0∇𝜙𝜙1) (65) 

 
Or,  
 ∇ ×𝑯𝑯1 = 𝑱𝑱1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬1

(𝐶𝐶) (66) 
 

Where,  
 𝑬𝑬1

(𝐶𝐶) = −∇𝜙𝜙1 (67) 
 

 
3.1  Quasi static electromagnetic field 
 
From this we get the Gauss law (46),  
 ∇ ⋅ 𝑬𝑬1

(𝐶𝐶) = 𝜌𝜌1
𝜖𝜖0

 (68) 
 

Faraday’s law (43),  
 ∇ × 𝑬𝑬1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑩𝑩1 (69) 
 

Magnetic Gauss law (40), 
 
 ∇ ⋅ 𝑩𝑩1 = 0 (70) 

 
Ampere’s circuital law (66)  
 ∇ ×𝑯𝑯1 = 𝑱𝑱1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜖𝜖0𝑬𝑬1

(𝐶𝐶)) (71) 
 

In fact, we can also get, 
 
 ∇ ⋅ 𝑬𝑬2

(𝐶𝐶) = 𝜌𝜌2
𝜖𝜖0

 (72) 
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 ∇ × 𝑬𝑬2 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑩𝑩2 (73) 
 

Magnetic Gauss law 
 
 ∇ ⋅ 𝑩𝑩2 = 0 (74) 

 
Ampere’s circuital law  
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(𝐶𝐶) = −∇𝜙𝜙1 (67) 
 

 
3.1  Quasi static electromagnetic field 
 
From this we get the Gauss law (46),  
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 ∇ ⋅ 𝑩𝑩1 = 0 (70) 

 
Ampere’s circuital law (66)  
 ∇ ×𝑯𝑯1 = 𝑱𝑱1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜖𝜖0𝑬𝑬1

(𝐶𝐶)) (71) 
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𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬1
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𝜕𝜕
𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬1
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Where,  
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From this we get the Gauss law (46),  
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Where,  
 𝑬𝑬1
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E(I) is an induced electric field. So as far as the definition of electric field is concerned,
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 ∭(𝑬𝑬(𝐼𝐼) 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬
(𝐶𝐶))𝑑𝑑𝑑𝑑 (106) 

 
This term may not generate energy. There are two possibilities, which are not energy 

but orthogonal in mathematics,  
 ∭(𝑬𝑬(𝐼𝐼) 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬
(𝐶𝐶))𝑑𝑑𝑑𝑑 = 0. (107) 

 Another possibility is that although the above integral is not zero, in physics, the above 
quantity does not constitute energy. Another possibility is that the above quantities do 
constitute an energy, a mixed energy. However, although this author did not understand this 
point, it is not the focus of this article. We went on down. 

 
4.2  For magnetic quasi-static electromagnetic fields 
 
Poynting’s theorem is,  
 ∮ Γ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑬𝑬 ⋅ 𝑱𝑱 + 𝑯𝑯 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑩𝑩)𝑑𝑑𝑑𝑑 (108) 

 
Under magnetic quasi-static conditions, there are only magnetic field energy items,  
 ∭(𝑯𝑯 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑩𝑩)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ 12 (𝑯𝑯 ⋅ 𝑩𝑩)𝑑𝑑𝑑𝑑 
So the magnetic field energy is,  

 𝑈𝑈𝑚𝑚 =∭12 (𝑯𝑯 ⋅ 𝑩𝑩)𝑑𝑑𝑑𝑑 
Note the induced electric field,  

 𝑬𝑬(𝐼𝐼) = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨 

Although 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨 is not 0, no energy is generated under magnetic quasi-static conditions. This is 

very important. The induced electric field does not generate electric field energy under the 

Therefore, the energy of the magnetic field is

The subscript " M" indicates the magnetic field, and the electric field energy is,

The superscript " I" indicates inductive, " C" indicates coulomb electric field, and the energy of coulomb electric field is

For hybrid term, 

This term may not generate energy. There are two possibilities, which are not energy but orthogonal in mathematics,

 Another possibility is that although the above integral is not 
zero, in physics, the above quantity does not constitute energy. 
Another possibility is that the above quantities do constitute an 
energy, a mixed energy. However, although this author did not 
understand this point, it is not the focus of this article. We went 
on down.

4.2. For Magnetic Quasi-Static Electromagnetic Fields

Poynting’s theorem is, 

Under magnetic quasi-static conditions, there are only magnetic field energy items,

So the magnetic field energy is,
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Note the induced electric field,

The magnetic field energy term is,  
 ∭(𝑯𝑯 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑩𝑩)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12𝑯𝑯 ⋅ 𝑩𝑩)𝑑𝑑𝑑𝑑 (102) 
 

Therefore, the energy of the magnetic field is  
 𝑈𝑈𝑀𝑀 =∭(12𝑯𝑯 ⋅ 𝑩𝑩)𝑑𝑑𝑑𝑑 (103) 

 
The subscript " M" indicates the magnetic field, and the electric field energy is,  
 ∭(𝑬𝑬 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬
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(𝐶𝐶))𝑑𝑑𝑑𝑑 

 
 =∭(𝑬𝑬(𝐼𝐼) 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬
(𝐶𝐶))𝑑𝑑𝑑𝑑 + 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12𝑬𝑬
(𝐶𝐶) ⋅ 𝜖𝜖0𝑬𝑬(𝐶𝐶))𝑑𝑑𝑑𝑑 (104) 

 
The superscript " I" indicates inductive, " C" indicates coulomb electric field, and the 

energy of coulomb electric field is  
 𝑈𝑈𝐸𝐸 =∭(12𝑬𝑬

(𝐶𝐶) ⋅ 𝜖𝜖0𝑬𝑬(𝐶𝐶))𝑑𝑑𝑑𝑑 (105) 
 

For hybrid term,  
 ∭(𝑬𝑬(𝐼𝐼) 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬
(𝐶𝐶))𝑑𝑑𝑑𝑑 (106) 

 
This term may not generate energy. There are two possibilities, which are not energy 

but orthogonal in mathematics,  
 ∭(𝑬𝑬(𝐼𝐼) 𝜕𝜕

𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬
(𝐶𝐶))𝑑𝑑𝑑𝑑 = 0. (107) 

 Another possibility is that although the above integral is not zero, in physics, the above 
quantity does not constitute energy. Another possibility is that the above quantities do 
constitute an energy, a mixed energy. However, although this author did not understand this 
point, it is not the focus of this article. We went on down. 

 
4.2  For magnetic quasi-static electromagnetic fields 
 
Poynting’s theorem is,  
 ∮ Γ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑬𝑬 ⋅ 𝑱𝑱 + 𝑯𝑯 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑩𝑩)𝑑𝑑𝑑𝑑 (108) 

 
Under magnetic quasi-static conditions, there are only magnetic field energy items,  
 ∭(𝑯𝑯 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑩𝑩)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ 12 (𝑯𝑯 ⋅ 𝑩𝑩)𝑑𝑑𝑑𝑑 
So the magnetic field energy is,  

 𝑈𝑈𝑚𝑚 =∭12 (𝑯𝑯 ⋅ 𝑩𝑩)𝑑𝑑𝑑𝑑 
Note the induced electric field,  

 𝑬𝑬(𝐼𝐼) = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨 

Although 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨 is not 0, no energy is generated under magnetic quasi-static conditions. This is 

very important. The induced electric field does not generate electric field energy under the 

Although ∂/∂t A is not 0, no energy is generated under magnetic quasi-static conditions. This is very important. The induced electric 
field does not generate electric field energy under the magnetic quasi-static condition. If you don’t understand this point, please refer 
to another paper of this author [20].

4.3. Radiation Electromagnetic Field of Maxwell

magnetic quasi-static condition. If you don’t understand this point, please refer to another 
paper of this author [17]. 

 
4.3  Radiation electromagnetic field of Maxwell 
 
 
 ∇ ⋅ (𝒆𝒆 × 𝒉𝒉) = ∇ × 𝒆𝒆 ⋅ 𝒉𝒉 − 𝒆𝒆 ⋅ ∇ × 𝒉𝒉 (109) 

  
 = (− 𝜕𝜕

𝜕𝜕𝜕𝜕 𝒃𝒃) ⋅ 𝒃𝒃 − 𝒆𝒆 ⋅ (𝑱𝑱 + 𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅) (110) 

  
 ∇ ⋅ (𝒆𝒆 × 𝒉𝒉) = −𝒆𝒆 ⋅ 𝑱𝑱 − 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃 − 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 (111) 

 
Poynting’s theorem is,  
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝒆𝒆 ⋅ 𝑱𝑱 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅)𝑑𝑑𝑑𝑑 (112) 

 
The magnetic field items are,  
 ∭(𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12 𝒉𝒉 ⋅ 𝒃𝒃)𝑑𝑑𝑑𝑑 (113) 
 

So the magnetic field energy is,  
 𝑈𝑈𝑚𝑚 =∭(12𝒉𝒉 ⋅ 𝒃𝒃)𝑑𝑑𝑑𝑑 (114) 

 
The electric field term is,  
 ∭(𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12 𝒆𝒆 ⋅ 𝒅𝒅)𝑑𝑑𝑑𝑑 (115) 
  

 𝑈𝑈𝑒𝑒 =∭(12 𝒆𝒆 ⋅ 𝒅𝒅)𝑑𝑑𝑑𝑑 =∭(12 (𝒆𝒆
(𝐼𝐼) + 𝒆𝒆(𝐶𝐶)) ⋅ 𝜖𝜖0(𝒆𝒆(𝐼𝐼) + 𝒆𝒆(𝐶𝐶)))𝑑𝑑𝑑𝑑 

 
 = 1

2 𝜖𝜖0∭ (𝑒𝑒(𝐼𝐼) ⋅ 𝒆𝒆(𝐼𝐼) + 2𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐼𝐼) + 𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐶𝐶))𝑑𝑑𝑑𝑑 (116) 
 

In the case of Maxwell radiation electromagnetic field, the energy of electric field is 
more than that of induction electric field,  

 1
2 𝜖𝜖0∭ (𝑒𝑒(𝐼𝐼) ⋅ 𝒆𝒆(𝐼𝐼))𝑑𝑑𝑑𝑑 = 1

2 𝜖𝜖0∭( 𝜕𝜕𝜕𝜕𝜕𝜕 𝑨𝑨 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨)𝑑𝑑𝑑𝑑 (117) 

 
The above equation is the energy of the induced electric field, which is stored in the 

electromagnetic wave. Another energy flow,  
 1

2 𝜖𝜖0∭ (𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐶𝐶))𝑑𝑑𝑑𝑑 (118) 
 

It is stored in a capacitor. As for mixed energy,  
 𝜖𝜖0∭ (𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐼𝐼))𝑑𝑑𝑑𝑑 (119) 

 
It may or may not be zero. This author is not clear about this part of energy. 

magnetic quasi-static condition. If you don’t understand this point, please refer to another 
paper of this author [17]. 

 
4.3  Radiation electromagnetic field of Maxwell 
 
 
 ∇ ⋅ (𝒆𝒆 × 𝒉𝒉) = ∇ × 𝒆𝒆 ⋅ 𝒉𝒉 − 𝒆𝒆 ⋅ ∇ × 𝒉𝒉 (109) 

  
 = (− 𝜕𝜕

𝜕𝜕𝜕𝜕 𝒃𝒃) ⋅ 𝒃𝒃 − 𝒆𝒆 ⋅ (𝑱𝑱 + 𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅) (110) 

  
 ∇ ⋅ (𝒆𝒆 × 𝒉𝒉) = −𝒆𝒆 ⋅ 𝑱𝑱 − 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃 − 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 (111) 

 
Poynting’s theorem is,  
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝒆𝒆 ⋅ 𝑱𝑱 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅)𝑑𝑑𝑑𝑑 (112) 

 
The magnetic field items are,  
 ∭(𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12 𝒉𝒉 ⋅ 𝒃𝒃)𝑑𝑑𝑑𝑑 (113) 
 

So the magnetic field energy is,  
 𝑈𝑈𝑚𝑚 =∭(12𝒉𝒉 ⋅ 𝒃𝒃)𝑑𝑑𝑑𝑑 (114) 

 
The electric field term is,  
 ∭(𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12 𝒆𝒆 ⋅ 𝒅𝒅)𝑑𝑑𝑑𝑑 (115) 
  

 𝑈𝑈𝑒𝑒 =∭(12 𝒆𝒆 ⋅ 𝒅𝒅)𝑑𝑑𝑑𝑑 =∭(12 (𝒆𝒆
(𝐼𝐼) + 𝒆𝒆(𝐶𝐶)) ⋅ 𝜖𝜖0(𝒆𝒆(𝐼𝐼) + 𝒆𝒆(𝐶𝐶)))𝑑𝑑𝑑𝑑 

 
 = 1

2 𝜖𝜖0∭ (𝑒𝑒(𝐼𝐼) ⋅ 𝒆𝒆(𝐼𝐼) + 2𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐼𝐼) + 𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐶𝐶))𝑑𝑑𝑑𝑑 (116) 
 

In the case of Maxwell radiation electromagnetic field, the energy of electric field is 
more than that of induction electric field,  

 1
2 𝜖𝜖0∭ (𝑒𝑒(𝐼𝐼) ⋅ 𝒆𝒆(𝐼𝐼))𝑑𝑑𝑑𝑑 = 1

2 𝜖𝜖0∭( 𝜕𝜕𝜕𝜕𝜕𝜕 𝑨𝑨 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨)𝑑𝑑𝑑𝑑 (117) 

 
The above equation is the energy of the induced electric field, which is stored in the 

electromagnetic wave. Another energy flow,  
 1

2 𝜖𝜖0∭ (𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐶𝐶))𝑑𝑑𝑑𝑑 (118) 
 

It is stored in a capacitor. As for mixed energy,  
 𝜖𝜖0∭ (𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐼𝐼))𝑑𝑑𝑑𝑑 (119) 

 
It may or may not be zero. This author is not clear about this part of energy. 

magnetic quasi-static condition. If you don’t understand this point, please refer to another 
paper of this author [17]. 

 
4.3  Radiation electromagnetic field of Maxwell 
 
 
 ∇ ⋅ (𝒆𝒆 × 𝒉𝒉) = ∇ × 𝒆𝒆 ⋅ 𝒉𝒉 − 𝒆𝒆 ⋅ ∇ × 𝒉𝒉 (109) 

  
 = (− 𝜕𝜕

𝜕𝜕𝜕𝜕 𝒃𝒃) ⋅ 𝒃𝒃 − 𝒆𝒆 ⋅ (𝑱𝑱 + 𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅) (110) 

  
 ∇ ⋅ (𝒆𝒆 × 𝒉𝒉) = −𝒆𝒆 ⋅ 𝑱𝑱 − 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃 − 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 (111) 

 
Poynting’s theorem is,  
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝒆𝒆 ⋅ 𝑱𝑱 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅)𝑑𝑑𝑑𝑑 (112) 

 
The magnetic field items are,  
 ∭(𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12 𝒉𝒉 ⋅ 𝒃𝒃)𝑑𝑑𝑑𝑑 (113) 
 

So the magnetic field energy is,  
 𝑈𝑈𝑚𝑚 =∭(12𝒉𝒉 ⋅ 𝒃𝒃)𝑑𝑑𝑑𝑑 (114) 

 
The electric field term is,  
 ∭(𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅)𝑑𝑑𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝜕𝜕∭ (12 𝒆𝒆 ⋅ 𝒅𝒅)𝑑𝑑𝑑𝑑 (115) 
  

 𝑈𝑈𝑒𝑒 =∭(12 𝒆𝒆 ⋅ 𝒅𝒅)𝑑𝑑𝑑𝑑 =∭(12 (𝒆𝒆
(𝐼𝐼) + 𝒆𝒆(𝐶𝐶)) ⋅ 𝜖𝜖0(𝒆𝒆(𝐼𝐼) + 𝒆𝒆(𝐶𝐶)))𝑑𝑑𝑑𝑑 

 
 = 1

2 𝜖𝜖0∭ (𝑒𝑒(𝐼𝐼) ⋅ 𝒆𝒆(𝐼𝐼) + 2𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐼𝐼) + 𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐶𝐶))𝑑𝑑𝑑𝑑 (116) 
 

In the case of Maxwell radiation electromagnetic field, the energy of electric field is 
more than that of induction electric field,  

 1
2 𝜖𝜖0∭ (𝑒𝑒(𝐼𝐼) ⋅ 𝒆𝒆(𝐼𝐼))𝑑𝑑𝑑𝑑 = 1

2 𝜖𝜖0∭( 𝜕𝜕𝜕𝜕𝜕𝜕 𝑨𝑨 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨)𝑑𝑑𝑑𝑑 (117) 

 
The above equation is the energy of the induced electric field, which is stored in the 

electromagnetic wave. Another energy flow,  
 1

2 𝜖𝜖0∭ (𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐶𝐶))𝑑𝑑𝑑𝑑 (118) 
 

It is stored in a capacitor. As for mixed energy,  
 𝜖𝜖0∭ (𝒆𝒆(𝐶𝐶) ⋅ 𝒆𝒆(𝐼𝐼))𝑑𝑑𝑑𝑑 (119) 

 
It may or may not be zero. This author is not clear about this part of energy. 
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It may or may not be zero. This author is not clear about this part of energy. 
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Although the above equation (121) is not zero in calculation, its energy does not appear 

in the corresponding Poynting’s law (101, 108), so it does not participate in the calculation of 
energy. But (120) appears in Poynting’s theorem (112) corresponding to Maxwell’s equation. 
This means  

 𝒆𝒆, 𝒉𝒉 (122) 
 

and  
 𝑬𝑬,𝑯𝑯 (123) 

 
They are really two different kinds of electromagnetic fields! They have different energy 

expressions. Therefore, it is completely correct for this author to distinguish them with two 
different symbols. In the classical electromagnetic field theory, it is often considered that the 
Maxwell radiation electromagnetic field equation is an " accurate" electromagnetic field 
equation, and the magnetic quasi-static electromagnetic field equation is an approximate 
electromagnetic field equation. Therefore, the energy of the induced electric field appearing in 
the Maxwell electromagnetic theory is also the energy of the magnetic quasi-static 
electromagnetic field. This leads to the energy paradox of the induced electric field, and this 
author specifically discusses this problem [17]. 

 
5  Whether can degenerate into quasistatic field 
 
For the solution of Maxwell equation, the magnetic vector potential and scalar potential 

can be written in the form of retarded potential,  
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𝑨𝑨 and 𝜙𝜙 have a time factor exp(𝑗𝑗𝜔𝜔𝑡𝑡). This time factor is omitted in the above 

formula. The induced electric field can be written as, 
 
 𝒆𝒆(𝐼𝐼) = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −𝑗𝑗𝜔𝜔 𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉

𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 (126) 

 

It is the energy of induced electric field, but it can also be calculated for quasi-static electric field,

Although the above equation (121) is not zero in calculation, 
its energy does not appear in the corresponding Poynting’s law 
(101, 108), so it does not participate in the calculation of energy. 

But (120) appears in Poynting’s theorem (112) corresponding to 
Maxwell’s equation. This means

and 

They are really two different kinds of electromagnetic fields! 
They have different energy expressions. Therefore, it is 
completely correct for this author to distinguish them with two 
different symbols. In the classical electromagnetic field theory, 
it is often considered that the Maxwell radiation electromagnetic 
field equation is an " accurate" electromagnetic field equation, 
and the magnetic quasi-static electromagnetic field equation is 
an approximate electromagnetic field equation. Therefore, the 
energy of the induced electric field appearing in the Maxwell 

electromagnetic theory is also the energy of the magnetic quasi-
static electromagnetic field. This leads to the energy paradox of 
the induced electric field, and this author specifically discusses 
this problem [20].

5. Whether can Degenerate into Quasistatic Field
For the solution of Maxwell equation, the magnetic vector 
potential and scalar potential can be written in the form of 
retarded potential, 

A and ϕ have a time factor exp(jωt). This time factor is omitted in the above formula. The induced electric field can be written as,

The electrostatic Coulomb electric field can be written as,
The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The magnetic field is
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Consider a spatial scale l, l is the scale of this electromagnetic system, and suppose lambda is the wavelength of electromagnetic 
wave. consider,

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
 𝒆𝒆(𝐼𝐼) = −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 → −𝑗𝑗𝜔𝜔 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝑬𝑬(𝐼𝐼) (135) 

  
 𝒆𝒆(𝐶𝐶) = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 

The electrostatic Coulomb electric field can be written as,  
 𝒆𝒆(𝐶𝐶) = −∇𝜙𝜙 = −∇ 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝜌𝜌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 ∇(

1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (∇(

1
𝑟𝑟)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

1
𝑟𝑟 ∇exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 

 
 = − 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓))𝜌𝜌𝑑𝑑𝑑𝑑 (127) 

 
The magnetic field is  
 𝒃𝒃 = ∇ × 𝑨𝑨 = ∇ × 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 ∇(
1
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)) × 𝑱𝑱𝑑𝑑𝑑𝑑 (128) 

 
Consider a spatial scale 𝑙𝑙, 𝑙𝑙 is the scale of this electromagnetic system, and suppose 

lambda is the wavelength of electromagnetic wave. consider,  
 𝑙𝑙 ≪ 𝜆𝜆 (129) 

 
Or,  
 2𝜋𝜋𝑙𝑙

𝜆𝜆 ≪ 1 (130) 
 

Consider 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆 , with  

 𝑘𝑘𝑙𝑙 ≪ 1 (131) 
 

This shows that there are,  
 |𝒌𝒌 ⋅ 𝒓𝒓| ≪ 1 (132) 

 
Or,  
 𝒌𝒌 ⋅ 𝒓𝒓 → 0 (133) 

 
Or,  
 exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓) → 1 (134) 

 
Therefore, in this case (126-128),  
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It can be seen from the above formula that the induced electromagnetic field 𝒆𝒆(𝐼𝐼) of 

Maxwell’s electromagnetic theory degenerates into a quasi-static induced electric field 𝑬𝑬(𝐼𝐼) 
when the wavelength is large. Maxwell’s Coulomb electric field 𝒆𝒆(𝐶𝐶) cannot degenerate into a 
quasi-static electric field 𝑬𝑬(𝐶𝐶). Maxwell’s radiated magnetic field 𝒃𝒃 cannot be degenerated 
into a quasi-static magnetic field 𝑩𝑩. Because Maxwell radiation electromagnetic field can not 
degenerate into quasi-static electromagnetic field. Maxwell’s electromagnetic fields 𝒆𝒆, 𝒃𝒃 and 
quasi-static electromagnetic fields 𝑬𝑬, 𝑩𝑩 are indeed not the same electromagnetic fields. It is 
entirely correct for this author to distinguish them by different symbols. It is wrong to confuse 
these two kinds of electromagnetic fields in the text books of classical electromagnetic field 
theory. 

 
6  Test through the Law of Conservation of Energy 
 
We should test Maxwell radiated electromagnetic fields and quasi static 

electromagnetic fields with the law of conservation of energy. Consider that there are 𝑁𝑁 
current elements in figure 4, some of which are sources and some are sinks. The red arrow in 
the figure shows the electromagnetic energy released from the radiation source. The blue ones 
are sinks, which receive electromagnetic energy. Suppose that 𝑁𝑁 is huge, it has included all 
current elements of the whole universe. 

 → − 1
4𝜋𝜋𝜖𝜖0

∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 𝜌𝜌) +

−𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌)𝑑𝑑𝑑𝑑 

 
 = 𝑬𝑬(𝐶𝐶) + 1

4𝜋𝜋𝜖𝜖0
∭ 𝑉𝑉

𝑗𝑗𝒌𝒌
𝑟𝑟 𝜌𝜌𝑑𝑑𝑑𝑑 

 
 ≠ 𝑬𝑬(𝐶𝐶) (136) 

 
For magnetic fields, 
 
 𝒃𝒃 = 𝜇𝜇0

4𝜋𝜋∭ 𝑉𝑉 (−
𝒓𝒓
𝑟𝑟3 × 𝑱𝑱 + −𝑗𝑗𝒌𝒌

𝑟𝑟 × 𝑱𝑱)exp(−𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓)𝑑𝑑𝑑𝑑 
 

 → 𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 × 𝑱𝑱 + −𝑗𝑗𝒌𝒌

𝑟𝑟 × 𝑱𝑱)𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩 + 𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉

−𝑗𝑗𝒌𝒌
𝑟𝑟 × 𝑱𝑱)𝑑𝑑𝑑𝑑 

 
 ≠ 𝑩𝑩 (137) 

 
It can be seen from the above formula that the induced electromagnetic field 𝒆𝒆(𝐼𝐼) of 

Maxwell’s electromagnetic theory degenerates into a quasi-static induced electric field 𝑬𝑬(𝐼𝐼) 
when the wavelength is large. Maxwell’s Coulomb electric field 𝒆𝒆(𝐶𝐶) cannot degenerate into a 
quasi-static electric field 𝑬𝑬(𝐶𝐶). Maxwell’s radiated magnetic field 𝒃𝒃 cannot be degenerated 
into a quasi-static magnetic field 𝑩𝑩. Because Maxwell radiation electromagnetic field can not 
degenerate into quasi-static electromagnetic field. Maxwell’s electromagnetic fields 𝒆𝒆, 𝒃𝒃 and 
quasi-static electromagnetic fields 𝑬𝑬, 𝑩𝑩 are indeed not the same electromagnetic fields. It is 
entirely correct for this author to distinguish them by different symbols. It is wrong to confuse 
these two kinds of electromagnetic fields in the text books of classical electromagnetic field 
theory. 

 
6  Test through the Law of Conservation of Energy 
 
We should test Maxwell radiated electromagnetic fields and quasi static 

electromagnetic fields with the law of conservation of energy. Consider that there are 𝑁𝑁 
current elements in figure 4, some of which are sources and some are sinks. The red arrow in 
the figure shows the electromagnetic energy released from the radiation source. The blue ones 
are sinks, which receive electromagnetic energy. Suppose that 𝑁𝑁 is huge, it has included all 
current elements of the whole universe. 

For magnetic fields,

It can be seen from the above formula that the induced 
electromagnetic field e(I) of Maxwell’s electromagnetic theory 
degenerates into a quasi-static induced electric field E(I) when 
the wavelength is large. Maxwell’s Coulomb electric field 
e(C) cannot degenerate into a quasi-static electric field E(C). 
Maxwell’s radiated magnetic field b cannot be degenerated 

into a quasi-static magnetic field B. Because Maxwell radiation 
electromagnetic field can not degenerate into quasi-static 
electromagnetic field. Maxwell’s electromagnetic fields e, b 
and quasi-static electromagnetic fields E, B are indeed not the 
same electromagnetic fields. It is entirely correct for this author 
to distinguish them by different symbols. It is wrong to confuse 
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these two kinds of electromagnetic fields in the text books of 
classical electromagnetic field theory.

6. Test Through the Law of Conservation of Energy
We should test Maxwell radiated electromagnetic fields and 
quasi static electromagnetic fields with the law of conservation 

of energy. Consider that there are N current elements in figure 
4, some of which are sources and some are sinks. The red arrow 
in the figure shows the electromagnetic energy released from 
the radiation source. The blue ones are sinks, which receive 
electromagnetic energy. Suppose that N is huge, it has included 
all current elements of the whole universe.

 
 
 

Figure  4: There are 𝑁𝑁 current elements in the space. The red one is the source, and the blue 
one is the sink. 

  
We know that the energy conservation law of electromagnetic field is  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (138) 
 

The above formula is the law of conservation of electromagnetic energy. This law of 
conservation of energy is self explanatory. Its establishment should be wordless. Because we 
can believe that there are only 𝑁𝑁 charges in space. Of course 𝑁𝑁 is big. If the energy one of 
the current elements 𝑱𝑱𝑗𝑗 is lost, other charges will increase the same energy sooner or later, so 
the total energy will not change. Therefore, there is the above formula. The above law of 
conservation of energy can be proved from the quasi-static equation. However, it is impossible 
to prove the above formula by the radiating electromagnetic field from Maxwell. This shows 
that the electromagnetic theory represented by Maxwell’s equation is different from the 
quasi-static electromagnetic theory. Let’s prove it. 

 
6.1  Prove the law of conservation of energy from the magnetic 

quasi-static Poynting theorem 
 
Poynting’s law of magnetic quasi-static electromagnetic field can be derived from 

(81,83), 
 
 ∮ Γ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝑬𝑬 + 𝑯𝑯 ⋅ 𝜕𝜕𝜕𝜕𝑡𝑡 𝑩𝑩)𝑑𝑑𝑑𝑑 (139) 

 
Considering the superposition principle (16, 17), 
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𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗 + 𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
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Split into two formulas  
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𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (141) 

  
 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖 + 𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 (142) 
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with time,  
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𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑  (143) 
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Proof (145), assuming 𝑟𝑟 → ∞, 
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𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞
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𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (149) 

 
Proof (145), assuming 𝑟𝑟 → ∞, 
 
 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
𝑟𝑟4 𝑟𝑟

2 = 1
𝑟𝑟2 → 0 (150) 

 
(145) proof finished. 
Proof (146). We know that for magnetic quasi-static electromagnetic fields, suppose 

𝑟𝑟 → ∞,  
 𝑬𝑬𝑖𝑖 ∼

1
𝑟𝑟2 (151) 

  
 𝑩𝑩𝑖𝑖 ∼

1
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 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
𝑟𝑟4 𝑟𝑟

2 = 1
𝑟𝑟2 → 0 (153) 

 
(146) proof finished. 
Prove (148),  
 ∫ ∞
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𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
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𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (141) 

  
 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖 + 𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 (142) 

 
The sum of the above two formulas is (140). By integrating the above two equations 

with time,  
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To prove the law of conservation of energy of formula (138), we need to prove the 

following five formulas,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
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2 = 1
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(146) proof finished. 
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𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (141) 

  
 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖 + 𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 (142) 

 
The sum of the above two formulas is (140). By integrating the above two equations 

with time,  
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To prove the law of conservation of energy of formula (138), we need to prove the 

following five formulas,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (145) 
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𝑗𝑗=1 ∫ ∞
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𝜕𝜕
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 ∑ 𝑁𝑁
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𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (149) 

 
Proof (145), assuming 𝑟𝑟 → ∞, 
 
 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
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2 = 1
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(145) proof finished. 
Proof (146). We know that for magnetic quasi-static electromagnetic fields, suppose 

𝑟𝑟 → ∞,  
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2 = 1
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(146) proof finished. 
Prove (148),  
 ∫ ∞
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 ∑ 𝑁𝑁
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The sum of the above two formulas is (140). By integrating the above two equations 

with time,  
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following five formulas,  
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 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (149) 

 
Proof (145), assuming 𝑟𝑟 → ∞, 
 
 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
𝑟𝑟4 𝑟𝑟

2 = 1
𝑟𝑟2 → 0 (150) 

 
(145) proof finished. 
Proof (146). We know that for magnetic quasi-static electromagnetic fields, suppose 

𝑟𝑟 → ∞,  
 𝑬𝑬𝑖𝑖 ∼

1
𝑟𝑟2 (151) 

  
 𝑩𝑩𝑖𝑖 ∼

1
𝑟𝑟2 (152) 

  
 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
𝑟𝑟4 𝑟𝑟

2 = 1
𝑟𝑟2 → 0 (153) 

 
(146) proof finished. 
Prove (148),  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕∭ (12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗 + 𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (141) 

  
 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖 + 𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 (142) 

 
The sum of the above two formulas is (140). By integrating the above two equations 

with time,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗 +
𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑  (143) 

  
 ∑ 𝑁𝑁

𝑗𝑗=1 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖 + 𝑯𝑯𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 (144) 

 
To prove the law of conservation of energy of formula (138), we need to prove the 

following five formulas,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (145) 
  

 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (146) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (147) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (148) 

  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (149) 

 
Proof (145), assuming 𝑟𝑟 → ∞, 
 
 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
𝑟𝑟4 𝑟𝑟

2 = 1
𝑟𝑟2 → 0 (150) 

 
(145) proof finished. 
Proof (146). We know that for magnetic quasi-static electromagnetic fields, suppose 

𝑟𝑟 → ∞,  
 𝑬𝑬𝑖𝑖 ∼

1
𝑟𝑟2 (151) 

  
 𝑩𝑩𝑖𝑖 ∼

1
𝑟𝑟2 (152) 

  
 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ∼

1
𝑟𝑟4 𝑟𝑟

2 = 1
𝑟𝑟2 → 0 (153) 

 
(146) proof finished. 
Prove (148),  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕∭ (12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

To prove the law of conservation of energy of formula (138), we need to prove the following five formulas,

Proof (145), assuming r→∞,

(145) proof finished.
Proof (146). We know that for magnetic quasi-static electromagnetic fields, suppose r→∞, 

(146) proof finished.
Prove (148), 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) 

 
 = 0 − 0 = 0 (154) 

 where,  
 𝑈𝑈 =∭(12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

𝑈𝑈(∞) The process we discussed has ended, so 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) The process we discussed 
has not yet started, so 𝑈𝑈(−∞) = 0. The proof of (148) is finished. 

Prove (149) 
 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗 + 𝑯𝑯𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (155) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (156) 

 
The reasons for 𝑈𝑈(∞) and 𝑈𝑈(−∞) are the same as those above, both of which are 0. 

The proof of (149) is finished. 
The following is the proof of (147),  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡∭ 𝑱𝑱𝑖𝑖𝑟𝑟 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭∭ 1𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = −[𝑈𝑈(∞) − 𝑈𝑈(−∞)] 

 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) 

 
 = 0 − 0 = 0 (154) 

 where,  
 𝑈𝑈 =∭(12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

𝑈𝑈(∞) The process we discussed has ended, so 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) The process we discussed 
has not yet started, so 𝑈𝑈(−∞) = 0. The proof of (148) is finished. 

Prove (149) 
 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗 + 𝑯𝑯𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (155) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (156) 

 
The reasons for 𝑈𝑈(∞) and 𝑈𝑈(−∞) are the same as those above, both of which are 0. 

The proof of (149) is finished. 
The following is the proof of (147),  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡∭ 𝑱𝑱𝑖𝑖𝑟𝑟 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭∭ 1𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = −[𝑈𝑈(∞) − 𝑈𝑈(−∞)] 

 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) 

 
 = 0 − 0 = 0 (154) 

 where,  
 𝑈𝑈 =∭(12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

𝑈𝑈(∞) The process we discussed has ended, so 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) The process we discussed 
has not yet started, so 𝑈𝑈(−∞) = 0. The proof of (148) is finished. 

Prove (149) 
 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗 + 𝑯𝑯𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (155) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (156) 

 
The reasons for 𝑈𝑈(∞) and 𝑈𝑈(−∞) are the same as those above, both of which are 0. 

The proof of (149) is finished. 
The following is the proof of (147),  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡∭ 𝑱𝑱𝑖𝑖𝑟𝑟 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭∭ 1𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = −[𝑈𝑈(∞) − 𝑈𝑈(−∞)] 

 

 where, 

U(∞) The process we discussed has ended, so U(∞)=0. U(-∞) The process we discussed has not yet started, so U(-∞)=0. The proof 
of (148) is finished.
Prove (149)
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 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) 

 
 = 0 − 0 = 0 (154) 

 where,  
 𝑈𝑈 =∭(12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

𝑈𝑈(∞) The process we discussed has ended, so 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) The process we discussed 
has not yet started, so 𝑈𝑈(−∞) = 0. The proof of (148) is finished. 

Prove (149) 
 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗 + 𝑯𝑯𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (155) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (156) 

 
The reasons for 𝑈𝑈(∞) and 𝑈𝑈(−∞) are the same as those above, both of which are 0. 

The proof of (149) is finished. 
The following is the proof of (147),  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡∭ 𝑱𝑱𝑖𝑖𝑟𝑟 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭∭ 1𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = −[𝑈𝑈(∞) − 𝑈𝑈(−∞)] 

 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) 

 
 = 0 − 0 = 0 (154) 

 where,  
 𝑈𝑈 =∭(12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

𝑈𝑈(∞) The process we discussed has ended, so 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) The process we discussed 
has not yet started, so 𝑈𝑈(−∞) = 0. The proof of (148) is finished. 

Prove (149) 
 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗 + 𝑯𝑯𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (155) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (156) 

 
The reasons for 𝑈𝑈(∞) and 𝑈𝑈(−∞) are the same as those above, both of which are 0. 

The proof of (149) is finished. 
The following is the proof of (147),  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡∭ 𝑱𝑱𝑖𝑖𝑟𝑟 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭∭ 1𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = −[𝑈𝑈(∞) − 𝑈𝑈(−∞)] 

 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) 

 
 = 0 − 0 = 0 (154) 

 where,  
 𝑈𝑈 =∭(12𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

𝑈𝑈(∞) The process we discussed has ended, so 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) The process we discussed 
has not yet started, so 𝑈𝑈(−∞) = 0. The proof of (148) is finished. 

Prove (149) 
 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑯𝑯𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑗𝑗 + 𝑯𝑯𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝑩𝑩𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (155) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑗𝑗=1 ∭ (𝑯𝑯𝑖𝑖 ⋅ 𝑩𝑩𝑗𝑗)𝑑𝑑𝑑𝑑 (156) 

 
The reasons for 𝑈𝑈(∞) and 𝑈𝑈(−∞) are the same as those above, both of which are 0. 

The proof of (149) is finished. 
The following is the proof of (147),  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∑ 𝑁𝑁

𝑖𝑖=1 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭(𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡∭ 𝑱𝑱𝑖𝑖𝑟𝑟 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 

 
 = −∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭∭ 1𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝑡𝑡 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 

 
 = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 

 
 = −[𝑈𝑈(∞) − 𝑈𝑈(−∞)] 

 

Where, 

The reasons for U(∞) and U(-∞) are the same as those above, both of which are 0. The proof of (149) is finished.

The following is the proof of (147), 

 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

Where the following is considerred,

The U(∞) process has ended, so there is, U(∞)=0 The U(-∞) 
process has not started yet, so there is a formula U(-∞)=0. The 
proof of (147) is finished.

Consider (145-149) in formula (143 and 144) and we get (138). 
Therefore, the law of energy conservation (138) of magnetic 
quasi-static electromagnetic field is satisfied.

6.2. Failed to Prove the Law of Conservation of Energy From 
Poynting Theorem of Maxwell Radiation Electromagnetic 
Field
Use a similar approach. Poynting’s law of Maxwell radiated 
electromagnetic field is,

Considering the superposition principle,

The above formula can be divided into two formulas. After considering the time integration,
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 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

 = 0 (157) 
 

Where the following is considerred,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋∭ 𝑱𝑱𝑟𝑟 𝑑𝑑𝑑𝑑 (158) 

  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1
𝜇𝜇0
4𝜋𝜋∭ ∭ 12

1
𝑟𝑟 𝑱𝑱𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 (159) 

 
The 𝑈𝑈(∞) process has ended, so there is, 𝑈𝑈(∞) = 0 The 𝑈𝑈(−∞) process has not 

started yet, so there is a formula 𝑈𝑈(−∞) = 0. The proof of (147) is finished. 
Consider (145-149) in formula (143 and 144) and we get (138). Therefore, the law of 

energy conservation (138) of magnetic quasi-static electromagnetic field is satisfied. 
 
6.2  Failed to prove the law of conservation of energy from Poynting 

theorem of Maxwell radiation electromagnetic field 
 
Use a similar approach. Poynting’s law of Maxwell radiated electromagnetic field is, 
 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (160) 

 
Considering the superposition principle,  
∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (161) 

 
The above formula can be divided into two formulas. After considering the time 

integration, 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
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𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (162) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
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𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (163) 
 

To prove the law of conservation of energy, we need to prove that,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (164) 

 
 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖) = 0 (165) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (166) 

  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (167) 

To prove the law of conservation of energy, we need to prove that,

  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (168) 

 
But we know that the far-field characteristics of the radiated electromagnetic field 

satisfying Maxwell’s equation are, 
 
 𝒆𝒆𝑖𝑖 ∼

1
𝑟𝑟 (169) 

  
 𝒃𝒃𝑖𝑖 ∼

1
𝑟𝑟 (170) 

  
 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ →

𝑟𝑟2
𝑟𝑟2 ≠ 0 (171) 

 
Therefore  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0 (172) 

 
We know that for Maxwell’s radiated electromagnetic field, there is always a Poynting 

energy flow that is not zero. We know from the calculation of any antenna that the above 
formula is not zero. In fact, the Sliver-Muller radiation condition also tells us this. We will not 
continue to verify other formulas. As long as (164) is not zero, we cannot prove the law of 
conservation of energy (138). But we should write this formula in lowercase letters,  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (173) 

 
The above proof shows that the above law of conservation of energy does not hold true 

for Maxwell’s radiated electromagnetic field! It is worth mentioning that the above formula is 
still valid, but it can only be used as an energy theorem, not a law of conservation of energy. To 
prove the law of conservation of energy, it must be proved that (164-168) are satisfied. But if 
the above equation is proved to be the energy theorem, we only need to prove (167-168). This 
is because if we want to proved that the above equation is an energy theorem, we can get (162) 
by subtracting (163) from (161). Since (161) is the Poynting energy theorem of 𝑁𝑁 current 
elements, (163) is the sum of 𝑁𝑁 Poynting theorems of the 𝑖𝑖th, and is also the energy theorem, 
their difference formula (162) is also the energy theorem. If (167-168) is satisfied, the formula 
(173) is obtained. Therefore (173) can be established as an energy theorem. So we proved it is a 
energy theorem. 

The energy theorem is still much weaker than the law of conservation of energy. When 
we say it is the law of conservation of energy, it must contain all energy, but when ∮ Γ (𝒆𝒆𝑖𝑖 ×
𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0, there are other energy items. ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 does not 
contain all energy, so (173) is not a law of conservation of energy. It is only an energy theorem 
in Maxwell’s theoretical system. This is why this author called it the mutual energy theorem in 
his 1987 paper [11, 25, 24]. 

We should understand that (138 and 173) are energy conservation laws. In Maxwell’s 
electromagnetic theory, (173) is not energy conservation law, which proves that Maxwell’s 
electromagnetic theory is missing. 

  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
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𝑟𝑟 (169) 
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𝑟𝑟2
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Therefore  
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𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0 (172) 

 
We know that for Maxwell’s radiated electromagnetic field, there is always a Poynting 

energy flow that is not zero. We know from the calculation of any antenna that the above 
formula is not zero. In fact, the Sliver-Muller radiation condition also tells us this. We will not 
continue to verify other formulas. As long as (164) is not zero, we cannot prove the law of 
conservation of energy (138). But we should write this formula in lowercase letters,  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (173) 

 
The above proof shows that the above law of conservation of energy does not hold true 

for Maxwell’s radiated electromagnetic field! It is worth mentioning that the above formula is 
still valid, but it can only be used as an energy theorem, not a law of conservation of energy. To 
prove the law of conservation of energy, it must be proved that (164-168) are satisfied. But if 
the above equation is proved to be the energy theorem, we only need to prove (167-168). This 
is because if we want to proved that the above equation is an energy theorem, we can get (162) 
by subtracting (163) from (161). Since (161) is the Poynting energy theorem of 𝑁𝑁 current 
elements, (163) is the sum of 𝑁𝑁 Poynting theorems of the 𝑖𝑖th, and is also the energy theorem, 
their difference formula (162) is also the energy theorem. If (167-168) is satisfied, the formula 
(173) is obtained. Therefore (173) can be established as an energy theorem. So we proved it is a 
energy theorem. 

The energy theorem is still much weaker than the law of conservation of energy. When 
we say it is the law of conservation of energy, it must contain all energy, but when ∮ Γ (𝒆𝒆𝑖𝑖 ×
𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0, there are other energy items. ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 does not 
contain all energy, so (173) is not a law of conservation of energy. It is only an energy theorem 
in Maxwell’s theoretical system. This is why this author called it the mutual energy theorem in 
his 1987 paper [11, 25, 24]. 

We should understand that (138 and 173) are energy conservation laws. In Maxwell’s 
electromagnetic theory, (173) is not energy conservation law, which proves that Maxwell’s 
electromagnetic theory is missing. 

  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (168) 

 
But we know that the far-field characteristics of the radiated electromagnetic field 

satisfying Maxwell’s equation are, 
 
 𝒆𝒆𝑖𝑖 ∼

1
𝑟𝑟 (169) 

  
 𝒃𝒃𝑖𝑖 ∼

1
𝑟𝑟 (170) 

  
 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ →

𝑟𝑟2
𝑟𝑟2 ≠ 0 (171) 

 
Therefore  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0 (172) 

 
We know that for Maxwell’s radiated electromagnetic field, there is always a Poynting 

energy flow that is not zero. We know from the calculation of any antenna that the above 
formula is not zero. In fact, the Sliver-Muller radiation condition also tells us this. We will not 
continue to verify other formulas. As long as (164) is not zero, we cannot prove the law of 
conservation of energy (138). But we should write this formula in lowercase letters,  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (173) 

 
The above proof shows that the above law of conservation of energy does not hold true 

for Maxwell’s radiated electromagnetic field! It is worth mentioning that the above formula is 
still valid, but it can only be used as an energy theorem, not a law of conservation of energy. To 
prove the law of conservation of energy, it must be proved that (164-168) are satisfied. But if 
the above equation is proved to be the energy theorem, we only need to prove (167-168). This 
is because if we want to proved that the above equation is an energy theorem, we can get (162) 
by subtracting (163) from (161). Since (161) is the Poynting energy theorem of 𝑁𝑁 current 
elements, (163) is the sum of 𝑁𝑁 Poynting theorems of the 𝑖𝑖th, and is also the energy theorem, 
their difference formula (162) is also the energy theorem. If (167-168) is satisfied, the formula 
(173) is obtained. Therefore (173) can be established as an energy theorem. So we proved it is a 
energy theorem. 

The energy theorem is still much weaker than the law of conservation of energy. When 
we say it is the law of conservation of energy, it must contain all energy, but when ∮ Γ (𝒆𝒆𝑖𝑖 ×
𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0, there are other energy items. ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 does not 
contain all energy, so (173) is not a law of conservation of energy. It is only an energy theorem 
in Maxwell’s theoretical system. This is why this author called it the mutual energy theorem in 
his 1987 paper [11, 25, 24]. 

We should understand that (138 and 173) are energy conservation laws. In Maxwell’s 
electromagnetic theory, (173) is not energy conservation law, which proves that Maxwell’s 
electromagnetic theory is missing. 
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energy flow that is not zero. We know from the calculation of any antenna that the above 
formula is not zero. In fact, the Sliver-Muller radiation condition also tells us this. We will not 
continue to verify other formulas. As long as (164) is not zero, we cannot prove the law of 
conservation of energy (138). But we should write this formula in lowercase letters,  

 ∑ 𝑁𝑁
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The above proof shows that the above law of conservation of energy does not hold true 

for Maxwell’s radiated electromagnetic field! It is worth mentioning that the above formula is 
still valid, but it can only be used as an energy theorem, not a law of conservation of energy. To 
prove the law of conservation of energy, it must be proved that (164-168) are satisfied. But if 
the above equation is proved to be the energy theorem, we only need to prove (167-168). This 
is because if we want to proved that the above equation is an energy theorem, we can get (162) 
by subtracting (163) from (161). Since (161) is the Poynting energy theorem of 𝑁𝑁 current 
elements, (163) is the sum of 𝑁𝑁 Poynting theorems of the 𝑖𝑖th, and is also the energy theorem, 
their difference formula (162) is also the energy theorem. If (167-168) is satisfied, the formula 
(173) is obtained. Therefore (173) can be established as an energy theorem. So we proved it is a 
energy theorem. 

The energy theorem is still much weaker than the law of conservation of energy. When 
we say it is the law of conservation of energy, it must contain all energy, but when ∮ Γ (𝒆𝒆𝑖𝑖 ×
𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ ≠ 0, there are other energy items. ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 does not 
contain all energy, so (173) is not a law of conservation of energy. It is only an energy theorem 
in Maxwell’s theoretical system. This is why this author called it the mutual energy theorem in 
his 1987 paper [11, 25, 24]. 

We should understand that (138 and 173) are energy conservation laws. In Maxwell’s 
electromagnetic theory, (173) is not energy conservation law, which proves that Maxwell’s 
electromagnetic theory is missing. 

But we know that the far-field characteristics of the radiated electromagnetic field satisfying Maxwell’s equation are,

Therefore 

We know that for Maxwell’s radiated electromagnetic field, there is always a Poynting energy flow that is not zero. We know from 
the calculation of any antenna that the above formula is not zero. In fact, the Sliver-Muller radiation condition also tells us this. We 
will not continue to verify other formulas. As long as (164) is not zero, we cannot prove the law of conservation of energy (138). But 
we should write this formula in lowercase letters,

The above proof shows that the above law of conservation of energy does not hold true for Maxwell’s radiated electromagnetic field! 
It is worth mentioning that the above formula is still valid, but it can only be used as an energy theorem, not a law of conservation 
of energy. To prove the law of conservation of energy, it must be proved that (164-168) are satisfied. But if the above equation is 
proved to be the energy theorem, we only need to prove (167-168). This is because if we want to proved that the above equation 
is an energy theorem, we can get (162) by subtracting (163) from (161). Since (161) is the Poynting energy theorem of N current 
elements, (163) is the sum of N Poynting theorems of the ith, and is also the energy theorem, their difference formula (162) is also 
the energy theorem. If (167-168) is satisfied, the formula (173) is obtained. Therefore (173) can be established as an energy theorem. 
So we proved it is a energy theorem.

The energy theorem is still much weaker than the law of conservation of energy. When we say it is the law of conservation of energy, 
it must contain all energy, but when ∮Γ (ei×hi)⋅ n dΓ≠0, there are other energy items.                                                                  does 
not contain all energy, so (173) is not a law of conservation of energy. It is only an energy theorem in Maxwell’s theoretical system. 
This is why this author called it the mutual energy theorem in his 1987 paper [1, 2, 3].
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𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝒆𝒆𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 does not 
contain all energy, so (173) is not a law of conservation of energy. It is only an energy theorem 
in Maxwell’s theoretical system. This is why this author called it the mutual energy theorem in 
his 1987 paper [11, 25, 24]. 

We should understand that (138 and 173) are energy conservation laws. In Maxwell’s 
electromagnetic theory, (173) is not energy conservation law, which proves that Maxwell’s 
electromagnetic theory is missing. 
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We should understand that (138 and 173) are energy conservation laws. In Maxwell’s electromagnetic theory, (173) is not energy 
conservation law, which proves that Maxwell’s electromagnetic theory is missing.

6.3. History of The Law of Conservation of Energy
It is worth mentioning that the understanding of formulas (138,173) has a history of development. Let (N=2) in (138) get, 

 
6.3  History of the law of conservation of energy 
 
It is worth mentioning that the understanding of formulas (138,173) has a history of 

development. Let (𝑁𝑁 = 2) in (138) get,  
 ∑ 2

𝑖𝑖=1 ∑ 2
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (174) 
 Or  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (175) 
 

The above is Welch’s time-domain reciprocity theorem (1960) [23]. Welch’s reciprocity 
theorem is a special case (𝜏𝜏 = 0) of th de Hoop’s reciprocity theorem (at the end of 1987) *7+, 

 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2(𝑑𝑑) ⋅ 𝑱𝑱1(𝑑𝑑 + 𝜏𝜏)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2(𝑑𝑑) ⋅ 𝑱𝑱1(𝑑𝑑 + 𝜏𝜏))𝑑𝑑𝑑𝑑 (176) 

 the Fourier transform of de Hoop reciprocity theorem is, 
 
 −∭ 𝑉𝑉 (𝑬𝑬2

∗ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2

∗ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (177) 
 

The above formula is Rumsey’s new reciprocity theorem (1963) *20+, which is also the 
mutual energy theorem proposed by this author in early of 1987 [11, 25, 24]. The above 
formula can be obtained from the Lorentz reciprocity theorem (1900-1930) [3, 4]  

 ∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (𝑬𝑬1 ⋅ 𝑱𝑱2)𝑑𝑑𝑑𝑑 (178) 
 Through conjugate transformation, 

 
 𝑬𝑬,𝑯𝑯, 𝑱𝑱 → 𝑬𝑬∗, −𝑯𝑯∗,−𝐽𝐽∗ (179) 

 
Conjugate transformation [10] is a transformation preserving Maxwell’s equation. That 

is, if Maxwell equation is satisfied before transformation, Maxwell equation is still satisfied 
after transformation. 

So this theorem was first discovered by Welch in 1960 as the reciprocity theorem. But in 
1987, this author first redefined it as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law of conservation of energy [12]. 
That is to say, the formula (138, 173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from Maxwell’s equation. This author 
thinks that Maxwell’s classical electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this author’s point of view through the 
law of conservation of energy. Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade readers in another way. 

 
7  Revision of Maxwell’s electromagnetic theory 
 
This author introduces a new electromagnetic field law that radiation does not overflow 

the universe. This law can be regarded as a new axiom or a new boundary condition. However, 
Maxwell’s electromagnetic radiation theory only allows for the Sliver-Muller radiation condition. 
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theorem is a special case (𝜏𝜏 = 0) of th de Hoop’s reciprocity theorem (at the end of 1987) *7+, 
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Conjugate transformation [10] is a transformation preserving Maxwell’s equation. That 

is, if Maxwell equation is satisfied before transformation, Maxwell equation is still satisfied 
after transformation. 

So this theorem was first discovered by Welch in 1960 as the reciprocity theorem. But in 
1987, this author first redefined it as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law of conservation of energy [12]. 
That is to say, the formula (138, 173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from Maxwell’s equation. This author 
thinks that Maxwell’s classical electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this author’s point of view through the 
law of conservation of energy. Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade readers in another way. 
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The above formula is Rumsey’s new reciprocity theorem (1963) *20+, which is also the 
mutual energy theorem proposed by this author in early of 1987 [11, 25, 24]. The above 
formula can be obtained from the Lorentz reciprocity theorem (1900-1930) [3, 4]  
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 Through conjugate transformation, 

 
 𝑬𝑬,𝑯𝑯, 𝑱𝑱 → 𝑬𝑬∗, −𝑯𝑯∗,−𝐽𝐽∗ (179) 

 
Conjugate transformation [10] is a transformation preserving Maxwell’s equation. That 

is, if Maxwell equation is satisfied before transformation, Maxwell equation is still satisfied 
after transformation. 

So this theorem was first discovered by Welch in 1960 as the reciprocity theorem. But in 
1987, this author first redefined it as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law of conservation of energy [12]. 
That is to say, the formula (138, 173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from Maxwell’s equation. This author 
thinks that Maxwell’s classical electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this author’s point of view through the 
law of conservation of energy. Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade readers in another way. 
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This author introduces a new electromagnetic field law that radiation does not overflow 

the universe. This law can be regarded as a new axiom or a new boundary condition. However, 
Maxwell’s electromagnetic radiation theory only allows for the Sliver-Muller radiation condition. 
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So this theorem was first discovered by Welch in 1960 as the reciprocity theorem. But in 
1987, this author first redefined it as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law of conservation of energy [12]. 
That is to say, the formula (138, 173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from Maxwell’s equation. This author 
thinks that Maxwell’s classical electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this author’s point of view through the 
law of conservation of energy. Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade readers in another way. 
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Maxwell’s electromagnetic radiation theory only allows for the Sliver-Muller radiation condition. 

 
6.3  History of the law of conservation of energy 
 
It is worth mentioning that the understanding of formulas (138,173) has a history of 

development. Let (𝑁𝑁 = 2) in (138) get,  
 ∑ 2

𝑖𝑖=1 ∑ 2
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (174) 
 Or  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (175) 
 

The above is Welch’s time-domain reciprocity theorem (1960) [23]. Welch’s reciprocity 
theorem is a special case (𝜏𝜏 = 0) of th de Hoop’s reciprocity theorem (at the end of 1987) *7+, 

 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2(𝑑𝑑) ⋅ 𝑱𝑱1(𝑑𝑑 + 𝜏𝜏)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2(𝑑𝑑) ⋅ 𝑱𝑱1(𝑑𝑑 + 𝜏𝜏))𝑑𝑑𝑑𝑑 (176) 

 the Fourier transform of de Hoop reciprocity theorem is, 
 
 −∭ 𝑉𝑉 (𝑬𝑬2

∗ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2

∗ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (177) 
 

The above formula is Rumsey’s new reciprocity theorem (1963) *20+, which is also the 
mutual energy theorem proposed by this author in early of 1987 [11, 25, 24]. The above 
formula can be obtained from the Lorentz reciprocity theorem (1900-1930) [3, 4]  

 ∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (𝑬𝑬1 ⋅ 𝑱𝑱2)𝑑𝑑𝑑𝑑 (178) 
 Through conjugate transformation, 

 
 𝑬𝑬,𝑯𝑯, 𝑱𝑱 → 𝑬𝑬∗, −𝑯𝑯∗,−𝐽𝐽∗ (179) 

 
Conjugate transformation [10] is a transformation preserving Maxwell’s equation. That 

is, if Maxwell equation is satisfied before transformation, Maxwell equation is still satisfied 
after transformation. 

So this theorem was first discovered by Welch in 1960 as the reciprocity theorem. But in 
1987, this author first redefined it as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law of conservation of energy [12]. 
That is to say, the formula (138, 173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from Maxwell’s equation. This author 
thinks that Maxwell’s classical electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this author’s point of view through the 
law of conservation of energy. Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade readers in another way. 

 
7  Revision of Maxwell’s electromagnetic theory 
 
This author introduces a new electromagnetic field law that radiation does not overflow 

the universe. This law can be regarded as a new axiom or a new boundary condition. However, 
Maxwell’s electromagnetic radiation theory only allows for the Sliver-Muller radiation condition. 

 
6.3  History of the law of conservation of energy 
 
It is worth mentioning that the understanding of formulas (138,173) has a history of 

development. Let (𝑁𝑁 = 2) in (138) get,  
 ∑ 2

𝑖𝑖=1 ∑ 2
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (174) 
 Or  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (175) 
 

The above is Welch’s time-domain reciprocity theorem (1960) [23]. Welch’s reciprocity 
theorem is a special case (𝜏𝜏 = 0) of th de Hoop’s reciprocity theorem (at the end of 1987) *7+, 

 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2(𝑑𝑑) ⋅ 𝑱𝑱1(𝑑𝑑 + 𝜏𝜏)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2(𝑑𝑑) ⋅ 𝑱𝑱1(𝑑𝑑 + 𝜏𝜏))𝑑𝑑𝑑𝑑 (176) 

 the Fourier transform of de Hoop reciprocity theorem is, 
 
 −∭ 𝑉𝑉 (𝑬𝑬2

∗ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ 𝑉𝑉 (𝑬𝑬2

∗ ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 (177) 
 

The above formula is Rumsey’s new reciprocity theorem (1963) *20+, which is also the 
mutual energy theorem proposed by this author in early of 1987 [11, 25, 24]. The above 
formula can be obtained from the Lorentz reciprocity theorem (1900-1930) [3, 4]  

 ∭ 𝑉𝑉 (𝑬𝑬2 ⋅ 𝑱𝑱1)𝑑𝑑𝑑𝑑 =∭ 𝑉𝑉 (𝑬𝑬1 ⋅ 𝑱𝑱2)𝑑𝑑𝑑𝑑 (178) 
 Through conjugate transformation, 

 
 𝑬𝑬,𝑯𝑯, 𝑱𝑱 → 𝑬𝑬∗, −𝑯𝑯∗,−𝐽𝐽∗ (179) 

 
Conjugate transformation [10] is a transformation preserving Maxwell’s equation. That 

is, if Maxwell equation is satisfied before transformation, Maxwell equation is still satisfied 
after transformation. 

So this theorem was first discovered by Welch in 1960 as the reciprocity theorem. But in 
1987, this author first redefined it as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law of conservation of energy [12]. 
That is to say, the formula (138, 173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from Maxwell’s equation. This author 
thinks that Maxwell’s classical electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this author’s point of view through the 
law of conservation of energy. Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade readers in another way. 

 
7  Revision of Maxwell’s electromagnetic theory 
 
This author introduces a new electromagnetic field law that radiation does not overflow 

the universe. This law can be regarded as a new axiom or a new boundary condition. However, 
Maxwell’s electromagnetic radiation theory only allows for the Sliver-Muller radiation condition. 

Or 

The above is Welch’s time-domain reciprocity theorem (1960) [4]. Welch’s reciprocity theorem is a special case (τ=0) of th de 
Hoop’s reciprocity theorem (at the end of 1987) [6],

 the Fourier transform of de Hoop reciprocity theorem is,

The above formula is Rumsey’s new reciprocity theorem (1963), which is also the mutual energy theorem proposed by this author 
in early of 1987 [1-3, 5]. The above formula can be obtained from the Lorentz reciprocity theorem (1900-1930) [24, 22].

 Through conjugate transformation,

Conjugate transformation is a transformation preserving 
Maxwell’s equation [23]. That is, if Maxwell equation is satisfied 
before transformation, Maxwell equation is still satisfied after 
transformation.

So this theorem was first discovered by Welch in 1960 as the 
reciprocity theorem. But in 1987, this author first redefined it 
as the energy theorem. It was not until 2017 that this author 
discovered that this mutual energy theorem is actually the law 
of conservation of energy [7]. That is to say, the formula (138, 
173) is actually the law of conservation of energy. However, 
this law of conservation of energy cannot be proved from 
Maxwell’s equation. This author thinks that Maxwell’s classical 
electromagnetic theory is problematic on this point. In the past, 
this author always hoped to persuade readers to accept this 
author’s point of view through the law of conservation of energy. 
Maxwell’s electromagnetic theory has loopholes or bugs, but 
few readers agree with it. Now, this author continues to persuade 
readers in another way.

7. Revision of Maxwell’s Electromagnetic Theory
This author introduces a new electromagnetic field law that 
radiation does not overflow the universe. This law can be 
regarded as a new axiom or a new boundary condition. However, 
Maxwell’s electromagnetic radiation theory only allows for 
the Sliver-Muller radiation condition. Therefore, we need to 
properly revise Maxwell’s electromagnetic theory.

7.1. Relaxation Process of Maxwell’s Equation
We can see that Maxwell’s radiation electromagnetic field 
and quasi-static electromagnetic field or magnetic quasi-static 
electromagnetic field are not really same electromagnetic fields, 
so can we properly modify Maxwell’s electromagnetic theory 
to make it a new electromagnetic field, which is close to the 
original magnetic quasi-static electromagnetic field and quasi-
static electromagnetic field, but is there the electromagnetic 
wave radiation property of Maxwell radiation electromagnetic 
field? In fact, it is possible. Poynting’s law is,

Therefore, we need to properly revise Maxwell’s electromagnetic theory. 
 
7.1  Relaxation process of Maxwell’s equation 
 
We can see that Maxwell’s radiation electromagnetic field and quasi-static 

electromagnetic field or magnetic quasi-static electromagnetic field are not really same 
electromagnetic fields, so can we properly modify Maxwell’s electromagnetic theory to make it 
a new electromagnetic field, which is close to the original magnetic quasi-static electromagnetic 
field and quasi-static electromagnetic field, but is there the electromagnetic wave radiation 
property of Maxwell radiation electromagnetic field? In fact, it is possible. Poynting’s law is, 

 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (180) 

 
Consider the superposition principle,  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖,𝒆𝒆 = ∑ 𝑁𝑁
𝑖𝑖=1 𝒆𝒆𝑖𝑖,𝒉𝒉 = ∑ 𝑁𝑁

𝑖𝑖=1 𝒉𝒉𝑖𝑖, (181) 
 

We have,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (182) 

 
Disassemble it into,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (183) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (184) 

 
Time integration for the above 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (185) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (186) 
 

Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖

𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒆𝒆𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗 + 𝒉𝒉𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

Therefore, we need to properly revise Maxwell’s electromagnetic theory. 
 
7.1  Relaxation process of Maxwell’s equation 
 
We can see that Maxwell’s radiation electromagnetic field and quasi-static 

electromagnetic field or magnetic quasi-static electromagnetic field are not really same 
electromagnetic fields, so can we properly modify Maxwell’s electromagnetic theory to make it 
a new electromagnetic field, which is close to the original magnetic quasi-static electromagnetic 
field and quasi-static electromagnetic field, but is there the electromagnetic wave radiation 
property of Maxwell radiation electromagnetic field? In fact, it is possible. Poynting’s law is, 

 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (180) 

 
Consider the superposition principle,  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖,𝒆𝒆 = ∑ 𝑁𝑁
𝑖𝑖=1 𝒆𝒆𝑖𝑖,𝒉𝒉 = ∑ 𝑁𝑁

𝑖𝑖=1 𝒉𝒉𝑖𝑖, (181) 
 

We have,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (182) 

 
Disassemble it into,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (183) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (184) 

 
Time integration for the above 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (185) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (186) 
 

Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖

𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒆𝒆𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗 + 𝒉𝒉𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

Consider the superposition principle,

We have, 
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Therefore, we need to properly revise Maxwell’s electromagnetic theory. 
 
7.1  Relaxation process of Maxwell’s equation 
 
We can see that Maxwell’s radiation electromagnetic field and quasi-static 

electromagnetic field or magnetic quasi-static electromagnetic field are not really same 
electromagnetic fields, so can we properly modify Maxwell’s electromagnetic theory to make it 
a new electromagnetic field, which is close to the original magnetic quasi-static electromagnetic 
field and quasi-static electromagnetic field, but is there the electromagnetic wave radiation 
property of Maxwell radiation electromagnetic field? In fact, it is possible. Poynting’s law is, 

 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (180) 

 
Consider the superposition principle,  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖,𝒆𝒆 = ∑ 𝑁𝑁
𝑖𝑖=1 𝒆𝒆𝑖𝑖,𝒉𝒉 = ∑ 𝑁𝑁

𝑖𝑖=1 𝒉𝒉𝑖𝑖, (181) 
 

We have,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (182) 

 
Disassemble it into,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (183) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (184) 

 
Time integration for the above 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (185) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (186) 
 

Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖

𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒆𝒆𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗 + 𝒉𝒉𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

Therefore, we need to properly revise Maxwell’s electromagnetic theory. 
 
7.1  Relaxation process of Maxwell’s equation 
 
We can see that Maxwell’s radiation electromagnetic field and quasi-static 

electromagnetic field or magnetic quasi-static electromagnetic field are not really same 
electromagnetic fields, so can we properly modify Maxwell’s electromagnetic theory to make it 
a new electromagnetic field, which is close to the original magnetic quasi-static electromagnetic 
field and quasi-static electromagnetic field, but is there the electromagnetic wave radiation 
property of Maxwell radiation electromagnetic field? In fact, it is possible. Poynting’s law is, 

 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (180) 

 
Consider the superposition principle,  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖,𝒆𝒆 = ∑ 𝑁𝑁
𝑖𝑖=1 𝒆𝒆𝑖𝑖,𝒉𝒉 = ∑ 𝑁𝑁

𝑖𝑖=1 𝒉𝒉𝑖𝑖, (181) 
 

We have,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (182) 

 
Disassemble it into,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (183) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (184) 

 
Time integration for the above 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (185) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (186) 
 

Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖

𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒆𝒆𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗 + 𝒉𝒉𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

Therefore, we need to properly revise Maxwell’s electromagnetic theory. 
 
7.1  Relaxation process of Maxwell’s equation 
 
We can see that Maxwell’s radiation electromagnetic field and quasi-static 

electromagnetic field or magnetic quasi-static electromagnetic field are not really same 
electromagnetic fields, so can we properly modify Maxwell’s electromagnetic theory to make it 
a new electromagnetic field, which is close to the original magnetic quasi-static electromagnetic 
field and quasi-static electromagnetic field, but is there the electromagnetic wave radiation 
property of Maxwell radiation electromagnetic field? In fact, it is possible. Poynting’s law is, 

 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (180) 

 
Consider the superposition principle,  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖,𝒆𝒆 = ∑ 𝑁𝑁
𝑖𝑖=1 𝒆𝒆𝑖𝑖,𝒉𝒉 = ∑ 𝑁𝑁

𝑖𝑖=1 𝒉𝒉𝑖𝑖, (181) 
 

We have,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (182) 

 
Disassemble it into,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (183) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (184) 

 
Time integration for the above 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (185) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (186) 
 

Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖

𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒆𝒆𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗 + 𝒉𝒉𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

Therefore, we need to properly revise Maxwell’s electromagnetic theory. 
 
7.1  Relaxation process of Maxwell’s equation 
 
We can see that Maxwell’s radiation electromagnetic field and quasi-static 

electromagnetic field or magnetic quasi-static electromagnetic field are not really same 
electromagnetic fields, so can we properly modify Maxwell’s electromagnetic theory to make it 
a new electromagnetic field, which is close to the original magnetic quasi-static electromagnetic 
field and quasi-static electromagnetic field, but is there the electromagnetic wave radiation 
property of Maxwell radiation electromagnetic field? In fact, it is possible. Poynting’s law is, 

 
 ∮ Γ (𝒆𝒆 × 𝒉𝒉) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱 ⋅ 𝒆𝒆 + 𝒆𝒆 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒅𝒅 + 𝒉𝒉 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒃𝒃)𝑑𝑑𝑑𝑑 (180) 

 
Consider the superposition principle,  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖,𝒆𝒆 = ∑ 𝑁𝑁
𝑖𝑖=1 𝒆𝒆𝑖𝑖,𝒉𝒉 = ∑ 𝑁𝑁

𝑖𝑖=1 𝒉𝒉𝑖𝑖, (181) 
 

We have,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∭(𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (182) 

 
Disassemble it into,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (183) 
  

 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (184) 

 
Time integration for the above 
 
∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑  (185) 

  
 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖 + 𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑  (186) 
 

Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖

𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅
𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑗𝑗 + 𝒆𝒆𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑗𝑗 + 𝒉𝒉𝑗𝑗 ⋅

𝜕𝜕
𝜕𝜕𝜕𝜕 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝜕𝜕 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 

Disassemble it into, 

Time integration for the above

Consider, 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (187) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (188) 

 
The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 

𝑈𝑈(−∞) = 0.  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 
 

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (189) 
 

Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (190) 
 

The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 
𝑈𝑈(−∞) = 0. Thus there is, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑  (191) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (192) 
 

The above two equations are actually more relaxed than (183,184) because of the time 
integration. This relaxation allows us to replace 𝒆𝒆, 𝒉𝒉 with 𝑬𝑬, 𝑯𝑯 In this way we obtain, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑  (193) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (194) 
 

This author believes that the above equation is already a " real" equation of the 
radiation electromagnetic field, rather than Maxwell’s equation of the radiation 
electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding 
(183) is the principle of mutual energy. We can also call the formula (194) the relaxed self 
energy principle. (184) is the principle of self energy. 

 
7.2  Law of conservation of energy 
 
Now we can add the electromagnetic field law that this author put forward earlier to 

the above equation (193 and 194). i.e., the radiation does not overflow the universe. 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (187) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (188) 

 
The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 

𝑈𝑈(−∞) = 0.  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 
 

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (189) 
 

Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (190) 
 

The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 
𝑈𝑈(−∞) = 0. Thus there is, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑  (191) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (192) 
 

The above two equations are actually more relaxed than (183,184) because of the time 
integration. This relaxation allows us to replace 𝒆𝒆, 𝒉𝒉 with 𝑬𝑬, 𝑯𝑯 In this way we obtain, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑  (193) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (194) 
 

This author believes that the above equation is already a " real" equation of the 
radiation electromagnetic field, rather than Maxwell’s equation of the radiation 
electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding 
(183) is the principle of mutual energy. We can also call the formula (194) the relaxed self 
energy principle. (184) is the principle of self energy. 

 
7.2  Law of conservation of energy 
 
Now we can add the electromagnetic field law that this author put forward earlier to 

the above equation (193 and 194). i.e., the radiation does not overflow the universe. 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (187) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (188) 

 
The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 

𝑈𝑈(−∞) = 0.  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 
 

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (189) 
 

Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (190) 
 

The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 
𝑈𝑈(−∞) = 0. Thus there is, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑  (191) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (192) 
 

The above two equations are actually more relaxed than (183,184) because of the time 
integration. This relaxation allows us to replace 𝒆𝒆, 𝒉𝒉 with 𝑬𝑬, 𝑯𝑯 In this way we obtain, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑  (193) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (194) 
 

This author believes that the above equation is already a " real" equation of the 
radiation electromagnetic field, rather than Maxwell’s equation of the radiation 
electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding 
(183) is the principle of mutual energy. We can also call the formula (194) the relaxed self 
energy principle. (184) is the principle of self energy. 

 
7.2  Law of conservation of energy 
 
Now we can add the electromagnetic field law that this author put forward earlier to 

the above equation (193 and 194). i.e., the radiation does not overflow the universe. 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (187) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (188) 

 
The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 

𝑈𝑈(−∞) = 0.  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 
 

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (189) 
 

Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (190) 
 

The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 
𝑈𝑈(−∞) = 0. Thus there is, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑  (191) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (192) 
 

The above two equations are actually more relaxed than (183,184) because of the time 
integration. This relaxation allows us to replace 𝒆𝒆, 𝒉𝒉 with 𝑬𝑬, 𝑯𝑯 In this way we obtain, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑  (193) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (194) 
 

This author believes that the above equation is already a " real" equation of the 
radiation electromagnetic field, rather than Maxwell’s equation of the radiation 
electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding 
(183) is the principle of mutual energy. We can also call the formula (194) the relaxed self 
energy principle. (184) is the principle of self energy. 

 
7.2  Law of conservation of energy 
 
Now we can add the electromagnetic field law that this author put forward earlier to 

the above equation (193 and 194). i.e., the radiation does not overflow the universe. 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (187) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (188) 

 
The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 

𝑈𝑈(−∞) = 0.  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 
 

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (189) 
 

Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (190) 
 

The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 
𝑈𝑈(−∞) = 0. Thus there is, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑  (191) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (192) 
 

The above two equations are actually more relaxed than (183,184) because of the time 
integration. This relaxation allows us to replace 𝒆𝒆, 𝒉𝒉 with 𝑬𝑬, 𝑯𝑯 In this way we obtain, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑  (193) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (194) 
 

This author believes that the above equation is already a " real" equation of the 
radiation electromagnetic field, rather than Maxwell’s equation of the radiation 
electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding 
(183) is the principle of mutual energy. We can also call the formula (194) the relaxed self 
energy principle. (184) is the principle of self energy. 

 
7.2  Law of conservation of energy 
 
Now we can add the electromagnetic field law that this author put forward earlier to 

the above equation (193 and 194). i.e., the radiation does not overflow the universe. 

Where, 

The U(∞) process has ended, and all U(∞)=0. U(-∞) process has not started, U(-∞)=0.

Where, 

The U(∞) process has ended, and all U(∞)=0. U(-∞) process has not started, U(-∞)=0. Thus there is,



Volume 2 | Issue 1 | 23OA J Applied Sci Technol , 2024

The above two equations are actually more relaxed than (183,184) because of the time integration. This relaxation allows us to 
replace e, h with E, H In this way we obtain,

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (187) 

 
Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑗𝑗 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑗𝑗)𝑑𝑑𝑑𝑑 (188) 

 
The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 

𝑈𝑈(−∞) = 0.  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝒆𝒆𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅

𝜕𝜕
𝜕𝜕𝑡𝑡 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕
𝜕𝜕𝑡𝑡 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 
 

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑈𝑈 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (189) 
 

Where,  
 𝑈𝑈 = ∑ 𝑁𝑁

𝑖𝑖=1 ∭ 12 (𝒆𝒆𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 + 𝒉𝒉𝑖𝑖 ⋅ 𝒃𝒃𝑖𝑖)𝑑𝑑𝑑𝑑 (190) 
 

The 𝑈𝑈(∞) process has ended, and all 𝑈𝑈(∞) = 0. 𝑈𝑈(−∞) process has not started, 
𝑈𝑈(−∞) = 0. Thus there is, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑  (191) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (192) 
 

The above two equations are actually more relaxed than (183,184) because of the time 
integration. This relaxation allows us to replace 𝒆𝒆, 𝒉𝒉 with 𝑬𝑬, 𝑯𝑯 In this way we obtain, 

 
∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑  (193) 
  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (194) 
 

This author believes that the above equation is already a " real" equation of the 
radiation electromagnetic field, rather than Maxwell’s equation of the radiation 
electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding 
(183) is the principle of mutual energy. We can also call the formula (194) the relaxed self 
energy principle. (184) is the principle of self energy. 

 
7.2  Law of conservation of energy 
 
Now we can add the electromagnetic field law that this author put forward earlier to 

the above equation (193 and 194). i.e., the radiation does not overflow the universe. 

This author believes that the above equation is already a " real" equation of the radiation electromagnetic field, rather than Maxwell’s 
equation of the radiation electromagnetic field. (193) is called the relaxed mutual energy principle. The corresponding (183) is the 
principle of mutual energy. We can also call the formula (194) the relaxed self energy principle. (184) is the principle of self energy.

7.2. Law of Conservation of Energy
Now we can add the electromagnetic field law that this author put forward earlier to the above equation (193 and 194). i.e., the 
radiation does not overflow the universe.

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (195) 

  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ 
 

 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (196) 

 
Where (195) means that the self energy flow cannot overflow the universe, and (196) 

means that the mutual energy flow cannot overflow the universe. If (195, 196) is substituted 
into (193, 194), 

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (197) 
 

and  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (198) 

 
The sum sign of the above equation can be omitted, 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (199) 
 

(197) is the law of conservation of energy, and (199) is the law of self energy and non 
radiation. Neither of these two laws can be derived from the radiation electromagnetic theory 
of Maxwell’s equation. These two equations are obtained by first relaxing Maxwell’s equation, 
and then adding this author’s law that radiation does not overflow the universe. 

It is worth mentioning that this relaxation process is very important. This relaxation 
process allows a redundant degree of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new boundary condition is added 
to the original Maxwell equation, it will definitely make the problem overdetermined, and there 
will be no solution. 

 
7.3  Mutual energy flow theorem or energy flow theorem 
 
It can be proved that the following mutual energy flow theorem,  
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (200) 
 

Where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗 + 𝒆𝒆𝑗𝑗 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (201) 

 
Where,  

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (195) 

  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ 
 

 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (196) 

 
Where (195) means that the self energy flow cannot overflow the universe, and (196) 

means that the mutual energy flow cannot overflow the universe. If (195, 196) is substituted 
into (193, 194), 

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (197) 
 

and  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (198) 

 
The sum sign of the above equation can be omitted, 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (199) 
 

(197) is the law of conservation of energy, and (199) is the law of self energy and non 
radiation. Neither of these two laws can be derived from the radiation electromagnetic theory 
of Maxwell’s equation. These two equations are obtained by first relaxing Maxwell’s equation, 
and then adding this author’s law that radiation does not overflow the universe. 

It is worth mentioning that this relaxation process is very important. This relaxation 
process allows a redundant degree of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new boundary condition is added 
to the original Maxwell equation, it will definitely make the problem overdetermined, and there 
will be no solution. 

 
7.3  Mutual energy flow theorem or energy flow theorem 
 
It can be proved that the following mutual energy flow theorem,  
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (200) 
 

Where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗 + 𝒆𝒆𝑗𝑗 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (201) 

 
Where,  

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (195) 

  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ 
 

 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (196) 

 
Where (195) means that the self energy flow cannot overflow the universe, and (196) 

means that the mutual energy flow cannot overflow the universe. If (195, 196) is substituted 
into (193, 194), 

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (197) 
 

and  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (198) 

 
The sum sign of the above equation can be omitted, 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (199) 
 

(197) is the law of conservation of energy, and (199) is the law of self energy and non 
radiation. Neither of these two laws can be derived from the radiation electromagnetic theory 
of Maxwell’s equation. These two equations are obtained by first relaxing Maxwell’s equation, 
and then adding this author’s law that radiation does not overflow the universe. 

It is worth mentioning that this relaxation process is very important. This relaxation 
process allows a redundant degree of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new boundary condition is added 
to the original Maxwell equation, it will definitely make the problem overdetermined, and there 
will be no solution. 

 
7.3  Mutual energy flow theorem or energy flow theorem 
 
It can be proved that the following mutual energy flow theorem,  
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (200) 
 

Where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗 + 𝒆𝒆𝑗𝑗 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (201) 

 
Where,  

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (195) 

  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ 
 

 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (196) 

 
Where (195) means that the self energy flow cannot overflow the universe, and (196) 

means that the mutual energy flow cannot overflow the universe. If (195, 196) is substituted 
into (193, 194), 

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (197) 
 

and  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (198) 

 
The sum sign of the above equation can be omitted, 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (199) 
 

(197) is the law of conservation of energy, and (199) is the law of self energy and non 
radiation. Neither of these two laws can be derived from the radiation electromagnetic theory 
of Maxwell’s equation. These two equations are obtained by first relaxing Maxwell’s equation, 
and then adding this author’s law that radiation does not overflow the universe. 

It is worth mentioning that this relaxation process is very important. This relaxation 
process allows a redundant degree of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new boundary condition is added 
to the original Maxwell equation, it will definitely make the problem overdetermined, and there 
will be no solution. 

 
7.3  Mutual energy flow theorem or energy flow theorem 
 
It can be proved that the following mutual energy flow theorem,  
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (200) 
 

Where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗 + 𝒆𝒆𝑗𝑗 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (201) 

 
Where,  

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (195) 

  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ 
 

 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (196) 

 
Where (195) means that the self energy flow cannot overflow the universe, and (196) 

means that the mutual energy flow cannot overflow the universe. If (195, 196) is substituted 
into (193, 194), 

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (197) 
 

and  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (198) 

 
The sum sign of the above equation can be omitted, 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (199) 
 

(197) is the law of conservation of energy, and (199) is the law of self energy and non 
radiation. Neither of these two laws can be derived from the radiation electromagnetic theory 
of Maxwell’s equation. These two equations are obtained by first relaxing Maxwell’s equation, 
and then adding this author’s law that radiation does not overflow the universe. 

It is worth mentioning that this relaxation process is very important. This relaxation 
process allows a redundant degree of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new boundary condition is added 
to the original Maxwell equation, it will definitely make the problem overdetermined, and there 
will be no solution. 

 
7.3  Mutual energy flow theorem or energy flow theorem 
 
It can be proved that the following mutual energy flow theorem,  
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (200) 
 

Where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗 + 𝒆𝒆𝑗𝑗 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  

 −∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (201) 

 
Where,  

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (195) 

  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗) ⋅ �̂�𝑛𝑑𝑑Γ 
 

 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
𝑖𝑖=1 ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ = 0 (196) 

 
Where (195) means that the self energy flow cannot overflow the universe, and (196) 

means that the mutual energy flow cannot overflow the universe. If (195, 196) is substituted 
into (193, 194), 

 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (197) 
 

and  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∑ 𝑁𝑁
𝑖𝑖=1 ∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (198) 

 
The sum sign of the above equation can be omitted, 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (199) 
 

(197) is the law of conservation of energy, and (199) is the law of self energy and non 
radiation. Neither of these two laws can be derived from the radiation electromagnetic theory 
of Maxwell’s equation. These two equations are obtained by first relaxing Maxwell’s equation, 
and then adding this author’s law that radiation does not overflow the universe. 

It is worth mentioning that this relaxation process is very important. This relaxation 
process allows a redundant degree of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new boundary condition is added 
to the original Maxwell equation, it will definitely make the problem overdetermined, and there 
will be no solution. 

 
7.3  Mutual energy flow theorem or energy flow theorem 
 
It can be proved that the following mutual energy flow theorem,  
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗)𝑑𝑑𝑑𝑑 = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝒆𝒆𝑖𝑖)𝑑𝑑𝑑𝑑 (200) 
 

Where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝒆𝒆𝑖𝑖 × 𝒉𝒉𝑗𝑗 + 𝒆𝒆𝑗𝑗 × 𝒉𝒉𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  

 −∫ ∞
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Where,  

Where (195) means that the self energy flow cannot overflow the universe, and (196) means that the mutual energy flow cannot 
overflow the universe. If (195, 196) is substituted into (193, 194),

and 

The sum sign of the above equation can be omitted,

(197) is the law of conservation of energy, and (199) is the law of 
self energy and non radiation. Neither of these two laws can be 
derived from the radiation electromagnetic theory of Maxwell’s 
equation. These two equations are obtained by first relaxing 
Maxwell’s equation, and then adding this author’s law that 
radiation does not overflow the universe.

It is worth mentioning that this relaxation process is very 
important. This relaxation process allows a redundant degree 

of freedom to be released, so that we can add the boundary 
condition that radiation does not overflow the universe. If a new 
boundary condition is added to the original Maxwell equation, it 
will definitely make the problem overdetermined, and there will 
be no solution.

7.3. Mutual Energy Flow Theorem or Energy Flow Theorem
It can be proved that the following mutual energy flow theorem, 

Where, 

Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow law theorem,
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Similarly, the relaxed mutual energy principle (193) can prove that the following energy flow 
law theorem,  
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𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱𝑗𝑗 ⋅ 𝑬𝑬𝑖𝑖)𝑑𝑑𝑑𝑑 (201) 

 
Where,  Where, 

 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≡ ∮ Γ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑Γ (202) 
 

is the electromagnetic energy flow. Corresponding to Maxwell equation, since the self 
energy flow is not zero, (200) can only be an energy flow theorem. The corresponding formula 
(201) is an energy flow law because the self energy flow does not transfer energy. The formula 
(200) is used together with the law of conservation of energy (197). The above mutual energy 
flow theorem and energy flow law will not be proved here. This theorem has been proved many 
times in other papers of this author, such as [12]. Here we only emphasize that under the 
radiation electromagnetic field condition of Maxwell’s equation, this formula is the mutual 
energy flow theorem. In this author’s theoretical system, because Maxwell’s theory has been 
modified, that is, the relaxation process, and after the relaxation, the law that radiation does 
not overflow the universe has been introduced, so we get the law of energy flow. With this 
energy flow law, the formula (197) is not only the law of energy conservation, but also the 
localized law of energy conservation. This law of conservation of energy has reached another 
level! 

 
8  Verify the principle of self energy 
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ℜ is the real part. The superscript "∗" indicates complex conjugation. If under magnetic 

quasi-static conditions,  
 𝑬𝑬 = − 𝑑𝑑

𝑑𝑑𝑡𝑡 𝑨𝑨 = −𝑗𝑗𝜔𝜔𝑨𝑨 = −𝑗𝑗𝜔𝜔 𝜇𝜇0
4𝜋𝜋∭ 𝑉𝑉

𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 
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𝑟𝑟 𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑 
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equation, since the self energy flow is not zero, (200) can only 
be an energy flow theorem. The corresponding formula (201) 
is an energy flow law because the self energy flow does not 
transfer energy. The formula (200) is used together with the 
law of conservation of energy (197). The above mutual energy 
flow theorem and energy flow law will not be proved here. 
This theorem has been proved many times in other papers of 
this author, such as [7]. Here we only emphasize that under 
the radiation electromagnetic field condition of Maxwell’s 
equation, this formula is the mutual energy flow theorem. In 
this author’s theoretical system, because Maxwell’s theory 

has been modified, that is, the relaxation process, and after the 
relaxation, the law that radiation does not overflow the universe 
has been introduced, so we get the law of energy flow. With this 
energy flow law, the formula (197) is not only the law of energy 
conservation, but also the localized law of energy conservation. 
This law of conservation of energy has reached another level!
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𝑖𝑖=1 ∑ 𝑗𝑗<𝑖𝑖
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𝑟𝑟  (222) 

 
It can be seen that the system inductance 𝐿𝐿 is still a real number, and we still have it, 
 
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 → ∫ 𝐶𝐶 𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍𝐼𝐼

∗ = ℰ𝐼𝐼 = −𝑗𝑗𝜔𝜔𝐿𝐿𝐼𝐼𝐼𝐼∗ 
is a pure imaginary number, and hence, 

 
 ℜ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = 0 (223) 

 
Thus we get (205). The proof is finished. 
Although we have proved the above formula, some people may still be dissatisfied with 

our proof, so we provide a second proof.  
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ∑ 𝑁𝑁

𝑖𝑖=1 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ 𝑬𝑬(𝑖𝑖) (224) 
  

 𝑬𝑬(𝑖𝑖) = ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑬𝑬𝑗𝑗 (225) 

 
𝑬𝑬(𝑖𝑖) is the electric field of current elements other than current element 𝑖𝑖. 𝑬𝑬𝑗𝑗 Is 

current element 𝐼𝐼𝑗𝑗Δ𝒍𝒍𝑗𝑗 Electric field of. 
 
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ∑ 𝑁𝑁
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Considering the frequency domain formula of the law of conservation of energy (138),  

 
Of course, it may also be as follows:, 
 
 Δ𝒍𝒍1𝑖𝑖 ⋅ Δ𝒍𝒍2𝑗𝑗 → Δ𝒍𝒍1𝑖𝑖 ⋅ Δ𝒍𝒍2𝑗𝑗exp(+𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓𝑖𝑖𝑗𝑗) (220) 
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→ means the transition from the magnetic quasi-static electromagnetic system to this 

author’s electromagnetic system. Hence there is,  
 𝐿𝐿 = ∑ 𝑁𝑁
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𝑟𝑟  (222) 

 
It can be seen that the system inductance 𝐿𝐿 is still a real number, and we still have it, 
 
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 → ∫ 𝐶𝐶 𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍𝐼𝐼

∗ = ℰ𝐼𝐼 = −𝑗𝑗𝜔𝜔𝐿𝐿𝐼𝐼𝐼𝐼∗ 
is a pure imaginary number, and hence, 

 
 ℜ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = 0 (223) 

 
Thus we get (205). The proof is finished. 
Although we have proved the above formula, some people may still be dissatisfied with 

our proof, so we provide a second proof.  
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ∑ 𝑁𝑁

𝑖𝑖=1 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ 𝑬𝑬(𝑖𝑖) (224) 
  

 𝑬𝑬(𝑖𝑖) = ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑬𝑬𝑗𝑗 (225) 

 
𝑬𝑬(𝑖𝑖) is the electric field of current elements other than current element 𝑖𝑖. 𝑬𝑬𝑗𝑗 Is 

current element 𝐼𝐼𝑗𝑗Δ𝒍𝒍𝑗𝑗 Electric field of. 
 
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ∑ 𝑁𝑁

𝑖𝑖=1 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑬𝑬𝑗𝑗 = ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗 (226) 

 
Considering the frequency domain formula of the law of conservation of energy (138),  

→ means the transition from the magnetic quasi-static electromagnetic system to this author’s electromagnetic system. Hence there 
is,

It can be seen that the system inductance L is still a real number, and we still have it,
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Of course, it may also be as follows:, 
 
 Δ𝒍𝒍1𝑖𝑖 ⋅ Δ𝒍𝒍2𝑗𝑗 → Δ𝒍𝒍1𝑖𝑖 ⋅ Δ𝒍𝒍2𝑗𝑗exp(+𝑗𝑗𝒌𝒌 ⋅ 𝒓𝒓𝑖𝑖𝑗𝑗) (220) 
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→ means the transition from the magnetic quasi-static electromagnetic system to this 

author’s electromagnetic system. Hence there is,  
 𝐿𝐿 = ∑ 𝑁𝑁
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It can be seen that the system inductance 𝐿𝐿 is still a real number, and we still have it, 
 
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 → ∫ 𝐶𝐶 𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍𝐼𝐼

∗ = ℰ𝐼𝐼 = −𝑗𝑗𝜔𝜔𝐿𝐿𝐼𝐼𝐼𝐼∗ 
is a pure imaginary number, and hence, 

 
 ℜ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = 0 (223) 

 
Thus we get (205). The proof is finished. 
Although we have proved the above formula, some people may still be dissatisfied with 

our proof, so we provide a second proof.  
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ∑ 𝑁𝑁

𝑖𝑖=1 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ 𝑬𝑬(𝑖𝑖) (224) 
  

 𝑬𝑬(𝑖𝑖) = ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑬𝑬𝑗𝑗 (225) 

 
𝑬𝑬(𝑖𝑖) is the electric field of current elements other than current element 𝑖𝑖. 𝑬𝑬𝑗𝑗 Is 

current element 𝐼𝐼𝑗𝑗Δ𝒍𝒍𝑗𝑗 Electric field of. 
 
 ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ∑ 𝑁𝑁
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→ means the transition from the magnetic quasi-static electromagnetic system to this 

author’s electromagnetic system. Hence there is,  
 𝐿𝐿 = ∑ 𝑁𝑁
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It can be seen that the system inductance 𝐿𝐿 is still a real number, and we still have it, 
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The formula (205) has been proved. In the formula (138), the current element is 𝑁𝑁 

separated current elements. In (226), the current elements are connected together, but they 
can still be regarded as 𝑁𝑁 separate current elements. Therefore, the law of conservation of 
energy of formula (138) can be applied. 

The formula (205) can be regarded as the principle of self energy, which has also been 
proved in this author’s theoretical system. 

In Maxwell’s electromagnetic field theory system, the principle of self energy 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱 ⋅ 𝒆𝒆)𝑑𝑑𝑑𝑑 = 0 
is not true, which shows that Maxwell’s electromagnetic theory is flawed. 

 
9  Electromagnetic wave of plate current of Maxwell’s theory 
 
In this section, we solve the electromagnetic wave of infinite plane current according to 

Maxwell’s classical electromagnetic theory. Many previous theories have been given, but 
readers may still not really understand the problem. Especially that mysterious relaxation 
process, is it really amazing that the original Maxwell electromagnetic theory can be relaxed, 
and just release a degree of freedom, and allow the addition of a new boundary condition? All 
this must be clearly shown to the reader in the following examples. The electromagnetic field of 
plate current, finite plate or infinite plate are good examples. Finally, this author will explain the 
mutual energy theory of electromagnetic field proposed by this author with double plate 
current. 

 
9.1  Calculation of retarded wave according to Maxwell radiation 

electromagnetic field 
 
As shown in 6, the current is an infinite plate current. Retarded waves are generated on 

both sides of the plate current. 
 

 ℜ(∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗
∗)𝑑𝑑𝑑𝑑) = 0 (227) 

 
there is,  
 ℜ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ℜ(∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗) = 0 (228) 

 
The formula (205) has been proved. In the formula (138), the current element is 𝑁𝑁 

separated current elements. In (226), the current elements are connected together, but they 
can still be regarded as 𝑁𝑁 separate current elements. Therefore, the law of conservation of 
energy of formula (138) can be applied. 

The formula (205) can be regarded as the principle of self energy, which has also been 
proved in this author’s theoretical system. 

In Maxwell’s electromagnetic field theory system, the principle of self energy 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱 ⋅ 𝒆𝒆)𝑑𝑑𝑑𝑑 = 0 
is not true, which shows that Maxwell’s electromagnetic theory is flawed. 

 
9  Electromagnetic wave of plate current of Maxwell’s theory 
 
In this section, we solve the electromagnetic wave of infinite plane current according to 

Maxwell’s classical electromagnetic theory. Many previous theories have been given, but 
readers may still not really understand the problem. Especially that mysterious relaxation 
process, is it really amazing that the original Maxwell electromagnetic theory can be relaxed, 
and just release a degree of freedom, and allow the addition of a new boundary condition? All 
this must be clearly shown to the reader in the following examples. The electromagnetic field of 
plate current, finite plate or infinite plate are good examples. Finally, this author will explain the 
mutual energy theory of electromagnetic field proposed by this author with double plate 
current. 

 
9.1  Calculation of retarded wave according to Maxwell radiation 

electromagnetic field 
 
As shown in 6, the current is an infinite plate current. Retarded waves are generated on 

both sides of the plate current. 
 

 ℜ(∑ 𝑁𝑁
𝑖𝑖=1 ∑ 𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∭ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗
∗)𝑑𝑑𝑑𝑑) = 0 (227) 

 
there is,  
 ℜ∭(𝑱𝑱∗ ⋅ 𝑬𝑬)𝑑𝑑𝑑𝑑 = ℜ(∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝐼𝐼𝑖𝑖∗Δ𝒍𝒍𝑖𝑖 ⋅ 𝑬𝑬𝑗𝑗) = 0 (228) 

 
The formula (205) has been proved. In the formula (138), the current element is 𝑁𝑁 

separated current elements. In (226), the current elements are connected together, but they 
can still be regarded as 𝑁𝑁 separate current elements. Therefore, the law of conservation of 
energy of formula (138) can be applied. 

The formula (205) can be regarded as the principle of self energy, which has also been 
proved in this author’s theoretical system. 

In Maxwell’s electromagnetic field theory system, the principle of self energy 
 
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∭ (𝑱𝑱 ⋅ 𝒆𝒆)𝑑𝑑𝑑𝑑 = 0 
is not true, which shows that Maxwell’s electromagnetic theory is flawed. 

 
9  Electromagnetic wave of plate current of Maxwell’s theory 
 
In this section, we solve the electromagnetic wave of infinite plane current according to 

Maxwell’s classical electromagnetic theory. Many previous theories have been given, but 
readers may still not really understand the problem. Especially that mysterious relaxation 
process, is it really amazing that the original Maxwell electromagnetic theory can be relaxed, 
and just release a degree of freedom, and allow the addition of a new boundary condition? All 
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As shown in 6, the current is an infinite plate current. Retarded waves are generated on 

both sides of the plate current. 
 

there is, 

The formula (205) has been proved. In the formula (138), the 
current element is N separated current elements. In (226), the 
current elements are connected together, but they can still be 
regarded as N separate current elements. Therefore, the law of 
conservation of energy of formula (138) can be applied.

The formula (205) can be regarded as the principle of self energy, 
which has also been proved in this author’s theoretical system.

In Maxwell’s electromagnetic field theory system, the principle 
of self energy

is not true, which shows that Maxwell’s electromagnetic theory 
is flawed.

9. Electromagnetic Wave of Plate Current of Maxwell’s 
Theory
In this section, we solve the electromagnetic wave of infinite 
plane current according to Maxwell’s classical electromagnetic 
theory. Many previous theories have been given, but readers 
may still not really understand the problem. Especially that 
mysterious relaxation process, is it really amazing that the 
original Maxwell electromagnetic theory can be relaxed, and 
just release a degree of freedom, and allow the addition of a 

new boundary condition? All this must be clearly shown to the 
reader in the following examples. The electromagnetic field of 
plate current, finite plate or infinite plate are good examples. 
Finally, this author will explain the mutual energy theory of 
electromagnetic field proposed by this author with double plate 
current.

9.1. Calculation of Retarded Wave According to Maxwell 
Radiation Electromagnetic Field
As shown in 6, the current is an infinite plate current. Retarded 
waves are generated on both sides of the plate current.
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Figure 6: The Electromagnetic Retarded Wave of a Flat Plate Current

  According to Maxwell’s radiation electromagnetic theory, the current density is assumed to be,

The time factor of current is exp(jωt), which has been omitted. The magnetic field can follow Ampere’s circuital law

 Obtain, 

The above equation x = 0+ is on the right side of the current. Therefore, considering that the electromagnetic wave propagates in the 
x direction, the magnetic field of the electromagnetic wave should be,

Where k = ω√(ϵ0 μ0). The electric field can be calculated according to the differential equation of Ampere-Maxwell’s circuital law, 
considering that the current J in the area where x > 0 is zero,

Or, 

Or, 

 
 = 𝑘𝑘

𝜔𝜔𝜖𝜖0
𝐽𝐽0
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) 

 

 = 𝜔𝜔√𝜇𝜇0𝜖𝜖0
𝜔𝜔𝜖𝜖0

𝐽𝐽0
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) 

 

 = √𝜇𝜇0
𝜖𝜖0

𝐽𝐽0
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) 

 
 = 𝜂𝜂0𝐽𝐽0

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) (235) 
 

Where the following is considerred,  

 𝜂𝜂0 = √𝜇𝜇0
𝜖𝜖0

 (236) 

  
 𝑗𝑗 = 𝜔𝜔√𝜇𝜇0𝜖𝜖0 (237) 

 
The Poynting vector to the right of the current is,  
 𝒔𝒔𝑟𝑟 = 𝒆𝒆 × 𝒉𝒉∗ 

 
 = (𝜂𝜂0𝐽𝐽02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧)) × (𝐽𝐽02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)�̂�𝑦)

∗ 
 

 = (𝜂𝜂0𝐽𝐽02 )(𝐽𝐽0
∗

2 )�̂�𝑗 
 

 = 𝜂𝜂0𝐽𝐽0𝐽𝐽0∗
4 �̂�𝑗 (238) 

 
Similarly, we can calculate that on the left side of the current,  
 𝒔𝒔𝑙𝑙 =

𝜂𝜂0𝐽𝐽0𝐽𝐽0∗
4 (−�̂�𝑗) (239) 

 
In addition, 
 
 𝒆𝒆(𝑗𝑗 = 0) ⋅ 𝑱𝑱∗ = (𝜂𝜂0𝐽𝐽02 (−�̂�𝑧)) ⋅ (𝐽𝐽0�̂�𝑧)∗ 

 
 = −𝜂𝜂0𝐽𝐽0𝐽𝐽0∗

2  (240) 
 

So we verified,  
 𝒔𝒔𝑟𝑟 ⋅ �̂�𝑗 + 𝒔𝒔𝑙𝑙 ⋅ (−�̂�𝑗) = −𝒆𝒆(𝑗𝑗 = 0) ⋅ 𝑱𝑱∗ (241) 

 
The equivalence of the above formula and Poynting’s theorem,  
 ∮ Γ 𝒔𝒔 ⋅ �̂�𝑛𝑑𝑑Γ = −∭𝒆𝒆 ⋅ 𝑱𝑱∗𝑑𝑑𝑑𝑑 (242) 
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Figure  7: The electromagnetic advanced wave of a flat plate current.  
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9.3. The Problems 
This author finds that according to Maxwell’s electromagnetic 
theory, although Poynting’s theorem is satisfied, on the right 
side of the current, the initial directions of the electric field of 
the retarded wave and the advanced wave are exactly opposite. 

According to Wheeler Feynman’s absorber theory, any current 
generates half retarded wave and half advanced wave. If the 
current does produce half the retarded wave and half the 
advanced wave, the total electric field of the retarded wave 
and the advanced wave at x=0 is just zero, because the electric 
field of the retarded wave and the advanced wave is zero on the 
current surface. We know that near the current plate, 
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The above equation requires the phase difference of 𝑬𝑬 and 𝑯𝑯 to have ±90 degrees. 
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and there should be,  
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That is to say, the electric field of this author’s theory should be equal to that of 
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There are still signs to be determined in the above formula. This sign can be determined 
according to the electric field of the magnetic quasi-static electromagnetic field. Because this 
author’s electromagnetic field method should be able to degenerate into a magnetic 
quasi-static electromagnetic field. Therefore, it can be considered that,  

 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨 = −𝑗𝑗𝜔𝜔∬ 𝐽𝐽�̂�𝑧𝑟𝑟 ∼ 𝑗𝑗(−�̂�𝑧) (263) 

 
In the formula, ∼ means proportional, and this symbol is phase preserving but not 

value preserving. Comparing the above equation (263) with (262), we can see that,  
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It can be seen from the above that according to this author’s electromagnetic field 
theory, Poynting vector is a pure imaginary number, that is, it is reactive power. This author 
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It can be seen from the above that according to this author’s electromagnetic field 
theory, Poynting vector is a pure imaginary number, that is, it is reactive power. This author 
calls this wave of reactive power the reactive power wave. Reactive power waves propagate 
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Or, 

The above equation requires the phase difference of E and H to have ±90 degrees. We know that the direction of the electric field 
should be perpendicular to the magnetic field, and there should be,

That is to say, the electric field of this author’s theory should be equal to that of Maxwell’s electromagnetic theory. Therefore, 
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There are still signs to be determined in the above formula. 
This sign can be determined according to the electric field 
of the magnetic quasi-static electromagnetic field. Because 

this author’s electromagnetic field method should be able to 
degenerate into a magnetic quasi-static electromagnetic field. 
Therefore, it can be considered that,

In the formula, ∼ means proportional, and this symbol is phase preserving but not value preserving. Comparing the above equation 
(263) with (262), we can see that,

We can calculate Poynting vector

The subscript " r" indicates that it is on the right side of the current,

It can be seen from the above that according to this author’s 
electromagnetic field theory, Poynting vector is a pure imaginary 
number, that is, it is reactive power. This author calls this wave of 
reactive power the reactive power wave. Reactive power waves 
propagate energy in the forward and in the opposite directions 
at the same cycle. The reactive power wave has two quarter 

cycles that propagate power in the forward and two quarter 
cycles that propagate power backward. Therefore, the average 
forward propagation power is zero. This kind of wave does 
not lose electromagnetic energy in the process of propagation. 
All radiated electromagnetic wave energy flow will eventually 
return to the transmitting antenna or light source.
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10.2. Advanced Wave
First, consider the right side of the plane current. For this 

problem, the magnetic field is calculated as above 9, but the 
advanced wave factor exp(jkx) must be considered, 
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The electric field is calculated according to the principle of self energy, 

The above equation requires the phase difference of E and H to have ±90 degrees. We know that the direction of the electric field 
should be perpendicular to the magnetic field, and,

That is to say, the electric field of this author’s theory should be equal to that of Maxwell’s electromagnetic theory. So according to 
this author’s electromagnetic theory,

There are still signs to be determined in the above formula. 
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 ℜ(𝑺𝑺𝑟𝑟 ⋅ �̂�𝑥) = ℜ(𝑗𝑗 𝜂𝜂0𝐽𝐽0𝐽𝐽0
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It can be seen from the above that according to this author’s electromagnetic field 
theory, Poynting vector is a pure imaginary number, that is, it is reactive power. this author 
calls this wave of reactive power the reactive power wave. Reactive power waves propagate 
energy forward and in the opposite direction at the same cycle. Reactive power wave has two 
quarter cycles of forward propagation power and two quarter cycles of backward propagation 
power. Therefore, the average propagation power is zero. This wave does not lose 
electromagnetic energy. 

 
10.3  Supporting Wheeler Feynman absorber theory 
 
In this author’s electromagnetic theory, the initial values of the electric field and 

magnetic field of the retarded wave and the advanced wave are identical. Therefore, the 
current can radiate the retarded wave and the advanced wave at the same time, that is, it 
radiates half of the retarded wave and half of the advanced wave. The electric fields of the 
retarded wave and the advanced wave are superimposed on the current boundary and do not 
offset. Therefore, this author’s electromagnetic field theory provides support for Wheeler 
Feynman absorber theory. In addition, when 𝑥𝑥 = 0, that is, near the current plate, this 
author’s electromagnetic theory can degenerate into a magnetic quasi-static electromagnetic 
field. Maxwell’s radiation electromagnetic theory does not support Wheeler Feynman’s 
absorber theory, nor can it degenerate into magnetic quasi-static electromagnetic field! For the 
degenerated magnetic quasi-static electromagnetic field, we can also consider a finite plate 
current. The electric field of a finite plate current does not tend to infinity under the magnetic 
quasistatic condition. In this case, we can see the significance of this author’s electromagnetic 
theory. 

 
10.4  Electromagnetic wave propagating to the right 
 

 
Figure  8: The plate current can generate electromagnetic waves that propagate to the right. 
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In this author’s electromagnetic theory, the initial values of 
the electric field and magnetic field of the retarded wave and 
the advanced wave are identical. Therefore, the current can 
radiate the retarded wave and the advanced wave at the same 
time, that is, it radiates half of the retarded wave and half of 
the advanced wave. The electric fields of the retarded wave and 
the advanced wave are superimposed on the current boundary 
and do not offset. Therefore, this author’s electromagnetic 
field theory provides support for Wheeler Feynman absorber 
theory. In addition, when x=0, that is, near the current plate, 
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this author’s electromagnetic theory can degenerate into a 
magnetic quasi-static electromagnetic field. Maxwell’s radiation 
electromagnetic theory does not support Wheeler Feynman’s 
absorber theory, nor can it degenerate into magnetic quasi-static 
electromagnetic field! For the degenerated magnetic quasi-static 

electromagnetic field, we can also consider a finite plate current. 
The electric field of a finite plate current does not tend to infinity 
under the magnetic quasistatic condition. In this case, we can see 
the significance of this author’s electromagnetic theory.

10.4. Electromagnetic Wave Propagating to the Right

 = 𝑗𝑗 𝜂𝜂0𝐽𝐽0𝐽𝐽0
∗

4 �̂�𝑥 (274) 
  

 ℜ(𝑺𝑺𝑟𝑟 ⋅ �̂�𝑥) = ℜ(𝑗𝑗 𝜂𝜂0𝐽𝐽0𝐽𝐽0
∗

4 ) = 0 (275) 
 

It can be seen from the above that according to this author’s electromagnetic field 
theory, Poynting vector is a pure imaginary number, that is, it is reactive power. this author 
calls this wave of reactive power the reactive power wave. Reactive power waves propagate 
energy forward and in the opposite direction at the same cycle. Reactive power wave has two 
quarter cycles of forward propagation power and two quarter cycles of backward propagation 
power. Therefore, the average propagation power is zero. This wave does not lose 
electromagnetic energy. 

 
10.3  Supporting Wheeler Feynman absorber theory 
 
In this author’s electromagnetic theory, the initial values of the electric field and 

magnetic field of the retarded wave and the advanced wave are identical. Therefore, the 
current can radiate the retarded wave and the advanced wave at the same time, that is, it 
radiates half of the retarded wave and half of the advanced wave. The electric fields of the 
retarded wave and the advanced wave are superimposed on the current boundary and do not 
offset. Therefore, this author’s electromagnetic field theory provides support for Wheeler 
Feynman absorber theory. In addition, when 𝑥𝑥 = 0, that is, near the current plate, this 
author’s electromagnetic theory can degenerate into a magnetic quasi-static electromagnetic 
field. Maxwell’s radiation electromagnetic theory does not support Wheeler Feynman’s 
absorber theory, nor can it degenerate into magnetic quasi-static electromagnetic field! For the 
degenerated magnetic quasi-static electromagnetic field, we can also consider a finite plate 
current. The electric field of a finite plate current does not tend to infinity under the magnetic 
quasistatic condition. In this case, we can see the significance of this author’s electromagnetic 
theory. 

 
10.4  Electromagnetic wave propagating to the right 
 

 
Figure  8: The plate current can generate electromagnetic waves that propagate to the right. 

  
Figure 8: The Plate Current can Generate Electromagnetic Waves that Propagate to The Right

According to this author’s electromagnetic field theory, any 
current element can radiate the retarded wave and the advanced 
wave at the same time, which is consistent with Wheeler’s and 
Feynman’s absorber theory [10, 11]. In absorber theory, current 
element can radiate half retarded wave and half advanced 
wave. In this author’s electromagnetic field theory, because 
electromagnetic wave is reactive power wave, this wave does 
not lose energy. This wave is a self energy flow. In this author’s 
electromagnetic theory, the self energy flow is reactive power, so 
the propagation does not lose energy. So this kind of wave may 
or may not have! This author will deal with mutual energy flow 
later in this example. In this author’s electromagnetic theory, 
energy is transferred by mutual energy flow. The mutual energy 
flow is generated by the retarded wave from the source and the 
advanced wave from the sink. Therefore, if the retarded wave 
does not encounter the advanced wave after it is sent from the 
source, it is an invalid electromagnetic wave, because it does not 

lose energy anyway. It is the effective electromagnetic wave if it 
encounters the advanced wave.

This author assumes that the retarded wave on the right side 
of the current in our discussion is an effective electromagnetic 
wave, because in the next section, we will place a new current 
plate on the right side of this current plate. This new current 
plate is a sink, which is used to receive electromagnetic waves 
(and emit advanced waves).

This author assume that the advanced wave on the left side of the 
current plate is an effective electromagnetic wave. The advanced 
wave on the left side of the current plate has a space factor 
exp(-jkx). The retarded wave on the left side is invalid. Now 
let’s calculate the electromagnetic field on the left side of the 
current plate. The magnetic field can be obtained from Ampere’s 
circuital law, 

According to this author’s electromagnetic field theory, any current element can radiate 
the retarded wave and the advanced wave at the same time, which is consistent with Wheeler’s 
and Feynman’s absorber theory *1, 2+. In absorber theory, current element can radiate half 
retarded wave and half advanced wave. In this author’s electromagnetic field theory, because 
electromagnetic wave is reactive power wave, this wave does not lose energy. This wave is a 
self energy flow. In this author’s electromagnetic theory, the self energy flow is reactive power, 
so the propagation does not lose energy. So this kind of wave may or may not have! This author 
will deal with mutual energy flow later in this example. In this author’s electromagnetic theory, 
energy is transferred by mutual energy flow. The mutual energy flow is generated by the 
retarded wave from the source and the advanced wave from the sink. Therefore, if the 
retarded wave does not encounter the advanced wave after it is sent from the source, it is an 
invalid electromagnetic wave, because it does not lose energy anyway. It is the effective 
electromagnetic wave if it encounters the advanced wave. 

This author assumes that the retarded wave on the right side of the current in our 
discussion is an effective electromagnetic wave, because in the next section, we will place a 
new current plate on the right side of this current plate. This new current plate is a sink, which 
is used to receive electromagnetic waves (and emit advanced waves). 

This author assume that the advanced wave on the left side of the current plate is an 
effective electromagnetic wave. The advanced wave on the left side of the current plate has a 
space factor exp(−𝑗𝑗𝑗𝑗𝑗𝑗). The retarded wave on the left side is invalid. Now let’s calculate the 
electromagnetic field on the left side of the current plate. The magnetic field can be obtained 
from Ampere’s circuital law,  

 𝑯𝑯 = −𝐽𝐽0
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)�̂�𝑦 (276) 

 
The electric field is the same as the previous calculation  
 𝑬𝑬 = 𝑗𝑗 𝜂𝜂0𝐽𝐽02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) (277) 

 
Of course, considering various combinations, the plate current can generate retarded 

waves on both sides, advanced waves on both sides, waves propagating to the right on both 
sides, and electromagnetic waves propagating to the left on both sides. However, in the 
following example, we only need to consider the wave to the right on both sides. This means 
that the right side of the plate current is the retarded wave, and the left side of the plate 
current is the advanced wave. 

 
11  Electromagnetic wave of double-plate current with author’s 
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11.1  Field to the right of the first current 
 
The first current plate has been calculated in front (267,273), but the electric field and 

magnetic field add a subscript 1, which is easy to distinguish. It is indicated by the subscript "𝑟𝑟" 
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11. Electromagnetic Wave of Double-Plate Current With 
Author’s Theory
11.1. Field to the Right of the First Current
The first current plate has been calculated in front (267,273), but 
the electric field and magnetic field add a subscript 1, which is 
easy to distinguish. It is indicated by the subscript "r" to the right 
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to the right of the current. 
 
 𝑯𝑯1𝑟𝑟 =

𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)�̂�𝑦 (278) 

  
 𝑬𝑬1𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) (279) 

 
The field on the left side of the current plate is in accordance with (276, 277) 
 
 𝑯𝑯1𝑙𝑙 = − 𝐽𝐽10

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)�̂�𝑦 (280) 
 

 
 𝑬𝑬1𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) (281) 

 
See figure 9. This author has previously calculated the electromagnetic wave generated 

by a single current plate according to this author’s electromagnetic theory, and this 
electromagnetic wave propagates to the right. Of course, this current can also generate 
electromagnetic waves propagating to the left. However, the second current plate is on the 
right of the first one, as shown in the figure 9. This author assumes that the direction of 
electromagnetic energy flow is from the first current plate to the second current plate, so it is 
an electromagnetic wave propagating to the right. Therefore, we assume that both current 
plates generate electromagnetic waves propagating to the right. Then the electromagnetic 
wave propagating to the left is invalid. Refer to figure 9. 

 

 
 

Figure  9: Double plate currents. Each current produces an electromagnetic wave that travels 
to the right.  
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See figure 9. This author has previously calculated the 
electromagnetic wave generated by a single current plate 
according to this author’s electromagnetic theory, and this 
electromagnetic wave propagates to the right. Of course, this 
current can also generate electromagnetic waves propagating to 
the left. However, the second current plate is on the right of the 
first one, as shown in the figure 9. This author assumes that the 

direction of electromagnetic energy flow is from the first current 
plate to the second current plate, so it is an electromagnetic wave 
propagating to the right. Therefore, we assume that both current 
plates generate electromagnetic waves propagating to the right. 
Then the electromagnetic wave propagating to the left is invalid. 
Refer to figure 9.

Figure 9: Double Plate Currents. Each Current Produces An Electromagnetic Wave That Travels To the Right

11.2. Electromagnetic Field of the Second Current Plate
We assume that  

We assume that  
 𝑥𝑥 = 𝑙𝑙 (282) 

 There is a second current plate at, and there is an electromagnetic field on the right of the 
current,  

 𝑯𝑯2𝑟𝑟 = 𝒉𝒉 = 𝐽𝐽20
2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦 (283) 

  
 𝑬𝑬2𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧) (284) 

 
On the left side of the current plate 
 
 𝑯𝑯2𝑙𝑙 = − 𝐽𝐽20

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦 (285) 
 

The electric field is the same as the previous calculation  
 𝑬𝑬2𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧) (286) 

 
 
11.3  Calculation of mutual energy flow between two plates 
 
 
 𝑆𝑆𝑚𝑚 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 
 

 = (𝑗𝑗 𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥))(−�̂�𝑧)) × (− 𝐽𝐽20
2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦)∗ 

 
 +(𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧))∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 
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 +(𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)))∗(𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥))]�̂�𝑥 
 

 = 1
2 𝜂𝜂0𝐽𝐽10𝐽𝐽20

∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 (287) 
 

Now let’s calculate the induced potential on the current of the second plate. At this time, 
we assume that the length of the current plate is 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ, width is 𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ.  

 ℰ2,1 = ∫ 𝑬𝑬1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑬𝑬1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 
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 ℰ2,1 = ∫ 𝑬𝑬1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑬𝑬1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 
 

 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑗𝑗
𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙))(−�̂�𝑧)) ⋅ �̂�𝑧 

 
 = −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (288) 
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We assume that  
 𝑥𝑥 = 𝑙𝑙 (282) 

 There is a second current plate at, and there is an electromagnetic field on the right of the 
current,  

 𝑯𝑯2𝑟𝑟 = 𝒉𝒉 = 𝐽𝐽20
2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦 (283) 

  
 𝑬𝑬2𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧) (284) 

 
On the left side of the current plate 
 
 𝑯𝑯2𝑙𝑙 = − 𝐽𝐽20

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦 (285) 
 

The electric field is the same as the previous calculation  
 𝑬𝑬2𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧) (286) 

 
 
11.3  Calculation of mutual energy flow between two plates 
 
 
 𝑆𝑆𝑚𝑚 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 
 

 = (𝑗𝑗 𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥))(−�̂�𝑧)) × (− 𝐽𝐽20
2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦)∗ 

 
 +(𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧))∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 

 
 = [(𝑗𝑗 𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)))(− 𝐽𝐽20

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)))∗ 
 

 +(𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)))∗(𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥))]�̂�𝑥 
 

 = 1
2 𝜂𝜂0𝐽𝐽10𝐽𝐽20

∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 (287) 
 

Now let’s calculate the induced potential on the current of the second plate. At this time, 
we assume that the length of the current plate is 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ, width is 𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ.  

 ℰ2,1 = ∫ 𝑬𝑬1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑬𝑬1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 
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2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙))(−�̂�𝑧)) ⋅ �̂�𝑧 

 
 = −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
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We assume that  
 𝑥𝑥 = 𝑙𝑙 (282) 

 There is a second current plate at, and there is an electromagnetic field on the right of the 
current,  
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2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))�̂�𝑦)∗ 

 
 +(𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝑙𝑙))(−�̂�𝑧))∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 

 
 = [(𝑗𝑗 𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)))(− 𝐽𝐽20

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)))∗ 
 

 +(𝑗𝑗 𝜂𝜂0𝐽𝐽202 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)))∗(𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥))]�̂�𝑥 
 

 = 1
2 𝜂𝜂0𝐽𝐽10𝐽𝐽20

∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 (287) 
 

Now let’s calculate the induced potential on the current of the second plate. At this time, 
we assume that the length of the current plate is 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ, width is 𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ.  

 ℰ2,1 = ∫ 𝑬𝑬1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑬𝑬1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 
 

 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑗𝑗
𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙))(−�̂�𝑧)) ⋅ �̂�𝑧 

 
 = −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (288) 

 

The electric field is the same as the previous calculation

11.3. Calculation of Mutual Energy Flow Between Two Plates

Now let’s calculate the induced potential on the current of the second plate. At this time, we assume that the length of the current 
plate is llength, width is lwidth.

The impedance of the second current plate is,
The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 

The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (289) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
 
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (291) 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 

assumed that the current plate is infinite, but to calculate the induced electromotive force, we 
have to assume the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (292) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. Calculate mutual energy flow,  
 𝑆𝑆𝑚𝑚 = 1

2 𝜂𝜂0𝐽𝐽10𝐽𝐽20
∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10∗

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (293) 
 

It can be seen that the mutual energy flow points to the �̂�𝑥 direction. 
 
 𝑆𝑆𝑚𝑚 ∼ �̂�𝑥 (294) 

 
 
11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (295) 
  

 𝑺𝑺12 ≜ 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
∗  (296) 

  
 𝑺𝑺21 ≜ 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (297) 

The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 

The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
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= ℰ2,1
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→ ℰ2,1
𝑅𝑅2
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𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (289) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
 
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (291) 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 

assumed that the current plate is infinite, but to calculate the induced electromotive force, we 
have to assume the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (292) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. Calculate mutual energy flow,  
 𝑆𝑆𝑚𝑚 = 1

2 𝜂𝜂0𝐽𝐽10𝐽𝐽20
∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10∗

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (293) 
 

It can be seen that the mutual energy flow points to the �̂�𝑥 direction. 
 
 𝑆𝑆𝑚𝑚 ∼ �̂�𝑥 (294) 

 
 
11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (295) 
  

 𝑺𝑺12 ≜ 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
∗  (296) 

  
 𝑺𝑺21 ≜ 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (297) 

The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 

The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (289) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
 
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (291) 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 

assumed that the current plate is infinite, but to calculate the induced electromotive force, we 
have to assume the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (292) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. Calculate mutual energy flow,  
 𝑆𝑆𝑚𝑚 = 1

2 𝜂𝜂0𝐽𝐽10𝐽𝐽20
∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10∗

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (293) 
 

It can be seen that the mutual energy flow points to the �̂�𝑥 direction. 
 
 𝑆𝑆𝑚𝑚 ∼ �̂�𝑥 (294) 

 
 
11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (295) 
  

 𝑺𝑺12 ≜ 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
∗  (296) 

  
 𝑺𝑺21 ≜ 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (297) 

The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 

The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (289) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
 
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (291) 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 

assumed that the current plate is infinite, but to calculate the induced electromotive force, we 
have to assume the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (292) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. Calculate mutual energy flow,  
 𝑆𝑆𝑚𝑚 = 1

2 𝜂𝜂0𝐽𝐽10𝐽𝐽20
∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10∗

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (293) 
 

It can be seen that the mutual energy flow points to the �̂�𝑥 direction. 
 
 𝑆𝑆𝑚𝑚 ∼ �̂�𝑥 (294) 

 
 
11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (295) 
  

 𝑺𝑺12 ≜ 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
∗  (296) 

  
 𝑺𝑺21 ≜ 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (297) 

The induced current of the second current plate is,

Assumption in the above formula,

 Hence,

llength is the length of the current plate from top to bottom. This 
author previously assumed that the current plate is infinite, but 
to calculate the induced electromotive force, we have to assume 

the length of a current plate. The current density of the second 
current plate is,

lwidth is the width of the current plate. Calculate mutual energy flow,
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The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 

The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (289) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
 
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (291) 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 

assumed that the current plate is infinite, but to calculate the induced electromotive force, we 
have to assume the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (292) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. Calculate mutual energy flow,  
 𝑆𝑆𝑚𝑚 = 1

2 𝜂𝜂0𝐽𝐽10𝐽𝐽20
∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10∗

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (293) 
 

It can be seen that the mutual energy flow points to the �̂�𝑥 direction. 
 
 𝑆𝑆𝑚𝑚 ∼ �̂�𝑥 (294) 

 
 
11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (295) 
  

 𝑺𝑺12 ≜ 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
∗  (296) 

  
 𝑺𝑺21 ≜ 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (297) 

The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 

The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (289) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
 
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (291) 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 

assumed that the current plate is infinite, but to calculate the induced electromotive force, we 
have to assume the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (292) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. Calculate mutual energy flow,  
 𝑆𝑆𝑚𝑚 = 1

2 𝜂𝜂0𝐽𝐽10𝐽𝐽20
∗ 𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗𝑗𝑗∗exp(−𝑗𝑗𝑗𝑗(−𝑙𝑙))∗�̂�𝑥 

 
 = 1

2 𝜂𝜂0𝐽𝐽10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
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It can be seen that the mutual energy flow points to the �̂�𝑥 direction. 
 
 𝑆𝑆𝑚𝑚 ∼ �̂�𝑥 (294) 

 
 
11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (295) 
  

 𝑺𝑺12 ≜ 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
∗  (296) 

  
 𝑺𝑺21 ≜ 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 (297) 

The impedance of the second current plate is,  
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Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (290) 

 Hence, 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. This author previously 
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11.4  Mutual energy flow at 𝒙𝒙 < 𝟎𝟎, 𝒙𝒙 > 𝒍𝒍 
 
Consider the mutual energy flow as, 
 
 𝑺𝑺𝑚𝑚 = 𝑺𝑺12 + 𝑺𝑺21 

 
 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
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It can be seen that the mutual energy flow points to the    direction.

11.4. Mutual Energy Flow at x < 0, x > l
Consider the mutual energy flow as,

In the range of 0 < x < l S12 and S21 is superimposed. But when 
x<0, because the direction of H1l suddenly changes (just opposite 
to the direction of H1r), S12 and S21 becomes offset. In x > l the 

direction of magnetic field of H2r changes (just opposite to the 
direction of H2l), so S12 and S21 becomes offset. So there is,

 
In the range of 0 < 𝑥𝑥 < 𝑙𝑙 𝑺𝑺12 and 𝑺𝑺21 is superimposed. But when 𝑥𝑥 < 0, because 

the direction of 𝑯𝑯1𝑙𝑙 suddenly changes (just opposite to the direction of 𝑯𝑯1𝑟𝑟), 𝑺𝑺12 and 𝑺𝑺21 
becomes offset. In 𝑥𝑥 > 𝑙𝑙 the direction of magnetic field of 𝑯𝑯2𝑟𝑟 changes (just opposite to the 
direction of 𝑯𝑯2𝑙𝑙), so 𝑺𝑺12 and 𝑺𝑺21 becomes offset. So there is,  

 𝑺𝑺𝑚𝑚 = 0,𝑥𝑥 ∉ [0, 𝑙𝑙] (298) 
 

Merge (293 and 298), so we have 
 

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 {
0 𝑥𝑥 < 0
1 0 < 𝑥𝑥 < 𝑙𝑙
0 𝑥𝑥 > 𝑙𝑙

 (299) 

 
 
11.5  Verify that the energy flow law meets 
 
We need to verify the law of energy flow and energy conservation (201). Considering 

that in the frequency domain and 𝑁𝑁 = 2, 
 
 −∭(𝑱𝑱1 ⋅ 𝑬𝑬2∗)𝑑𝑑𝑑𝑑 = (𝜉𝜉1, 𝜉𝜉2) =∭(𝑱𝑱2∗ ⋅ 𝑬𝑬1)𝑑𝑑𝑑𝑑 (300) 

 
Where,  
 (𝜉𝜉1, 𝜉𝜉2) ≡ ∮ Γ (𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1) ⋅ �̂�𝑛𝑑𝑑Γ (301) 
 

The energy flow formula we need to verify corresponding to the plate current is, 
 
 −𝑱𝑱1 ⋅ 𝑬𝑬2𝑙𝑙∗ = 𝑺𝑺𝑚𝑚 ⋅ �̂�𝑥 = 𝑱𝑱2∗ ⋅ 𝑬𝑬1𝑟𝑟 (302) 
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The energy flow formula we need to verify corresponding to the plate current is,
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4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
 (304) 

 it is known that the formula (302) is verified, which shows that the formula of the energy flow 
law (300) is verified. Note that there is no set of differential equations similar to Maxwell’s 
equation in this author’s electromagnetic theory. To verify whether this solution is correct is to 
pass this energy flow law, which is also the law of energy conservation. Of course, we also 
require that,  

 ℜ(𝑺𝑺1𝑟𝑟 ⋅ �̂�𝑥) = ℜ(𝑺𝑺1𝑙𝑙 ⋅ �̂�𝑥) = 0 (305) 
  

 ℜ(𝑺𝑺2𝑟𝑟 ⋅ �̂�𝑥) = ℜ(𝑺𝑺2𝑙𝑙 ⋅ �̂�𝑥) = 0 (306) 
 where  

 𝑺𝑺1𝑟𝑟 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯1𝑟𝑟
∗  

 
 𝑺𝑺1𝑙𝑙 = 𝑬𝑬1𝑙𝑙 × 𝑯𝑯1𝑙𝑙

∗  
 

 𝑺𝑺2𝑟𝑟 = 𝑬𝑬2𝑟𝑟 × 𝑯𝑯2𝑟𝑟
∗  

 
 𝑺𝑺2𝑙𝑙 = 𝑬𝑬2𝑙𝑙 × 𝑯𝑯2𝑙𝑙

∗  
These two formulas (305, 306) have been verified previously. As long as the law of energy flow, 
the law of conservation of energy 300, and the principle of self energy flow (305, 306) are 
satisfied, this solution satisfies this author’s electromagnetic theory. 
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∗  

 
 𝑺𝑺1𝑙𝑙 = 𝑬𝑬1𝑙𝑙 × 𝑯𝑯1𝑙𝑙

∗  
 

 𝑺𝑺2𝑟𝑟 = 𝑬𝑬2𝑟𝑟 × 𝑯𝑯2𝑟𝑟
∗  

 
 𝑺𝑺2𝑙𝑙 = 𝑬𝑬2𝑙𝑙 × 𝑯𝑯2𝑙𝑙

∗  
These two formulas (305, 306) have been verified previously. As long as the law of energy flow, 
the law of conservation of energy 300, and the principle of self energy flow (305, 306) are 
satisfied, this solution satisfies this author’s electromagnetic theory. 

 
11.6  Comparison of particle models in transactional interpretation of 

quantum mechanics with Cramer 
 
 
 

 it is known that the formula (302) is verified, which shows that 
the formula of the energy flow law (300) is verified. Note that 
there is no set of differential equations similar to Maxwell’s 
equation in this author’s electromagnetic theory. To verify 

whether this solution is correct is to pass this energy flow law, 
which is also the law of energy conservation. Of course, we also 
require that,

 where 

These two formulas (305, 306) have been verified previously. As 
long as the law of energy flow, the law of conservation of energy 

300, and the principle of self energy flow (305, 306) are satisfied, 
this solution satisfies this author’s electromagnetic theory.
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11.6. Comparison of Particle Models In Transactional Interpretation of Quantum Mechanics With Cramer

 
Figure  10: Cramer’s particle model in the transactional interpretation of quantum mechanics. 

  
The surface mutual energy current of the above equation (299) is generated on the first 

current plate and annihilated on the second current plate. Keep the same value between the 
two current plates, and point from the first plate to the second plate. The mutual energy flow 
has the property of photons. This is the reason why this author interprets photons with mutual 
energy flow. The classical electromagnetic theory uses self energy current as electromagnetic 
wave, that is, Poynting vector 𝒆𝒆1 × 𝒉𝒉1 or 𝒆𝒆2 × 𝒉𝒉2 as the energy flow of electromagnetic 
wave, the energy flow will not annihilate since its generation and will continue to move. 
Therefore, self energy flow can not be used to describe photons. 

Figure 10 describes the particle model in Cramer’s transactional interpretation of 
quantum mechanical [5, 6]. In this model, there are source (shown by red dots) and sink (shown 
by blue dots). Cramer developed the current model of Wheeler and Feynman absorber theory. 
In Wheeler and Feynman absorber theory, any current element can emit half retarded wave 
and half advanced wave. In Cramer’s model, the source and sink also emit half retarded wave 
and half advanced wave, but the retarded wave and advanced wave can be in different 
directions of the source and sink. For example, the retarded wave is sent to the right and the 
advanced wave is sent to the left. In addition, the starting phase of the retarded wave and the 
advanced wave in Cramer model can also be adjusted at will. Further, the source sends a 
retarded wave to the right, and the sink sends an advanced wave to the left. It is assumed that 
the retarded wave and the advanced wave have exactly the same phase between the source 
and the sink, so they are superposed. The retarded wave from the sink on the right side of the 
sink exactly keeps a 180 degree phase angle with the retarded wave from the source, so they 
cancel each other. On the left side of the source, the advanced wave from the source and the 
advanced wave from the sink maintain a phase difference of 180 degrees, so it is just offset. 
Cramer’s particle model is very sophisticated. Its papers *5, 6+ have been cited by thousands of 
people. However, this model is only a qualitative theory and a guess. There are still many 
problems. For example, the 180 degree phase difference mentioned above is very difficult to 
understand. Why is there a 180 degree phase difference? In addition, why does the current 

Figure 10: Cramer’s Particle Model in the Transactional Interpretation of Quantum Mechanics

The surface mutual energy current of the above equation (299) 
is generated on the first current plate and annihilated on the 
second current plate. Keep the same value between the two 
current plates, and point from the first plate to the second plate. 
The mutual energy flow has the property of photons. This is the 
reason why this author interprets photons with mutual energy 
flow. The classical electromagnetic theory uses self energy 
current as electromagnetic wave, that is, Poynting vector e1×h1 
or e2×h2 as the energy flow of electromagnetic wave, the energy 
flow will not annihilate since its generation and will continue to 
move. Therefore, self energy flow can not be used to describe 
photons.

Figure 10 describes the particle model in Cramer’s transactional 
interpretation of quantum mechanical [8, 9]. In this model, there 
are source (shown by red dots) and sink (shown by blue dots). 
Cramer developed the current model of Wheeler and Feynman 
absorber theory. In Wheeler and Feynman absorber theory, any 
current element can emit half retarded wave and half advanced 
wave. In Cramer’s model, the source and sink also emit half 
retarded wave and half advanced wave, but the retarded wave 
and advanced wave can be in different directions of the source 
and sink. For example, the retarded wave is sent to the right and 
the advanced wave is sent to the left. In addition, the starting 
phase of the retarded wave and the advanced wave in Cramer 
model can also be adjusted at will. Further, the source sends a 
retarded wave to the right, and the sink sends an advanced wave 
to the left. It is assumed that the retarded wave and the advanced 
wave have exactly the same phase between the source and the 
sink, so they are superposed. The retarded wave from the sink on 
the right side of the sink exactly keeps a 180 degree phase angle 
with the retarded wave from the source, so they cancel each 
other. On the left side of the source, the advanced wave from the 
source and the advanced wave from the sink maintain a phase 
difference of 180 degrees, so it is just offset. Cramer’s particle 
model is very sophisticated. Its papers [8, 9] have been cited by 

thousands of people. However, this model is only a qualitative 
theory and a guess. There are still many problems. For example, 
the 180 degree phase difference mentioned above is very difficult 
to understand. Why is there a 180 degree phase difference? In 
addition, why does the current source send retarded wave to the 
right and advanced wave to the left, instead of sending retarded 
wave and advanced wave to the left and right at the same time? 
In the original model of Wheeler and Feynman, the retarded 
wave and advanced wave are also omnidirectional, rather than 
the directivity of Cramer.

The formula (299) is basically consistent with Cramer’s quantum 
mechanical particle model, but the retarded wave and advanced 
wave are not superimposed between the source and sink. It is a 
mutual energy flow composed of retarded wave and advanced 
wave S12 and S21. Because the sign of one of the magnetic fields 
changes outside the range of the source and sink, the superposition 
becomes cancellation. This change in magnetic field completely 
explains the cause of 180 degrees. In addition, in this author’s 
theory, the retarded wave from the source is a reactive power 
wave, which does not lose energy. Therefore, if it does not form 
a mutual energy flow with other advanced waves, it can be 
completely ignored. Or it is considered as invalid electromagnetic 
wave. We can assume that the retarded wave on the right side of 
the source is an effective wave and the advanced wave on the 
right side is an invalid wave. The retarded wave on the left side 
of the source is an invalid wave, and the advanced wave on the 
left side is an effective wave. In this way, the source can form a 
wave propagating to the right. Similarly, we can assume that the 
wave from the sink also propagates to the right. In this way, we 
also fully explain Cramer’s further development of Wheeler and 
Feynman’s absorber theory. In Wheeler Feynman’s model, both 
the retarded wave and the advanced wave are omnidirectional 
radiation. In Cramer’s model, the wave has directivity. Although 
the electromagnetic wave in our model is omnidirectional like 
that in Wheeler Feynman’s model, it can also propagate to the 
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right, so it is consistent with Cramer’s model too. 11.7. The Interval l Between two Plates is Very Small
Let’s assume that the distance between the two current plates is 
very close, 

source send retarded wave to the right and advanced wave to the left, instead of sending 
retarded wave and advanced wave to the left and right at the same time? In the original model 
of Wheeler and Feynman, the retarded wave and advanced wave are also omnidirectional, 
rather than the directivity of Cramer. 

The formula (299) is basically consistent with Cramer’s quantum mechanical particle 
model, but the retarded wave and advanced wave are not superimposed between the source 
and sink. It is a mutual energy flow composed of retarded wave and advanced wave 𝑺𝑺12 and 
𝑺𝑺21. Because the sign of one of the magnetic fields changes outside the range of the source and 
sink, the superposition becomes cancellation. This change in magnetic field completely explains 
the cause of 180 degrees. In addition, in this author’s theory, the retarded wave from the 
source is a reactive power wave, which does not lose energy. Therefore, if it does not form a 
mutual energy flow with other advanced waves, it can be completely ignored. Or it is 
considered as invalid electromagnetic wave. We can assume that the retarded wave on the 
right side of the source is an effective wave and the advanced wave on the right side is an 
invalid wave. The retarded wave on the left side of the source is an invalid wave, and the 
advanced wave on the left side is an effective wave. In this way, the source can form a wave 
propagating to the right. Similarly, we can assume that the wave from the sink also propagates 
to the right. In this way, we also fully explain Cramer’s further development of Wheeler and 
Feynman’s absorber theory. In Wheeler Feynman’s model, both the retarded wave and the 
advanced wave are omnidirectional radiation. In Cramer’s model, the wave has directivity. 
Although the electromagnetic wave in our model is omnidirectional like that in Wheeler 
Feynman’s model, it can also propagate to the right, so it is consistent with Cramer’s model too. 

 
11.7  The interval 𝒍𝒍 between two plates is very small 
 
Let’s assume that the distance between the two current plates is very close,  
 𝑙𝑙 → 0 (307) 

 
 
 𝑘𝑘𝑘𝑘 → 0 (308) 

 
 
 exp(−𝑗𝑗𝑘𝑘𝑘𝑘) → 1 (309) 

 
In this case, this author’s electromagnetic field degenerates into a magnetic quasi-static 

electromagnetic field 
 
 𝑯𝑯1𝑟𝑟 =

𝐽𝐽10
2 �̂�𝑦 (310) 

  
 𝑬𝑬1𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽102 (−�̂�𝑧) (311) 

 
On the left side of the current plate 
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retarded wave and advanced wave to the left and right at the same time? In the original model 
of Wheeler and Feynman, the retarded wave and advanced wave are also omnidirectional, 
rather than the directivity of Cramer. 

The formula (299) is basically consistent with Cramer’s quantum mechanical particle 
model, but the retarded wave and advanced wave are not superimposed between the source 
and sink. It is a mutual energy flow composed of retarded wave and advanced wave 𝑺𝑺12 and 
𝑺𝑺21. Because the sign of one of the magnetic fields changes outside the range of the source and 
sink, the superposition becomes cancellation. This change in magnetic field completely explains 
the cause of 180 degrees. In addition, in this author’s theory, the retarded wave from the 
source is a reactive power wave, which does not lose energy. Therefore, if it does not form a 
mutual energy flow with other advanced waves, it can be completely ignored. Or it is 
considered as invalid electromagnetic wave. We can assume that the retarded wave on the 
right side of the source is an effective wave and the advanced wave on the right side is an 
invalid wave. The retarded wave on the left side of the source is an invalid wave, and the 
advanced wave on the left side is an effective wave. In this way, the source can form a wave 
propagating to the right. Similarly, we can assume that the wave from the sink also propagates 
to the right. In this way, we also fully explain Cramer’s further development of Wheeler and 
Feynman’s absorber theory. In Wheeler Feynman’s model, both the retarded wave and the 
advanced wave are omnidirectional radiation. In Cramer’s model, the wave has directivity. 
Although the electromagnetic wave in our model is omnidirectional like that in Wheeler 
Feynman’s model, it can also propagate to the right, so it is consistent with Cramer’s model too. 

 
11.7  The interval 𝒍𝒍 between two plates is very small 
 
Let’s assume that the distance between the two current plates is very close,  
 𝑙𝑙 → 0 (307) 

 
 
 𝑘𝑘𝑘𝑘 → 0 (308) 

 
 
 exp(−𝑗𝑗𝑘𝑘𝑘𝑘) → 1 (309) 

 
In this case, this author’s electromagnetic field degenerates into a magnetic quasi-static 

electromagnetic field 
 
 𝑯𝑯1𝑟𝑟 =

𝐽𝐽10
2 �̂�𝑦 (310) 

  
 𝑬𝑬1𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽102 (−�̂�𝑧) (311) 

 
On the left side of the current plate 
 

In this case, this author’s electromagnetic field degenerates into a magnetic quasi-static electromagnetic field

On the left side of the current plate

 𝑯𝑯1𝑙𝑙 = − 𝐽𝐽10
2 �̂�𝑦 (312) 

 
 
 𝑬𝑬1𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽102 (−�̂�𝑧) (313) 

 
For the electromagnetic field of the second current plate 
 
 𝑯𝑯2𝑟𝑟 =

𝐽𝐽20
2 �̂�𝑦 (314) 

  
 𝑬𝑬2𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 (−�̂�𝑧) (315) 

 
 
 𝑯𝑯2𝑙𝑙 = − 𝐽𝐽20

2 �̂�𝑦 (316) 
 

 
 𝑬𝑬2𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 (−�̂�𝑧) (317) 

 
Consider,  
 𝑺𝑺𝑚𝑚 = 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 
 

 = (𝑗𝑗 𝜂𝜂0𝐽𝐽102 (−�̂�𝑧)) × (− 𝐽𝐽20
2 �̂�𝑦)∗ + (𝑗𝑗 𝜂𝜂0𝐽𝐽202 (−�̂�𝑧))∗ × (𝐽𝐽102 �̂�𝑦) 

 
 = [(𝑗𝑗 𝜂𝜂0𝐽𝐽102 )(− 𝐽𝐽20

2 )
∗ + (𝑗𝑗 𝜂𝜂0𝐽𝐽202 )∗(𝐽𝐽102 )]�̂�𝑥 

 
 = 𝜂𝜂0𝐽𝐽10

4 [(𝑗𝑗)(−𝐽𝐽20)∗ + (𝑗𝑗𝐽𝐽20)∗]�̂�𝑥 (318) 
 

Consider, 
 
 𝐽𝐽20 =

𝐼𝐼2
𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
 (319) 

  
 𝑺𝑺𝑚𝑚 = 𝜂𝜂0𝐽𝐽10

4 [(𝑗𝑗)(−𝐽𝐽20)∗ + (𝑗𝑗𝐽𝐽20)∗]�̂�𝑥 
 

 = 𝜂𝜂0𝐽𝐽10
4 [(𝑗𝑗)(−(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

))∗ + (𝑗𝑗(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
))∗]�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
8𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

[(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 
In this case, this author’s electromagnetic fields are degenerated into magnetic quasi-static 
electromagnetic fields. The reader can verify that the calculation in the magnetic quasi-static 
case is completely similar to the above. The mutual energy flow finally has a factor similar to 
that above  
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electromagnetic fields. The reader can verify that the calculation in the magnetic quasi-static 
case is completely similar to the above. The mutual energy flow finally has a factor similar to 
that above  
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 𝑺𝑺𝑚𝑚 = 𝜂𝜂0𝐽𝐽10

4 [(𝑗𝑗)(−𝐽𝐽20)∗ + (𝑗𝑗𝐽𝐽20)∗]�̂�𝑥 
 

 = 𝜂𝜂0𝐽𝐽10
4 [(𝑗𝑗)(−(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

))∗ + (𝑗𝑗(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
))∗]�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
8𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

[(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 
In this case, this author’s electromagnetic fields are degenerated into magnetic quasi-static 
electromagnetic fields. The reader can verify that the calculation in the magnetic quasi-static 
case is completely similar to the above. The mutual energy flow finally has a factor similar to 
that above  

For the electromagnetic field of the second current plate

Consider, 
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Consider,

 𝑯𝑯1𝑙𝑙 = − 𝐽𝐽10
2 �̂�𝑦 (312) 

 
 
 𝑬𝑬1𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽102 (−�̂�𝑧) (313) 

 
For the electromagnetic field of the second current plate 
 
 𝑯𝑯2𝑟𝑟 =

𝐽𝐽20
2 �̂�𝑦 (314) 

  
 𝑬𝑬2𝑟𝑟 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 (−�̂�𝑧) (315) 

 
 
 𝑯𝑯2𝑙𝑙 = − 𝐽𝐽20

2 �̂�𝑦 (316) 
 

 
 𝑬𝑬2𝑙𝑙 = 𝑗𝑗 𝜂𝜂0𝐽𝐽202 (−�̂�𝑧) (317) 
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∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 
 

 = (𝑗𝑗 𝜂𝜂0𝐽𝐽102 (−�̂�𝑧)) × (− 𝐽𝐽20
2 �̂�𝑦)∗ + (𝑗𝑗 𝜂𝜂0𝐽𝐽202 (−�̂�𝑧))∗ × (𝐽𝐽102 �̂�𝑦) 

 
 = [(𝑗𝑗 𝜂𝜂0𝐽𝐽102 )(− 𝐽𝐽20

2 )
∗ + (𝑗𝑗 𝜂𝜂0𝐽𝐽202 )∗(𝐽𝐽102 )]�̂�𝑥 
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4 [(𝑗𝑗)(−𝐽𝐽20)∗ + (𝑗𝑗𝐽𝐽20)∗]�̂�𝑥 (318) 
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𝐼𝐼2
𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

= −𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
 (319) 
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 = 𝜂𝜂0𝐽𝐽10
4 [(𝑗𝑗)(−(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

))∗ + (𝑗𝑗(−𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10

2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
))∗]�̂�𝑥 

 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
8𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

[(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 
In this case, this author’s electromagnetic fields are degenerated into magnetic quasi-static 
electromagnetic fields. The reader can verify that the calculation in the magnetic quasi-static 
case is completely similar to the above. The mutual energy flow finally has a factor similar to 
that above  

In this case, this author’s electromagnetic fields are degenerated 
into magnetic quasi-static electromagnetic fields. The reader can 
verify that the calculation in the magnetic quasi-static case is 

completely similar to the above. The mutual energy flow finally 
has a factor similar to that above

 [(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 = 2�̂�𝑥 (320) 
  

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 (321) 
 

Similary we can have, 
 

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 {
0 𝑥𝑥 < 0
1 0 < 𝑥𝑥 < 𝑙𝑙
0 𝑥𝑥 > 𝑙𝑙

 (322) 

 
Therefore, the radiation electromagnetic field defined by this author can indeed 

degenerate into a magnetic quasi-static electromagnetic field. However, in the magnetic 
quasi-static case, we cannot generally assume that the current plate is infinite. Then the electric 
field will tend to infinity. Therefore, we generally take a finite current plate. 

 
11.8  Calculate the energy flow of this author’s electromagnetic theory 

with Maxwell’s electromagnetic theory 
 
According to Maxwell’s electromagnetic field theory, we have, 
 
 𝒉𝒉1𝑟𝑟 =

𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦 (323) 

 
 
 𝒆𝒆1𝑟𝑟 =

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧) (324) 

 
 
 𝒉𝒉2𝑙𝑙 =

𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦) (325) 

 
 
 𝒆𝒆2𝑙𝑙 =

𝜂𝜂0𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧 (326) 

 
We can calculate the mutual energy flow,  
 𝒔𝒔𝑚𝑚 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1 

 
 = (𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧)) × (𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦))∗ 

 
 +(𝜂𝜂0𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧)∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 

 
 = 𝜂𝜂0𝐽𝐽10

4 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗2(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) (327) 

 [(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 = 2�̂�𝑥 (320) 
  

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 (321) 
 

Similary we can have, 
 

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 {
0 𝑥𝑥 < 0
1 0 < 𝑥𝑥 < 𝑙𝑙
0 𝑥𝑥 > 𝑙𝑙

 (322) 

 
Therefore, the radiation electromagnetic field defined by this author can indeed 

degenerate into a magnetic quasi-static electromagnetic field. However, in the magnetic 
quasi-static case, we cannot generally assume that the current plate is infinite. Then the electric 
field will tend to infinity. Therefore, we generally take a finite current plate. 

 
11.8  Calculate the energy flow of this author’s electromagnetic theory 

with Maxwell’s electromagnetic theory 
 
According to Maxwell’s electromagnetic field theory, we have, 
 
 𝒉𝒉1𝑟𝑟 =

𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦 (323) 

 
 
 𝒆𝒆1𝑟𝑟 =

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧) (324) 

 
 
 𝒉𝒉2𝑙𝑙 =

𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦) (325) 

 
 
 𝒆𝒆2𝑙𝑙 =

𝜂𝜂0𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧 (326) 

 
We can calculate the mutual energy flow,  
 𝒔𝒔𝑚𝑚 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1 

 
 = (𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧)) × (𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦))∗ 

 
 +(𝜂𝜂0𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧)∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 

 
 = 𝜂𝜂0𝐽𝐽10

4 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗2(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) (327) 

 [(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 = 2�̂�𝑥 (320) 
  

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 (321) 
 

Similary we can have, 
 

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 {
0 𝑥𝑥 < 0
1 0 < 𝑥𝑥 < 𝑙𝑙
0 𝑥𝑥 > 𝑙𝑙

 (322) 

 
Therefore, the radiation electromagnetic field defined by this author can indeed 

degenerate into a magnetic quasi-static electromagnetic field. However, in the magnetic 
quasi-static case, we cannot generally assume that the current plate is infinite. Then the electric 
field will tend to infinity. Therefore, we generally take a finite current plate. 

 
11.8  Calculate the energy flow of this author’s electromagnetic theory 

with Maxwell’s electromagnetic theory 
 
According to Maxwell’s electromagnetic field theory, we have, 
 
 𝒉𝒉1𝑟𝑟 =

𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦 (323) 

 
 
 𝒆𝒆1𝑟𝑟 =

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧) (324) 

 
 
 𝒉𝒉2𝑙𝑙 =

𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦) (325) 

 
 
 𝒆𝒆2𝑙𝑙 =

𝜂𝜂0𝐽𝐽20
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We can calculate the mutual energy flow,  
 𝒔𝒔𝑚𝑚 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1 

 
 = (𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧)) × (𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦))∗ 

 
 +(𝜂𝜂0𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧)∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 

 
 = 𝜂𝜂0𝐽𝐽10

4 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗2(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) (327) 
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0 𝑥𝑥 < 0
1 0 < 𝑥𝑥 < 𝑙𝑙
0 𝑥𝑥 > 𝑙𝑙

 (322) 

 
Therefore, the radiation electromagnetic field defined by this author can indeed 

degenerate into a magnetic quasi-static electromagnetic field. However, in the magnetic 
quasi-static case, we cannot generally assume that the current plate is infinite. Then the electric 
field will tend to infinity. Therefore, we generally take a finite current plate. 

 
11.8  Calculate the energy flow of this author’s electromagnetic theory 

with Maxwell’s electromagnetic theory 
 
According to Maxwell’s electromagnetic field theory, we have, 
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2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦 (323) 
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𝜂𝜂0𝐽𝐽10
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 = 𝜂𝜂0𝐽𝐽10

4 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗2(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) (327) 

Similary we can have,

Therefore, the radiation electromagnetic field defined by this 
author can indeed degenerate into a magnetic quasi-static 
electromagnetic field. However, in the magnetic quasi-static 
case, we cannot generally assume that the current plate is 
infinite. Then the electric field will tend to infinity. Therefore, 
we generally take a finite current plate.

11.8. Calculate the Energy Flow of This Author’s 
Electromagnetic Theory With Maxwell’s Electromagnetic 
Theory

According to Maxwell’s electromagnetic field theory, we have,

We can calculate the mutual energy flow,
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 [(𝑗𝑗)(𝑗𝑗)∗ + (𝑗𝑗(−𝑗𝑗))∗]�̂�𝑥 = 2�̂�𝑥 (320) 
  

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 (321) 
 

Similary we can have, 
 

 𝑺𝑺𝑚𝑚 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ

�̂�𝑥 {
0 𝑥𝑥 < 0
1 0 < 𝑥𝑥 < 𝑙𝑙
0 𝑥𝑥 > 𝑙𝑙

 (322) 

 
Therefore, the radiation electromagnetic field defined by this author can indeed 

degenerate into a magnetic quasi-static electromagnetic field. However, in the magnetic 
quasi-static case, we cannot generally assume that the current plate is infinite. Then the electric 
field will tend to infinity. Therefore, we generally take a finite current plate. 

 
11.8  Calculate the energy flow of this author’s electromagnetic theory 

with Maxwell’s electromagnetic theory 
 
According to Maxwell’s electromagnetic field theory, we have, 
 
 𝒉𝒉1𝑟𝑟 =

𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦 (323) 

 
 
 𝒆𝒆1𝑟𝑟 =

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧) (324) 

 
 
 𝒉𝒉2𝑙𝑙 =

𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦) (325) 

 
 
 𝒆𝒆2𝑙𝑙 =

𝜂𝜂0𝐽𝐽20
2 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧 (326) 

 
We can calculate the mutual energy flow,  
 𝒔𝒔𝑚𝑚 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1 

 
 = (𝜂𝜂0𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)(−�̂�𝑧)) × (𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))(−�̂�𝑦))∗ 

 
 +(𝜂𝜂0𝐽𝐽202 exp(+𝑗𝑗𝑗𝑗(𝑙𝑙 − 𝑥𝑥))�̂�𝑧)∗ × (𝐽𝐽102 exp(−𝑗𝑗𝑗𝑗𝑥𝑥)�̂�𝑦) 

 
 = 𝜂𝜂0𝐽𝐽10

4 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗2(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) (327) 

Calculate the electromotive force,

 
Calculate the electromotive force, 
 
 ℰ2,1 = ∫ 𝒆𝒆1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑒𝑒1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 

 
 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙))(−�̂�𝑧)) ⋅ �̂�𝑧 

 
 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (328) 

 
The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 (329) 

 
The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (330) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (331) 

 Hence,  
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (332) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
current plate is infinite, but to calculate the induced electromotive force, we have to assume 
the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (333) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. 
 
 𝒔𝒔𝑚𝑚 = 𝜂𝜂0𝐽𝐽10

2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10∗
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

)(−�̂�𝑥) 
 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (334) 
 

Therefore, we conclude that the interval of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 has  
 𝑺𝑺𝑚𝑚 = 𝒔𝒔𝑚𝑚 (335) 

 
Or,  
 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1𝑟𝑟 (336) 
 

 
Calculate the electromotive force, 
 
 ℰ2,1 = ∫ 𝒆𝒆1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑒𝑒1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 

 
 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙))(−�̂�𝑧)) ⋅ �̂�𝑧 

 
 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (328) 

 
The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 (329) 

 
The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (330) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (331) 

 Hence,  
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (332) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
current plate is infinite, but to calculate the induced electromotive force, we have to assume 
the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (333) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. 
 
 𝒔𝒔𝑚𝑚 = 𝜂𝜂0𝐽𝐽10

2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10∗
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

)(−�̂�𝑥) 
 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (334) 
 

Therefore, we conclude that the interval of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 has  
 𝑺𝑺𝑚𝑚 = 𝒔𝒔𝑚𝑚 (335) 

 
Or,  
 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1𝑟𝑟 (336) 
 

 
Calculate the electromotive force, 
 
 ℰ2,1 = ∫ 𝒆𝒆1𝑟𝑟 ⋅ 𝑑𝑑𝒍𝒍 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑒𝑒1𝑟𝑟(𝑥𝑥 = 𝑙𝑙) ⋅ �̂�𝑧 

 
 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙))(−�̂�𝑧)) ⋅ �̂�𝑧 

 
 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2 exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (328) 

 
The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 (329) 

 
The induced current of the second current plate is,  
 𝐼𝐼2 =

ℰ2,1
𝑍𝑍2

= ℰ2,1
𝑗𝑗𝜔𝜔𝐿𝐿2+𝑅𝑅2

→ ℰ2,1
𝑅𝑅2

= −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝜂𝜂0𝐽𝐽10
2𝑅𝑅2

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (330) 
 

Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (331) 

 Hence,  
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (332) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
current plate is infinite, but to calculate the induced electromotive force, we have to assume 
the length of a current plate. The current density of the second current plate is,  

 𝐽𝐽20 =
𝐼𝐼2

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
= −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙) (333) 
 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑙𝑙ℎ is the width of the current plate. 
 
 𝒔𝒔𝑚𝑚 = 𝜂𝜂0𝐽𝐽10

2 𝐽𝐽20∗ exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

exp(−𝑗𝑗𝑗𝑗𝑙𝑙))∗exp(+𝑗𝑗𝑗𝑗𝑙𝑙)∗(−�̂�𝑥) 
 

 = 𝜂𝜂0𝐽𝐽10
2 (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝜂𝜂0𝐽𝐽10∗
2𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

)(−�̂�𝑥) 
 

 = 𝜂𝜂02𝐽𝐽10𝐽𝐽10∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤ℎ
4𝑅𝑅2𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

�̂�𝑥 (334) 
 

Therefore, we conclude that the interval of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 has  
 𝑺𝑺𝑚𝑚 = 𝒔𝒔𝑚𝑚 (335) 

 
Or,  
 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙

∗ + 𝑬𝑬2𝑙𝑙∗ × 𝑯𝑯1𝑟𝑟 = 𝒆𝒆1𝑟𝑟 × 𝒉𝒉2𝑙𝑙∗ + 𝒆𝒆2𝑙𝑙∗ × 𝒉𝒉1𝑟𝑟 (336) 
 

 
Calculate the electromotive force, 
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The impedance of the second current plate is,  
 𝑍𝑍2 = 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 (329) 

 
The induced current of the second current plate is,  
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Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (331) 

 Hence,  
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (332) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
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Therefore, we conclude that the interval of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 has  
 𝑺𝑺𝑚𝑚 = 𝒔𝒔𝑚𝑚 (335) 
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Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (331) 

 Hence,  
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (332) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
current plate is infinite, but to calculate the induced electromotive force, we have to assume 
the length of a current plate. The current density of the second current plate is,  
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Therefore, we conclude that the interval of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 has  
 𝑺𝑺𝑚𝑚 = 𝒔𝒔𝑚𝑚 (335) 

 
Or,  
 𝑬𝑬1𝑟𝑟 × 𝑯𝑯2𝑙𝑙
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Assumption in the above formula,  
 𝑅𝑅2 ≫ 𝜔𝜔𝐿𝐿2 (331) 

 Hence,  
 𝑗𝑗𝜔𝜔𝐿𝐿2 + 𝑅𝑅2 → 𝑅𝑅2 (332) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
current plate is infinite, but to calculate the induced electromotive force, we have to assume 
the length of a current plate. The current density of the second current plate is,  
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 𝑺𝑺𝑚𝑚 = 𝒔𝒔𝑚𝑚 (335) 
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Assumption in the above formula,  
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 Hence,  
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 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is the length of the current plate from top to bottom. We previously assumed that the 
current plate is infinite, but to calculate the induced electromotive force, we have to assume 
the length of a current plate. The current density of the second current plate is,  
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The impedance of the second current plate is, 

The induced current of the second current plate is,

Assumption in the above formula,

 Hence, 

llength is the length of the current plate from top to bottom. We 
previously assumed that the current plate is infinite, but to 
calculate the induced electromotive force, we have to assume 

the length of a current plate. The current density of the second 
current plate is,

lwidth is the width of the current plate.

Therefore, we conclude that the interval of 0 ≤ x ≤ L has

Or, 
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In this way, we can directly use Maxwell’s electromagnetic 
theory to calculate the mutual energy flow of this author’s 
electromagnetic field. It is worth mentioning that we can only 
calculate the electromagnetic energy flow (mutual energy flow) 
in the interval of 0 ≤ x ≤ l. Using Maxwell’s electromagnetic 
theory, we can’t get the formula like (299). This is because 
according to Maxwell’s electromagnetic theory, the advanced 
wave on the left side of the current changes not only the sign of 
the magnetic field, but also the sign of the electric field. See the 
field on the right of the current in figure 6 and the field on the left 

in figure 6. This shows that Maxwell’s radiation electromagnetic 
field theory fail to support the photon model in Cramer’s 
transactional interpretation of quantum mechanics.

11.9. A Problem of The Maxwell’s Theory
We have known from Maxwell’s theory that a single plate current 
can produce retarded wave radiation. It has been calculated in 
Chapter 9 that Poynting vectors on both sides of the plate current 
satisfy, 

In this way, we can directly use Maxwell’s electromagnetic theory to calculate the 
mutual energy flow of this author’s electromagnetic field. It is worth mentioning that we can 
only calculate the electromagnetic energy flow (mutual energy flow) in the interval of 
0 ≤ 𝑥𝑥 ≤ 𝑙𝑙. Using Maxwell’s electromagnetic theory, we can’t get the formula like (299). This is 
because according to Maxwell’s electromagnetic theory, the advanced wave on the left side of 
the current changes not only the sign of the magnetic field, but also the sign of the electric field. 
See the field on the right of the current in figure 6 and the field on the left in figure 6. This 
shows that Maxwell’s radiation electromagnetic field theory fail to support the photon model in 
Cramer’s transactional interpretation of quantum mechanics. 

 
11.9  A problem of the Maxwell’s theory 
 
We have known from Maxwell’s theory that a single plate current can produce retarded 

wave radiation. It has been calculated in Chapter 9 that Poynting vectors on both sides of the 
plate current satisfy,  

 𝒔𝒔𝑟𝑟 ⋅ �̂�𝑥 + 𝒔𝒔𝑙𝑙 ⋅ (−�̂�𝑥) = −𝒆𝒆(𝑥𝑥 = 0) ⋅ 𝑱𝑱∗ (337) 
 

For the solution satisfying Maxwell’s equation, this author said that it actually means 
that the solution satisfies the boundary radiation boundary condition, the Sliver-Muller 
radiation boundary condition. For our case of infinite plate current, of course, the direct 
Sliver-Muller boundary condition is incorrect, but there are always similar radiation boundary 
conditions. This boundary condition actually means that there is a very good absorption 
condition outside the plate current. The infinity is filled with good absorbing materials, which 
can absorb all the electromagnetic wave energy radiated from the current 𝑱𝑱. In the previous 
section, we found that if we placed another current plate on the right side of the current plate 
under the above conditions, a mutual energy flow 𝒔𝒔𝑚𝑚 was established between the first 
current plate and the second current plate, see the formula (334). This makes Maxwell’s 
electromagnetic theory contradict his field theory (aether). Here, the field theory refers to 
Maxwell’s theory that the change of current source can cause electromagnetic radiation. When 
the electromagnetic field radiates from the source, it moves independently from the source. 
That is, the movement has its own independent degree of freedom. When the electromagnetic 
wave moves to the receiving antenna, it transfers energy to the receiving antenna. Therefore, 
the electromagnetic wave should move away from the radiation source, so that when we add 
the second current plate to the system, it should not react on the original current source. The 
problem is that the addition of the second board will indeed affect the radiation of the first 
board! The total radiation energy is increased. This is contrary to the original assumption that 
there is the best absorbing material at infinity that can absorb all the waves emitted from the 
radiation source. 

Of course, the reader can also argue that the second current plate radiates the 
advanced wave. In classical electromagnetic theory, there is no advanced wave. The classical 
electromagnetic theory denies the existence of advanced waves. Indeed, if Maxwell’s theory is 
to conform to the aforementioned field theory or aether theory, the advanced wave must be 
removed from the theory. Otherwise, a mixing theory is formed. Here, mixing means that part 
of the energy flow is field theory, which is composed of Poynting vector 𝒔𝒔𝑟𝑟. One part is action 

For the solution satisfying Maxwell’s equation, this author 
said that it actually means that the solution satisfies the 
boundary radiation boundary condition, the Sliver-Muller 
radiation boundary condition. For our case of infinite plate 
current, of course, the direct Sliver-Muller boundary condition 
is incorrect, but there are always similar radiation boundary 
conditions. This boundary condition actually means that there 
is a very good absorption condition outside the plate current. 
The infinity is filled with good absorbing materials, which can 
absorb all the electromagnetic wave energy radiated from the 
current J. In the previous section, we found that if we placed 
another current plate on the right side of the current plate under 
the above conditions, a mutual energy flow sm was established 
between the first current plate and the second current plate, 
see the formula (334). This makes Maxwell’s electromagnetic 
theory contradict his field theory (aether). Here, the field theory 
refers to Maxwell’s theory that the change of current source 
can cause electromagnetic radiation. When the electromagnetic 
field radiates from the source, it moves independently from the 
source. That is, the movement has its own independent degree 
of freedom. When the electromagnetic wave moves to the 
receiving antenna, it transfers energy to the receiving antenna. 
Therefore, the electromagnetic wave should move away from 
the radiation source, so that when we add the second current 
plate to the system, it should not react on the original current 
source. The problem is that the addition of the second board will 
indeed affect the radiation of the first board! The total radiation 
energy is increased. This is contrary to the original assumption 
that there is the best absorbing material at infinity that can absorb 
all the waves emitted from the radiation source.

Of course, the reader can also argue that the second current plate 
radiates the advanced wave. In classical electromagnetic theory, 
there is no advanced wave. The classical electromagnetic theory 
denies the existence of advanced waves. Indeed, if Maxwell’s 
theory is to conform to the aforementioned field theory or aether 
theory, the advanced wave must be removed from the theory. 
Otherwise, a mixing theory is formed. Here, mixing means that 
part of the energy flow is field theory, which is composed of 
Poynting vector sr. One part is action and reaction, and this part 
of energy flow consists of mutual energy flow sm. These two 
kinds of thoughts are opposite and cannot be allowed to mix 
together.

Therefore, in Maxwell’s theory, it is better not to have advanced 

waves, but only retarded waves. Only the transmitting antenna 
is the source of the electromagnetic field. In Maxwell’s 
electromagnetic theory, the sink should not be introduced, 
although Maxwell’s equation allows the existence of 
advanced waves. Sink is also allowed. In this way, Maxwell’s 
electromagnetic theory, as a complete theory of radiation 
electromagnetic field, is still good. The radiation electromagnetic 
field here refers to an environment where only radiation sources 
exist and perfect electromagnetic absorption materials are 
arranged in the distance. In this case, Maxwell’s electromagnetic 
theory holds.

Of course, this situation does not include all situations. If there 
are conductors in the system, these conductors will consume 
electromagnetic energy. Maxwell’s electromagnetic theory 
is not suitable for the existence of substances that consume 
electromagnetic wave energy. The substance that consumes 
electromagnetic energy, that is, the substance that absorbs 
electromagnetic waves, can only appear on the boundary of 
the infinite element, and must also be uniformly arranged on 
the remote boundary, which conforms to the Sliver-Muller 
boundary condition. But in reality, there is always conductor and 
resistance in the electromagnetic system, which will consume 
electromagnetic wave energy. Maxwell’s electromagnetic 
radiation theory does not allow this kind of material to appear, 
which is obviously not a complete electromagnetic theory!

this author’s electromagnetic theory has made a correction on 
Maxwell’s electromagnetic theory. Because of this correction, 
the essence of this author’s electromagnetic theory is the 
electromagnetic theory of action and reaction (action-at-a-
distance). The radiation of the antenna itself, that is, Poynting 
vector, is reactive power. This wave can spread to any place in 
space, but does not consume electromagnetic energy. The energy 
transmitted by electromagnetic wave only occurs when the 
retarded wave (action) from the transmitting antenna happens 
to be synchronized with the advanced wave (reaction) from a 
receiving antenna. In this case, mutual energy flow is generated. 
Mutual energy flow is photons. This photon carries the energy 
flow composed of the retarded wave and the advanced wave 
from the transmitting antenna to the receiving antenna. This 
electromagnetic energy flow is generated on the transmitting 
antenna and annihilated on the receiving antenna, which 
perfectly explains the problem of wave particle duality, which 
is very magical.
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12. Comparison of Three Electromagnetic Fields
Below we list the comparison of three electromagnetic theories 
in the table. The three cases are 1) quasi-static electromagnetic 
field theory, including magnetic quasi-static electromagnetic 
field theory. 2) Maxwell’s radiation electromagnetic field theory 
refers to the electromagnetic theory that satisfies Maxwell’s 
equation. Here, the Ampere circuital law of Maxwell’s equation 

includes displacement current (93-96). In this paper, the 
electromagnetic field in Maxwell’s electromagnetic theory is 
represented by the lowercase letters e and h. 3) this author’s 
electromagnetic field theory refers to the electromagnetic field 
that satisfies the electromagnetic field equation (195-201). In 
this paper, this author’s electromagnetic field is represented by 
E and H.

   Quasistatic field  Maxwell’s theory  This author’s theory
  Energy conservation law  Y  N  Y
 does not overflow the universe  Y  N  Y
 Sliver-Muller boundary condition  N  Y  N
 Degenerate into quasi-static field  Y  N  Y
 Self energy principle  Y  N  Y
 Calculation ease  Y  Y  N
 Wheeler Feynman absorber theory   N  Y
 Cramer’s interpretation   N  Y
 90 degree phase difference  Y  N  Y
 action-at-a-distance  Y  N  Y
 field theory (aether theory)  N  Y  N
 Presence of depleting substances  Y  N  Y

The law of conservation of energy in the above table refers 
to (138,173). The boundary condition that radiation does not 
overflow the universe refers to (20,21). The Sliver-Muller 
radiation boundary condition refers to (1-4). Self energy 
principle refers to (203).

It can be seen from the above table that this author’s 
electromagnetic radiation theory is very close to the quasi-
static electromagnetic field theory. On contrary, Maxwell’s 
electromagnetic theory is incompatible with the quasi-static 
electromagnetic field. This is also this author’s suggestion 
not to use the same symbol for the radiated electromagnetic 
field derived from Maxwell’s theory and the quasi-static 
electromagnetic field, which may cause misunderstanding. For 
this author’s electromagnetic field theory, this author can only 
solve relatively simple cases, such as the case of infinite plate 
current. Or even for the electromagnetic field far away from the 
transmitting antenna. Although a set of equations proposed by 
this author can determine the electromagnetic field solution of 
this author in principle, there is still no very effective method to 
solve the complex situation. However, the method provided by 
Maxwell’s electromagnetic theory can provide a reference. For 
radiation problems, it is often only necessary to know the far 
field. The far field of this author’s electromagnetic theory can 
be obtained from Maxwell’s electromagnetic theory, and then 
the 90 degree phase difference between electromagnetic field 
and magnetic field in this author’s electromagnetic theory can be 
considered. Therefore, Maxwell’s electromagnetic theory cannot 
be abandoned. There are some electromagnetic problems, such 
as solving the radiation pattern of the transmitting antenna. Such 
problems actually assume that there is a good absorbing material 
at the cosmic boundary, which means that the Sliver-Muller 

radiation boundary condition is valid. In this case, Maxwell’s 
electromagnetic theory is still very effective. Therefore, 
this author’s electromagnetic theory can be regarded as the 
electromagnetic theory under different boundary conditions, that 
is, the electromagnetic theory under the condition that radiation 
does not overflow the universe.

13. Conclusion
This author has proposed the mutual energy theorem of 
electromagnetic field since 1987. In 2017, he found that this 
theorem is actually the law of conservation of electromagnetic 
field energy, and proposed the mutual energy flow theorem 
and mutual energy principle. Based on these, a complete new 
set of radiation electromagnetic field theory is developed by 
this author, which is different from Maxwell’s. In the past, 
this author mainly emphasized that compared with Maxwell’s 
electromagnetic field theory, the electromagnetic field theory 
proposed by this author is an electromagnetic field theory that 
satisfies the law of conservation of energy. Although this is not 
wrong, it is not easy to persuade readers to accept this author’s 
views. In order to further clarify this author’s point of view and 
persuade readers to accept this author’s point of view as much 
as possible, this author chooses another approach in this paper. 
This paper presents a new law that radiation does not overflow 
the universe. This law can also be used as a new boundary 
condition. This boundary condition is different from the Sliver 
Muller boundary condition satisfied by Maxwell equation. The 
Sliver-Muller boundary condition actually requires that the 
cosmic boundary be filled with absorber materials. this author 
makes no such assumption. It is assumed that there is nothing 
on the boundary of the universe. Thus Maxwell’s equation must 
be in conflict with the new boundary conditions proposed by 
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this author. This author has carried out a relaxation process for 
Maxwell’s equation. Maxwell’s equation cannot be relaxed. 
In fact, this author relaxes the mutual energy principle, which 
is equivalent to Maxwell’s equation. Relaxed mutual energy 
principle can add the boundary condition that radiation does not 
overflow the universe. In this way, this author’s electromagnetic 
theory can be fully deduced. As an example, the electromagnetic 
field of plate current is discussed. The electromagnetic field and 
energy flow of double plate current are also discussed. This author 
hopes that readers can see the rationality of the electromagnetic 
field theory proposed by this author from these examples. On 
the contrary, Maxwell’s electromagnetic theory is flawed. In 
other words, Maxwell’s electromagnetic theory is only suitable 
for the Sliver-Muller boundary condition. The electromagnetic 
field theory of this author is suitable for the boundary condition 
that radiation does not overflow the universe. In this way, this 
author’s electromagnetic theory is completely contained in a 
new boundary condition. This author hopes that readers can 
more easily accept this author’s new electromagnetic theory.
In this author’s electromagnetic theory, there is an energy flow 
theorem from the source to the sink. This energy flow is also 
called mutual energy flow, which has the property of photons. 
The mutual energy flow is generated from the radiation source 
and annihilated at the sink. This is very close to the particle model 
in Cramer’s transactional interpretation of quantum mechanics. 
It can be said that this author’s electromagnetic theory supports 
Cramer’s quantum mechanical model. It also supports Wheeler 
Feynman’s absorber theory. This author’s electromagnetic 
theory provides a good solution to the problem of wave particle 
duality.

In Maxwell’s electromagnetic theory, the phase of 
electromagnetic wave is in phase. When we were in middle 
school, our teacher told us that electromagnetic waves in space 
are transmitted in the way that electric field is converted into 
magnetic field and magnetic field is converted into electric field. 
But according to Maxwell’s electromagnetic field theory, the 
electric field and magnetic field are in phase, and the magnetic 
field also decreases when the electric field decreases, so the 
electric field cannot be converted into a magnetic field. Magnetic 
fields cannot be converted into electric fields. In this author’s 
electromagnetic field theory, the electric field and magnetic field 
of electromagnetic wave keep 90 degree phase difference to 
overcome this contradiction. As the electric field and magnetic 
field have 90 degree phase difference, the magnetic field increases 
when the electric field decreases, and the electric field increases 
when the magnetic field decreases. In this way, the propagation 
of electromagnetic wave in space becomes more reasonable. 
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