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Abstract
New setting is introduced to study types of coloring numbers, degree of vertices, degree of hyperedges, co-
degree of vertices, co-degree of hyperedges, neutrosophic degree of vertices, neutrosophic degree of hyperedges, 
neutrosophic co-degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic number of vertices, 
neutrosophic number of hyperedges in neutrosophic hypergraphs. Different types of procedures including 
neutrosophic (r; n)-regular hypergraphs and neutrosophic complete r-partite hypergraphs are proposed in this 
way, some results are obtained. General classes of neutrosophic hypergraphs are used to obtain chromatic 
number, the representatives of the colors, degree of vertices, degree of hyperedges, co-degree of vertices, co-
degree of hyperedges, neutrosophic degree of vertices, neutrosophic degree of hyperedges, neutrosophic co-
degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic number of vertices, neutrosophic number 
of hyperedges in neutrosophic hypergraphs.

Using colors to assign to the vertices of neutrosophic hypergraphs and characterizing representatives of the 
colors are applied in neutrosophic (r; n)-regular hypergraphs and neutrosophic complete r-partite hypergraphs. 
Some questions and problems are posed concerning ways to do further studies on this topic. Using different ways 
of study on neutrosophic hypergraphs to get new results about number, degree and co-degree in the way that 
some number, degree and co-degree get understandable perspective.

Neutrosophic (r; n)-regular hypergraphs and neutrosophic complete r-partite hypergraphs are studied 
to investigate about the notions, coloring, the representatives of the colors, degree of vertices, degree of 
hyperedges, co-degree of vertices, co-degree of hyperedges, neutrosophic degree of vertices, neutrosophic degree 
of hyperedges, neutrosophic co-degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic number 
of vertices, neutrosophic number of hyperedges in neutrosophic (r; n)-regular hypergraphs and neutrosophic 
complete r-partite hypergraphs. In this way, sets of representatives of colors, degree of vertices, degree of 
hyperedges, co-degree of vertices, co-degree of hyperedges, neutrosophic degree of vertices, neutrosophic 
degree of hyperedges, neutrosophic co-degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic 
number of vertices, neutrosophic number of hyperedges have key points to get new results but in some cases, 
there are usages of sets and numbers instead of optimal ones. Simultaneously, notions chromatic number, 
the representatives of the colors, degree of vertices, degree of hyperedges, co-degree of vertices, co-degree 
of hyperedges, neutrosophic degree of vertices, neutrosophic degree of hyperedges, neutrosophic co-degree 
of vertices, neutrosophic co-degree of hyperedges, neutrosophic number of vertices, neutrosophic number of 
hyperedges are applied into neutrosophic hypergraphs, especially, neutrosophic (r; n)-regular hypergraphs and 
neutrosophic complete r-partite hypergraphs to get sensible results about their structures. Basic familiarities 
with neutrosophic hypergraphs theory and hypergraph theory are proposed for this article.
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Background 
Fuzzy set in Ref. [22] by Zadeh (1965), intuitionistic fuzzy sets 
in Ref. [3] by Atanassov (1986), a first step to a theory of the 
intuitionistic fuzzy graphs in Ref. [18]  by Shannon and Atanassov 
(1994), a unifying field in logics neutrosophy: neutrosophic  
probability, set and logic, rehoboth in Ref. [19] by Smarandache 
(1998), single-valued  neutrosophic sets in Ref. [20] by Wang et al. 
(2010), single-valued neutrosophic graphs  in Ref. [5] by Broumi 
et al. (2016), operations on single-valued neutrosophic graphs in  
Ref. [1] by Akram and Shahzadi (2017), neutrosophic soft graphs 
in Ref. [17] by Shah  and Hussain (2016), bounds on the average 
and minimum attendance in  preference-based activity scheduling 
in Ref. [2] by Aronshtam and Ilani (2022), 1 investigating the 
recoverable robust single machine scheduling problem under 
interval  uncertainty in Ref. [4] by Bold and Goerigk (2022), new 
bounds for the b-chromatic number of vertex deleted graphs in 
Ref. [6] by Del-Vecchio and Kouider (2022),  bipartite completion 
of colored graphs avoiding chordless cycles of given lengths in  
Ref. [7] by Elaine et al., infinite chromatic games in Ref. [12] by 
Janczewski et al.  (2022), edge-disjoint rainbow triangles in edge-
colored graphs in Ref. [13] by Li and Li  (2022), rainbow triangles 
in arc-colored digraphs in Ref. [14] by Li et al. (2022), a sufficient 
condition for edge 6-colorable planar graphs with maximum 
degree 6 in Ref. [15] by Lu and Shi (2022), some comparative 
results concerning the Grundy and b-chromatic number of graphs 
in Ref. [16] by Masih and Zaker (2022), color neighborhood union 
conditions for proper edge-pancyclicity of edge-colored complete 
graphs in Ref. [21] by Wu et al. (2022), dimension and coloring 
alongside domination in neutrosophic hypergraphs in Ref. [9] 
by Henry Garrett (2022), three types of neutrosophic alliances 
based on connectedness and (strong) edges in Ref. [11] by Henry 
Garrett (2022), properties of SuperHyperGraph and neutrosophic 
SuperHyperGraph in Ref. [10] by Henry Garrett (2022), are 
studied. Also, some studies and researches about neutrosophic 
graphs, are proposed as a book in Ref. [8] by Henry Garrett (2022). 
In this section, I use two subsections to illustrate a perspective 
about the background of this study

Motivation and Contributions 
In this study, there's an idea which could be considered as a 
motivation. 

Question 1.1: Is it possible to use mixed versions of ideas 
concerning \neutrosophic degree", \neutrosophic co-degree" and 
\neutrosophic coloring" to define some notions which are applied 
to neutrosophic hypergraphs? 

It's motivation to find notions to use in any classes of neutrosophic 
hypergraphs. Real-world applications about time table and 
scheduling are another thoughts which lead to be considered as 
motivation. Connections amid two items have key roles to assign 
colors and introducing different types of degree of vertices, 
degree of hyperedges, co-degree of vertices, co-degree of 

hyperedges, neutrosophic degree of vertices, neutrosophic degree 
of hyperedges, neutrosophic co-degree of vertices, neutrosophic 
co-degree of hyperedges, neutrosophic number of vertices, 
neutrosophic number of hyperedges in neutrosophic hypergraphs. 
Thus they're used to define new ideas which conclude to the 
structure of coloring, degree and co-degree. The concept of 
having general neutrosophic hyperedge inspires me to study the 
behavior of general neutrosophic hyperedge in the way that, types 
of coloring numbers, degree of vertices, degree of hyperedges, co-
degree of vertices, co-degree of hyperedges, neutrosophic degree 
of vertices, neutrosophic degree of hyperedges, neutrosophic 
co-degree of vertices, neutrosophic co-degree of hyperedges, 
neutrosophic number of vertices, neutrosophic number of 
hyperedges in neutrosophic hypergraphs are introduced. 

The framework of this study is as follows. In the beginning, I 
introduced basic definitions to clarify about preliminaries. In 
section \New Ideas For Neutrosophic Hypergraphs", new notions 
of coloring, degree of vertices, degree of hyperedges, co-degree of 
vertices, co-degree of hyperedges, neutrosophic degree of vertices, 
neutrosophic degree of hyperedges, neutrosophic co-degree of 
vertices, neutrosophic co-degree of hyperedges, neutrosophic 
number of vertices, neutrosophic number of hyperedges in 
neutrosophic hypergraphs are introduced. In section \Applications 
in Time Table and Scheduling", one application is posed for 
neutrosophic hypergraphs concerning time table and scheduling 
when the suspicions are about choosing some subjects. In section \
Open Problems", some problems and questions for further studies 
are proposed. In section \Conclusion and Closing Remarks", gentle 
discussion about results and applications are featured. In section \
Conclusion and Closing Remarks", a brief overview concerning 
advantages and limitations of this study alongside conclusions are 
formed.

1.2 Preliminaries 
Definition 1.2. (Graph). 
G = (V;E) is called a graph if V is a set of objects and E is a subset 
of V × V (E is a set of 2-subsets of V ) where V is called vertex set 
and E is called edge set. 
Every two vertices have been corresponded to at most one edge. 

Definition 1.3. (Hypergraph). 
H = (V;E) is called a hypergraph if V is a set of objects and for 
every 
nonnegative integer t ≤ n; E is a set of t-subsets of V where V is 
called vertex set 71and E is called hyperedge set. 

Definition 1.4. (Neutrosophic Hypergraph). 
NHG = (V;E;  = (σ1; σ2; σ3); µ = (µ1; µ2; µ3)) is called a neutrosophic
hypergraph if it's hypergraph, σi : V ! [0; 1]; µi : E ! [0; 1]; and for 
every v1v2  vt ∈ E;

µ(v1v2 • • • vt) ≤ σ(v1) ∧ σ(v2) ∧ • • • σ(vt).
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(i) : σ is called neutrosophic vertex set. 
(ii) : µ is called neutrosophic hyperedge set. 
(iii) : |V | is called order of NHG and it’s denoted by O(NHG). 
(iv) : Σv∈V σ(v) is called neutrosophic order of NHG and it’s denoted 
by On(NHG). 
(vi) : |E| is called size of NHG and it’s denoted by S(NHG).  
(vii) : Σe∈Eµ(e) is called neutrosophic  size of NHG and it’s denoted 
by Sn(NHG).

Example 1.5. Assume Figure (1). 
(i) : Neutrosophic hyperedge n1n2n3 has three neutrosophic vertices. 
(ii) : Neutrosophic hyperedge n3n4n5n6 has four neutrosophic 
vertices. 
(iii) : Neutrosophic hyperedge n1n7n8n9n5n6 has six neutrosophic 
vertices. 
(iv) : σ = {(n1; (0:99; 0:98; 0:55)); (n2; (0:74; 0:64; 0:46)); (n3; 
(0:99; 0:98; 0:55)); 
(n4; (0:54; 0:24; 0:16)); (n5; (0:99; 0:98; 0:55)); (n6; (0:99; 0:98; 
0:55)); 
(n7; (0:99; 0:98; 0:55)); (n8; (0:99; 0:98; 0:55)); (n9; (0:99; 0:98; 
0:55))} is 
neutrosophic vertex set. 
(v) :µ = {(e1; (0:01; 0:01; 0:01)); (e2; (0:01; 0:01; 0:01)); (e3; (0:01; 
0:01; 0:01))g) is 
neutrosophic hyperedge set. 
(vi) : O(NHG) = 9: 
(vii) : On(NHG) = (8:21; 7:74; 4:47): 
(viii) : S(NHG) = 3: 
(ix) : Sn(NHG) = (0:03; 0:03; 0:03)

Figure 1: There are three neutrosophic hyperedges and two 
neutrosophic vertices.

Definition 1.6. (Neutrosophic Edge t-Regular Hypergraph). 
A neutrosophic hypergraph NHG = (V;E; σ, µ) is called a 
neutrosophic edge t-regular hypergraph if every neutrosophic 
hyperedge has only t neutrosophic 
vertices.

Figure 2: NHG = (V;E; σ, µ) is neutrosophic edge 3-regular 
hypergraph

Question 1.7. What-if all neutrosophic hypergraphs are either 
edge t-regular or not? 
In the following, there are some directions which clarify the 
existence of some 
neutrosophic hypergraphs which are either edge t-regular or not. 

Example 1.8. Two neutrosophic hypergraphs are presented such 
that one of them is edge t-regular and another isn't.

(i) : Assume Figure (1). It isn't neutrosophic edge t-regular 
hypergraph. 
(ii) : Suppose Figure (2). It's neutrosophic edge 3-regular 
hypergraph.

Definition 1.9. (Neutrosophic vertex t-Regular Hypergraph). 
A neutrosophic hypergraph NHG = (V;E; σ, µ) is called a 
neutrosophic vertex t-regular hypergraph if every neutrosophic 
vertex is incident to only t neutrosophic 
hyperedges.

Example 1.10. Three neutrosophic hypergraphs are presented 
such that one of them is vertex t- regular and anothers aren't.

(i) : Consider Figure (1). It isn't neutrosophic edge t-regular 
hypergraph. 
(ii) : Suppose Figure (2). It's neutrosophic edge 3-regular 
hypergraph but It isn't neutrosophic vertex 3-regular hypergraph. 
(iii) : Assume Figure (3). It's neutrosophic vertex 2-regular 
hypergraph but It isn't neutrosophic edge t-regular hypergraph.
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Figure 3: NHG = (V, E, σ, µ) is neutrosophic strong hypergraph.

Definition 1.11. (Neutrosophic Strong Hypergraph). 
A neutrosophic hypergraph NHG = (V, E, σ, µ) is called a 
neutrosophic strong hypergraph if it's hypergraph and for every 
v1v2 • • •vt ∈ E, 
µ(v1v2 • • • vt) = σ(v1) ∧ σ(v2) ∧ • • • σ(vt).

Figure 4: NHG = (V, E, σ, µ) is neutrosophic strong hypergraph.

Example 1.12. Three neutrosophic hypergraphs are presented 
such that one of them 117 is neutrosophic strong hypergraph and 
others aren't. 

(i) : Consider Figure (1). It isn't neutrosophic strong hypergraph. 
(ii) : Assume Figure (2). It isn't neutrosophic strong hypergraph. 
(iii) : Suppose Figure (3). It isn't neutrosophic strong hypergraph. 
(iv) : Assume Figure (4). It's neutrosophic strong hypergraph. 
It's also neutrosophic edge 3-regular hypergraph but it isn't 
neutrosophic vertex t-regular hypergraph.

Definition 1.13. (Neutrosophic Strong Hypergraph). 
Assume neutrosophic hypergraph NHG = (V, E, σ, µ) A neutrosophic 
hyperedge v1v2 • • •vt ∈ E  is called a neutrosophic strong hyperedge 
if
µ(v1v2 • • • vt) = σ(v1) ∧ σ(v2) ∧ • • • σ(vt).

Proposition 1.14. Assume neutrosophic strong hypergraph NHG 
= (V, E, σ, µ.)  Then all neutrosophic hyperedges are neutrosophic 
strong. 

Definition 1.15. (Neutrosophic Hyperpath). 
A  path  v0, E0, v1, v1, E1, v2, • • • , vt−1, Et−1, vt,  is  called  neutrosophic  
hyperpath such that vi−1 and vi have incident to Ei−1 for all 
nonnegative integers 0 ≤ i ≤ t. In this case, t-1 is called length 

of neutrosophic hyperpath. Also, if x and y are two neutrosophic 
vertices, then maximum length of neutrosophic hyperpaths from x 
to y, is called neutrosophic hyperdistance and it’s denoted by 
d(x, y). If v0 = vt, then it’s called neutrosophic hypercycle.

Example 1.16. Assume Figure (1).
(i) : n1;E1; n3;E2; n6;E3; n

1 is a neutrosophic hypercycle. 
(ii) : n1;E1; nn;E2; n6;E3; n1 isn't neither neutrosophic hypercycle 
nor neutrosophic 
hyperpath. 
(iii) : n1E1n3E2n6E3n1 isn't neither neutrosophic hypercycle nor 
neutrosophic hyperpath. 
(iv) : n1; n3; n6; n1 isn't neither neutrosophic hypercycle nor 
neutrosophic hyperpath. 
(v) : n1E1; n3;E2; n6;E3; n1 isn't neither neutrosophic hypercycle 
nor neutrosophic hyperpath.
(vi) : n1;E1; n3;E2; n6;E3; n7 is a neutrosophic hyperpath. 
(vii) : Neutrosophic hyperdistance amid n1 and n4 is two. 
(viii) : Neutrosophic hyperdistance amid n1 and n7 is one. 
(ix) : Neutrosophic hyperdistance amid n1 and n2 is one. 
(x) : Neutrosophic hyperdistance amid two given neutrosophic 
vertices is either one or Two

New Ideas For Neutrosophic Hypergraphs 
Question 2.1. What-if the notion of complete proposes some 
classes of neutrosophic  hypergraphs? 
In the setting of neutrosophic hypergraphs, the notion of complete 
have introduced some classes. Since the vertex could have any 
number of arbitrary hyperedges. This notion is too close to the 
notion of regularity. Thus the idea of complete has an obvious 
structure in that, every hyperedge has n vertices so there's only 
one hyperedge.

Definition 2.2. Assume neutrosophic hypergraph NHG = (V, E, 
σ, µ). It's denoted by 156 NHGr

n and it's (r; n) - regular if every 
hyperedge has exactly r vertices in the way that, all r-subsets of the 
vertices have an unique hyperedge where r ≤ n and | V | = n

Example 2.3. In Figure (5), NHG3
4 is shown.

Figure 5: NHG3 = (V, E, σ, µ)  is neutrosophic (3; 4)- regular 
hypergraph

(i) : Assume Figure (1). It isn’t neutrosophic edge t−regular hypergraph. 103

(ii) : Suppose Figure (2). It’s neutrosophic edge 3−regular hypergraph. 104
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Definition 2.2. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). It’s denoted by 156

NHGr
n and it’s (r, n)− regular if every hyperedge has exactly r vertices in the way 157

that, all r−subsets of the vertices have an unique hyperedge where r ≤ n and |V | = n. 158

Example 2.3. In Figure (5), NHG3
4 is shown.

Figure 5. NHG3
4 = (V,E, σ, µ) is neutrosophic (3, 4)− regular hypergraph.

159

Definition 2.4. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). 160

(i) : Maximum number is maximum number of hyperedges which are incident to a 161

vertex and it’s denoted by ∆(NHG); 162

(ii) : Minimum number is minimum number of hyperedges which are incident to a 163

vertex and it’s denoted by δ(NHG); 164

(iii) : Maximum value is maximum value of vertices and it’s denoted by ∆n(NHG); 165

(iv) : Minimum value is minimum value of vertices and it’s denoted by δn(NHG). 166

Example 2.5. Assume neutrosophic hypergraph NHG = (V,E, σ, µ) as Figure (5). 167

(i) : ∆(NHG) = 3; 168

(ii) : δ(NHG) = 3; 169

(iii) : ∆n(NHG) = (0.99, 0.98, 0.55); 170

(iv) : δn(NHG) = (0.99, 0.98, 0.55). 171

Proposition 2.6. Assume neutrosophic hypergraph NHGr
n = (V,E, σ, µ) which is 172

(r, n)− regular. Then ∆(NHG) = δ(NHG). 173

Proof. Consider neutrosophic hypergraph NHGr
n = (V,E, σ, µ) which is (r, n)− regular. 174

Every hyperedge has same number of vertices. Hyperedges are distinct. It implies the 175

number of hyperedges which are incident to every vertex is the same. 176

Proposition 2.7. Assume neutrosophic hypergraph NHGr
n = (V,E, σ, µ) which is 177

(r, n)− regular. Then the number of hyperedges equals to n choose r. 178

Proof. Suppose neutrosophic hypergraph NHGr
n = (V,E, σ, µ) which is (r, n)− regular. 179

Every hyperedge has r vertices. Thus r−subsets of n form hyperedges. It induces n 180

choose r. 181
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Definition 2.4.  Assume neutrosophic hypergraph NHG = (V, E, 
σ, µ)
(i):  Maximum number is maximum number of hyperedges which 
are incident to a vertex and it’s denoted by ∆(NHG);
(ii): Minimum number is minimum number of hyperedges which 
are incident to a vertex and it’s denoted by δ(NHG)
(iii): Maximum value is maximum value of vertices and it’s 
denoted by ∆n(NHG);;
(iv): Minimum value is minimum value of vertices and it’s denoted 
by δn(NHG).

Example 2.5.  Assume neutrosophic hypergraph NHG = (V, E, σ, 
µ) as Figure (5).
(i) :  ∆(NHG) = 3; 
(ii) :  δ(NHG) = 3; 
(iii) :  ∆n(NHG) = (0.99, 0.98, 0.55); 
(iv) : δn(NHG) = (0.99, 0.98, 0.55).

Proposition 2.6.  Assume neutrosophic hypergraph NHGr = (V, E, 
σ, µ) which is (r, n)− regular.  Then ∆(NHG) = δ(NHG).
Proof. Consider neutrosophic hypergraph NHGr = (V, E, σ, 
µ) which is (r, n) regular. Every hyperedge has same number 
of vertices. Hyperedges are distinct. It implies the number of 
hyperedges which are incident to every vertex is the same.

Proposition 2.7.  Assume neutrosophic hypergraph NHGr = (V, 
E, σ, µ) which is (r, n)− regular. Then the number of hyperedges 
equals to n choose r.

Proof. Suppose neutrosophic hypergraph NHGr = (V, E, σ, µ) which 
is (r, n) regular. Every hyperedge has r vertices. Thus r  subsets of 
n form hyperedges. It induces n choose r.

Proposition 2.8.  Assume neutrosophic hypergraph NHGr = (V, E, 
σ, µ) which is (r, n)− regular. Then
(i) : Chromatic number is at least r;
(ii) : Chromatic number is at most ∆r;
(iii) : Neutrosophic chromatic number is at most ∆nr.
Proof.  (i). Suppose NHGr = (V, E, σ, µ). Every hyperedge has r 
vertices. It implies the set of representatives has at least r members. 
Hence chromatic number is at least r. 
(ii). Suppose NHGr = (V, E, σ, µ). Every hyperedge has r vertices. 
It implies the set of representatives has at least r members. If all 
vertices have at least one common hyperedge, then chromatic 
number is at most ∆r. Thus chromatic number is at most ∆r.
(iii). Consider NHGr = (V, E, σ, µ). Every hyperedge has r vertices. 
It implies the set of representatives has at least r members. If all 
vertices have at least one common hyperedge, then neutrosophic 
chromatic number is at most ∆nr. Thus neutrosophic chromatic 
number is at most ∆nr.

Question 2.9.  What-if the notion of complete proposes some 
classes of neutrosophic hypergraphs with some parts?

In the setting of neutrosophic hypergraphs, when every part has 
specific attribute inside and outside, the notion of complete is 
applied to parts to form the idea of completeness.

Definition 2.10.  Assume neutrosophic hypergraph NHG = (V, E, σ, 
µ). It’s denoted by NHGr n1 ,n2 ,••• ,nr and it’s complete r−partite if V  
can be partitioned into r non-empty parts, Vi, and every hyperedge 
has only one vertex from each part where ni is the number of 
vertices in part Vi.

Example 2.11. In Figure (6), NHG3
333 = (V, E, σ, µ) is shown.

Figure 6: NHG3
333 = (V, E, σ, µ) is neutrosophic complete 3−partite 

hypergraph.

Proposition 2.12. For any given r, the number of neutrosophic 
complete r−partite hypergraph NHGr p1 ,p2 ,••• ,pr = (V, E, σ, µ) is at 
most p1 × p2, × • • • × pr.

Proof. Assume r is given. Consider NHGr
p1 ,p2 ,••• ,pr = (V, E, σ, µ) 

is neutrosophic complete r−partite hypergraph. Any possible 
hyperedge has to choose exactly one vertex from every part. First 
part has p1 vertices. Thus there are p1 choices. Second part has 
p2 vertices and et cetera. Thus for any given r, the number of 
neutrosophic complete r−partite hypergraph NHGr = (V, E, σ, µ) is 
at most p1 × p2 × • • • × pr.

Proposition 2.13. Assume neutrosophic complete r−partite 
hypergraph NHGr n1 ,n2 ,••• ,nr= (V, E, σ, µ). Then
(i) : Chromatic number is at least r;
(ii) : Neutrosophic chromatic number is at least

min X⊆V and X is r-subset Σx∈Xσ(x).

Proof. (i). Suppose neutrosophic complete r−partite hypergraph 
NHGr

n,n,...n2 Every hyperedge has r vertices. It implies the set of 
representatives has r members. Hence chromatic number is least r.
(ii). Consider neutrosophic complete r−partite hypergraph 

Proposition 2.8. Assume neutrosophic hypergraph NHGr
n = (V,E, σ, µ) which is 182

(r, n)− regular. Then 183

(i) : Chromatic number is at least r; 184

(ii) : Chromatic number is at most ∆r; 185

(iii) : Neutrosophic chromatic number is at most ∆nr. 186

Proof. (i). Suppose NHGr
n = (V,E, σ, µ). Every hyperedge has r vertices. It implies 187

the set of representatives has at least r members. Hence chromatic number is at least r. 188

(ii). Suppose NHGr
n = (V,E, σ, µ). Every hyperedge has r vertices. It implies the 189

set of representatives has at least r members. If all vertices have at least one common 190

hyperedge, then chromatic number is at most ∆r. Thus chromatic number is at most 191

∆r. 192

(iii). Consider NHGr
n = (V,E, σ, µ). Every hyperedge has r vertices. It implies the 193

set of representatives has at least r members. If all vertices have at least one common 194

hyperedge, then neutrosophic chromatic number is at most ∆nr. Thus neutrosophic 195

chromatic number is at most ∆nr. 196

Question 2.9. What-if the notion of complete proposes some classes of neutrosophic 197

hypergraphs with some parts? 198

In the setting of neutrosophic hypergraphs, when every part has specific attribute 199

inside and outside, the notion of complete is applied to parts to form the idea of 200

completeness. 201

Definition 2.10. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). It’s denoted 202

by NHGr
n1,n2,··· ,nr

and it’s complete r−partite if V can be partitioned into r 203

non-empty parts, Vi, and every hyperedge has only one vertex from each part where ni 204

is the number of vertices in part Vi. 205

Example 2.11. In Figure (6), NHG3
3,3,3 = (V,E, σ, µ) is shown.

Figure 6. NHG3
3,3,3 = (V,E, σ, µ) is neutrosophic complete 3−partite hypergraph.

206

Proposition 2.12. For any given r, the number of neutrosophic complete r−partite
hypergraph NHGr

p1,p2,··· ,pr
= (V,E, σ, µ) is at most

p1 × p2,× · · · × pr.
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NHGr
n,n,...n2 Every hyperedge has r vertices. It implies the set of 

representatives has r members. If all vertices have at least one 
common hyperedge, then neutrosophic chromatic number is at 
least minX⊆V and X is r-subset Σx∈Xσ(x).

Definition 2.14.  Assume neutrosophic hypergraph NHG = (V, E, 
σ, µ).
(i) :  A neutrosophic number of vertices x1, x2,

. . . . . ., xn i

(ii) : A neutrosophic number of hyperedges e1, e2, • • • , en is

Example 2.15. I get some clarifications about new definitions.
(i):  In Figure (5), NHG3

4 is shown.
    (a) : A neutrosophic number of vertices n1, n2, n3 is

    (b) : A neutrosophic number of hyperedges e1, e2, e3 is

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 = (0.54, 
0.24, 0.16).
(ii) :  In Figure (6), NHG3

333 = (V, E, σ, µ) is shown.
   (a) : A neutrosophic number of vertices n1, n2, n3 is

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 = (0.54, 
0.24, 0.16).

Proposition 2.16.  Assume neutrosophic hypergraph NHG = (V, 
E, σ, µ). A neutrosophic number of vertices is at least δn and at 
most On.
Proof.  Suppose neutrosophic hypergraph NHG = (V, E, σ, µ). Let 
v be a given vertex. Then σ(v) ≥ minv∈V σ(v). Thus σ(v) ≥ δn. So 
a neutrosophic number of vertices is at least δn. σ(v) ≤ Σv∈V σ(v). 
Thus σ(v) ≤ On. So a neutrosophic number of vertices is at most 
On. Hence a neutrosophic number of vertices is at least δn and at 
most On.

Proposition 2.17.  Assume neutrosophic hypergraph NHG = (V, 
E, σ, µ). A neutrosophic number of hyperedges is at least δe and at 
most Sn where δe = mine∈E µ(e).

Proof.  Suppose neutrosophic hypergraph NHG = (V, E, σ, µ). Let e 
be a given hyperedge.  Then µ(e) ≥ mine∈E µ(e). Thus µ(v) ≥ δe . So 
a neutrosophic number of hyperedges is at least δe . µ(e) ≤ Σe∈Eµ(e). 
Thus µ(e) ≤ Sn. So a neutrosophic number of hyperedges is at most 
Sn. Hence a neutrosophic number of hyperedges is at least δe and 
at most Sn.

Definition 2.18.  Assume neutrosophic hypergraph NHG = (V, E, 
σ, µ).
(i) :  A degree of vertex x is the number of hyperedges which are 
incident to x.
(ii) : A neutrosophic degree of vertex x is the neutrosophic number 
of hyperedges which are incident to x.
(iii) : A degree of hyperedge e is the number of vertices which e is 
incident to them.
(iv) :A neutrosophic degree of hyperedge e is the neutrosophic 
number of vertices which e is incident to them.
(v) : A co-degree of vertices x1, x2, • • • , xn is the number of 
hyperedges which are incident to x1, x2, • • • , xn.
(vi) :  A neutrosophic co-degree of vertices x1, x2, • • • , xn is the 
neutrosophic number of hyperedges which are incident to x1, x2, • 
• • , xn.
(vii) : A co-degree of hyperedges e1, e2, • • • , en is the number of 
vertices which e1, e2, • • • , en are incident to them.
(viii) :  A neutrosophic co-degree of hyperedges e1, e2, • • • , en 
is the neutrosophic number of vertices which e1, e2, • • • , en are 
incident to them.

Example 2.19. I get some clarifications about new definitions.
(i) :  In Figure (5), NHG3

4 is shown.
   (a) :  A degree of any vertex is 3.
   (b) : A neutrosophic degree of vertex n1 is (2.07, 1.46, 0.87).
    (c) : A degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55) is 3.
   (d) : A neutrosophic degree of hyperedge e where µ(e) = (0.99,  
0.98, 0.55) is (2.97, 2.94, 1.65).
   (e) :  A co-degree of vertices n1, n3 is 2.
  (f) : A neutrosophic co-degree of vertices n1, n3 is (1.53, 1.22, 
0.71).
   (g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 
0.55) and µ(e2) = (0.54, 0.24, 0.16) is 2.
  (h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) = 
(0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (1.98, 1.96, 1.1).
(ii) :  In Figure (6), NHG3

333 = (V, E, σ, µ) is shown.
  (a) :  A degree of any vertex n1, n2, n4, n6, n8, n9 is 1 and degree of 
any vertex n3, n5, n7 is 2.
  (b) :  A neutrosophic degree of vertex n1, n2, n4, n6, n8, n9 is (0.99, 
0.98, 0.55) and degree of any vertex n3, n5, n7 is (1.98, 1.96, 1.1).
  (c) :  A degree of any hyperedge is 3.
  (d) : A neutrosophic degree of hyperedge is (2.97, 2.94, 1.65).
  (e) :  A co-degree of vertices n1, n4 is 1.
 (f): A neutrosophic co-degree of vertices n1, n4 is (0.54, 0.24, 0.16) 
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 
0.55) and µ(e2) = (0.54, 0.24, 0.16) is 1.
 (h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) 
= (0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (0.99, 0.98, 
0.55).

Proposition 2.20. Assume neutrosophic complete r−partite 
hypergraph NHGr

 p1 ,p2 ,••• ,pr = (V, E, σ, µ).

Proof. Assume r is given. Consider NHGr
p1,p2,··· ,pr

= (V,E, σ, µ) is neutrosophic
complete r−partite hypergraph. Any possible hyperedge has to choose exactly one
vertex from every part. First part has p1 vertices. Thus there are p1 choices. Second
part has p2 vertices and et cetera. Thus for any given r, the number of neutrosophic
complete r−partite hypergraph NHGr

p1,p2,··· ,pr
= (V,E, σ, µ) is at most

p1 × p2 × · · · × pr.

207

Proposition 2.13. Assume neutrosophic complete r−partite hypergraph 208

NHGr
n1,n2,··· ,nr

= (V,E, σ, µ). Then 209

(i) : Chromatic number is at least r; 210

(ii) : Neutrosophic chromatic number is at least

min
X⊆V and X is r-subset

Σx∈Xσ(x).

Proof. (i). Suppose neutrosophic complete r−partite hypergraph NHGr
n1,n2,··· ,nr

. 211

Every hyperedge has r vertices. It implies the set of representatives has r members. 212

Hence chromatic number is least r. 213

(ii). Consider neutrosophic complete r−partite hypergraph NHGr
n1,n2,··· ,nr

. Every 214

hyperedge has r vertices. It implies the set of representatives has r members. If all 215

vertices have at least one common hyperedge, then neutrosophic chromatic number is at 216

least minX⊆V and X is r-subset Σx∈Xσ(x). 217

Definition 2.14. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). 218

(i) : A neutrosophic number of vertices x1, x2, · · · , xn is

Σn
i=1σ(xi).

(ii) : A neutrosophic number of hyperedges e1, e2, · · · , en is

Σn
i=1µ(ei).

Example 2.15. I get some clarifications about new definitions. 219

(i) : In Figure (5), NHG3
4 is shown. 220

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 = (0.54, 0.24, 0.16). 221

(ii) : In Figure (6), NHG3
3,3,3 = (V,E, σ, µ) is shown. 222

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).
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hyperedge has r vertices. It implies the set of representatives has r members. If all 215

vertices have at least one common hyperedge, then neutrosophic chromatic number is at 216

least minX⊆V and X is r-subset Σx∈Xσ(x). 217

Definition 2.14. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). 218

(i) : A neutrosophic number of vertices x1, x2, · · · , xn is

Σn
i=1σ(xi).

(ii) : A neutrosophic number of hyperedges e1, e2, · · · , en is

Σn
i=1µ(ei).

Example 2.15. I get some clarifications about new definitions. 219

(i) : In Figure (5), NHG3
4 is shown. 220

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 = (0.54, 0.24, 0.16). 221

(ii) : In Figure (6), NHG3
3,3,3 = (V,E, σ, µ) is shown. 222

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).
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(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 = (0.54, 0.24, 0.16). 223

Proposition 2.16. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). A 224

neutrosophic number of vertices is at least δn and at most On. 225

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Let v be a given vertex. 226

Then σ(v) ≥ minv∈V σ(v). Thus σ(v) ≥ δn. So a neutrosophic number of vertices is at 227

least δn. σ(v) ≤ Σv∈V σ(v). Thus σ(v) ≤ On. So a neutrosophic number of vertices is at 228

most On. Hence a neutrosophic number of vertices is at least δn and at most On. 229

Proposition 2.17. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). A 230

neutrosophic number of hyperedges is at least δen and at most Sn where 231

δen = mine∈E µ(e). 232

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Let e be a given 233

hyperedge. Then µ(e) ≥ mine∈E µ(e). Thus µ(v) ≥ δen. So a neutrosophic number of 234

hyperedges is at least δen. µ(e) ≤ Σe∈Eµ(e). Thus µ(e) ≤ Sn. So a neutrosophic number 235

of hyperedges is at most Sn. Hence a neutrosophic number of hyperedges is at least δen 236

and at most Sn. 237

Definition 2.18. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). 238

(i) : A degree of vertex x is the number of hyperedges which are incident to x. 239

(ii) : A neutrosophic degree of vertex x is the neutrosophic number of hyperedges 240

which are incident to x. 241

(iii) : A degree of hyperedge e is the number of vertices which e is incident to them. 242

(iv) : A neutrosophic degree of hyperedge e is the neutrosophic number of vertices 243

which e is incident to them. 244

(v) : A co-degree of vertices x1, x2, · · · , xn is the number of hyperedges which are 245

incident to x1, x2, · · · , xn. 246

(vi) : A neutrosophic co-degree of vertices x1, x2, · · · , xn is the neutrosophic 247

number of hyperedges which are incident to x1, x2, · · · , xn. 248

(vii) : A co-degree of hyperedges e1, e2, · · · , en is the number of vertices which 249

e1, e2, · · · , en are incident to them. 250

(viii) : A neutrosophic co-degree of hyperedges e1, e2, · · · , en is the neutrosophic 251

number of vertices which e1, e2, · · · , en are incident to them. 252

Example 2.19. I get some clarifications about new definitions. 253

(i) : In Figure (5), NHG3
4 is shown. 254

(a) : A degree of any vertex is 3. 255

(b) : A neutrosophic degree of vertex n1 is (2.07, 1.46, 0.87). 256

(c) : A degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55) is 3. 257

(d) : A neutrosophic degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55) is 258

(2.97, 2.94, 1.65). 259

(e) : A co-degree of vertices n1, n3 is 2. 260
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(i) : A degree of vertex  is at most
              p2 × • • • × pr.
(ii) :  A degree of hyperedge e is r.
(iii) : A co-degree of vertices x1, x2, • • • , xt is at most
             pt+1 × • • • × pr.
(iv) : A co-degree of hyperedges e1, e2, • • • , et is r − t.

Proof. (i). Suppose neutrosophic complete r−partite hypergraph
NHGr

p1 ,p2 ,••• ,pr = (V, E, σ, µ). Vertex x belongs to part first part.  x 
is chosen so for second part, there are p2 choices and et cetera. 
By it’s neutrosophic complete r−partite hypergraph NHGr

p1 ,p2 ,••• 

,pr = (V, E, σ, µ), possible choice from every part is exactly one 
vertex. It induces for second part, one vertex has to be chosen 
and et cetera. Therefore the number of neutrosophic complete r−
partite hypergraph NHGr

p1 ,p2 ,••• ,pr = (V, E, σ, µ), when x is chosen, 
introduces biggest possible number of degree of x which is p2 × • • 
• × pr. Hence a degree of vertex x is at most  p2 × • • • × pr.

(ii). Consider neutrosophic complete r−partite hypergraph NHGr

p1 ,p2 ,••• ,pr = (V, E, σ, µ). Vertex x belongs to part first part. x is 
chosen so for second part, there is one choice and et cetera. By it’s 
neutrosophic complete r−partite hypergraph NHGr

p1 ,p2 ,••• ,pr = (V, 
E, σ, µ), possible choice from every part is exactly one vertex. It 
induces for second part, one vertex has to be chosen and et cetera. 
Therefore neutrosophic complete r−partite hypergraph NHGr

p , p ,...

p2 = (V, E, σ, µ) introduces exact number of degree of e which is r. 
Hence a degree of hyperedge e is r

(iii). Suppose neutrosophic complete r−partite hypergraph NHGr

p1 ,p2 ,••• ,pr = (V, E, σ, µ). Vertices x1, x2, • • • , xt belong to part first 
part, second part,...., and part t. x1, x2, • • • , xt are chosen so for 
part t + 1, there are pt+1 choices and et cetera. By it’s neutrosophic 
complete r−partite hypergraph NHGr

p1 ,p2 ,••• ,pr = (V, E, σ, µ), 
possible choice from every part is exactly one vertex.  It induces 
for part t + 1, one vertex has to be chosen and et cetera. Therefore 
the number of neutrosophic complete r−partite hypergraph NHGr

p 

,p ,..., p 2 = (V, E, σ, µ), when x1, x2, • • • , xt are chosen, introduces 
biggest possible number of co-degree of x1, x2, • • • , xt which is pt+1 
× • • • × pr. Hence a co-degree of vertices x1, x2, • • • , xt is at most 
pt+1 × • • • × pr

(iv). Consider neutrosophic complete r−partite hypergraph NHGr

p1 ,p2 ,••• ,pr = (V, E, σ, µ). Vertex x belongs to part first part. x is 
chosen so for second part, there is one choice and et cetera. By it’s 
neutrosophic complete r−partite hypergraph NHGr p1 ,p2 ,••• ,pr = (V, 
E, σ, µ), possible choice from every part is exactly one vertex. It 
induces for second part, one vertex has to be chosen and et cetera. 
Therefore neutrosophic complete r−partite hypergraph NHGr

p ,p ,....p 

2 = (V, E, σ, µ) introduces exact number of co-degree of e1, e2, • • 
• , et which is r − t. Hence a co-degree of hyperedges e1, e2, • • • , 
et is r - t

Proposition 2.21. Assume neutrosophic hypergraph NHG = (V, 
E, σ, µ) where E is power set of V. Then the number of hyperedges 
is 2n

Proof. Consider neutrosophic hypergraph NHG = (V, E, σ, µ) 
where E is power set of V. The cardinality of E is 2n. The number 
of hyperedges is 2n.

Proposition 2.22.  Assume neutrosophic hypergraph NHG = (V, E, 
σ, µ) where E is power set of V. Then
(i) : A degree of vertex x is 2n−1.
(ii) : A degree of hyperedge e is at most O and at least 0.
(iii) : A co-degree of vertices x1, x2, • • • , xt is at most 2n−t.
(iv) : A co-degree of hyperedges e1, e2, • • • , et is at most O − t and 
at least 0.

Proof. (i). Suppose neutrosophic hypergraph NHG = (V, E, σ, µ) 
where E is power set of V. Vertex x is chosen. Thus all hyperedges 
have to have x. It induces E′ is power set of V \{x} . The cardinality 
of E′ is 2n−1. So the number of hyperedges which are incident to x, 
is 2n−1. It implies a degree of vertex x is 2n−1.
(ii). Consider neutrosophic hypergraph NHG = (V, E, σ, µ) where 
E is power set of V. Hyperedge e is chosen. Thus a hyperedge 
has either all vertices or no vertex. It induces for hyperedge e, the 
number of vertices is either O or 0. Then a degree of hyperedge e 
is at most O and at least 0.
(iii). Suppose neutrosophic hypergraph NHG = (V, E, σ, µ) where 
E is power set of V. Vertices x1, x2, • • • , xt are chosen. Thus all 
hyperedges have to have x1, x2, • • • , xt. It induces E′ is power set 
of V \ {x1, x2, • • • , xt}. The cardinality of E′ is 2n−t. So the number 
of hyperedges which are incident to x1, x2, • • • , xt, is 2n−t. It implies 
a co-degree of vertices x1, x2, • • • , xt is 2n−t.
(iv). Consider neutrosophic hypergraph NHG = (V, E, σ, µ) where 
E is power set of V. Hyperedges e1, e2, , et are chosen. Thus 
hyperedges e1, e2, . . . . . . ., et don’t have all vertices. Since one 
edge is incident to all vertices and there’s no second edge to be 
incident to all vertices. It implies hyperedges e1, e2, • • • , et have 
all vertices excluding only t vertices or no vertex. It induces for 
hyperedges e1, e2, • • • , et, the number of vertices is either O − t or 
0. Hence a co-degree of hyperedges e1, e2, • • • , et is at most O − t 
and at least 0.

Proposition 2.23.  Assume neutrosophic hypergraph NHG = (V, E, 
σ, µ) where E is power set of V. Then
(i) : Chromatic number is O;
(ii) : Neutrosophic chromatic number is On.

Proof. (i). Suppose neutrosophic hypergraph NHG = (V, E, σ, µ) 
where E is power set of V. Every hyperedge has either of 0, 1, 
2,. . . . . .,0 vertices but for any of two vertices, there’s at least 
one hyperedge which is incident to them. Furthermore, all vertices 
have at least one common hyperedge which is V.. Since V ∈ E and 
V is also a hyperedge. It implies the set of representatives has O 
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members. Hence chromatic number is O.
(ii). Consider neutrosophic hypergraph NHG = (V, E, σ, µ) where 
E  is power set of. Every hyperedge has either of 0, 1, 2, . . . . . ,0 
vertices but for any of two vertices, there’s at least one hyperedge 
which is incident to them. Furthermore, all vertices have at least 
one common hyperedge which is V.. Since V  ∈ E and V is also a 
hyperedge. It implies the set of representatives has m e m b e r s . 
Hence neutrosophic chromatic number is On.

Applications in Time Table and Scheduling
Designing the programs to achieve some goals is general approach 
to apply on some issues to function properly. Separation has key 
role in the context of this style. Separating the duration of work 
which are consecutive, is the matter and it has important to avoid 
mixing up.

Step 1. (Definition) Time table is an approach to get some 
attributes to do the work fast and proper. The style of scheduling 
implies special attention to the tasks which are consecutive.
Step 2. (Issue) Scheduling of program has faced with difficulties to 
differ amid consecutive section. Beyond that, sometimes sections 
are not the same.
Step 3. (Model)  As Figure (7), the situation is designed as a 
model.  The model uses data to assign every section and to assign 
to relation amid section, three numbers belong unit interval to 
state indeterminacy, possibilities and determinacy. There’s one 
restriction in that, the numbers amid two sections are at least the 
number of the relation amid them. Table (1), clarifies about the 
assigned numbers to these situation.

Table 1: Scheduling concerns its Subjects and its Connections as a Neutrosophic Hypergraph in a Model.

Sections of NHG n1 n2• • • n9

Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)• • • (0.99, 0.98, 0.55)
Connections of NHG E1, E2 E3 E4

Values (0.54, 0.24, 0.16) (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)

Step 4.  (Solution)  As Figure (7) shows, NHG3
333 = (V, E, σ, µ) is 

neutrosophic complete 3 partite hypergraph as model, proposes to 
use different types of degree   308 of vertices, degree of hyperedges, 
co-degree of vertices, co-degree of hyperedges, 309 neutrosophic 
number of vertices, neutrosophic number of hyperedges and et 
cetera.  
(i) : The notions of neutrosophic number are applied on vertices 
and hyperedges.

Figure 7: Vertices are suspicions about choosing them.
(a) : A neutrosophic number of vertices n1, n2, n3 is

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 = (0.54, 
0.24, 0.16).
(ii) : The notions of degree, co-degree, neutrosophic degree and 
neutrosophic co-degree are applied on vertices and hyperedges.
(a) :  A degree of any vertex n1, n2, n4, n6, n8, n9 is 1 and degree of 
any vertex n3, n5, n7 is 2.
(b) :  A neutrosophic degree of vertex n1, n2, n4, n6, n8, n9 is (0.99, 
0.98, 0.55) and degree of any vertex n3, n5, n7 is (1.98, 1.96, 1.1).
(c) :  A degree of any hyperedge is 3.
(d) : A neutrosophic degree of hyperedge is (2.97, 2.94, 1.65).
(e) :  A co-degree of vertices n1, n4 is 1.
(d) : A neutrosophic co-degree of vertices n1, n4 is (0.54, 0.24, 
0.16).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 
0.55) and µ(e2) = (0.54, 0.24, 0.16) is 1.
(h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) 
= (0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (0.99, 0.98, 
0.55).

Open Problems
The different types of degree of vertices, degree of hyperedges, co-
degree of vertices, co-degree of hyperedges, neutrosophic number 
of vertices, neutrosophic number of  hyperedges are introduced on 
neutrosophic hypergraphs. Thus,

Question 4.1. Is it possible to use other types neutrosophic 
hyperedges to define different types of degree and co-degree in 
neutrosophic hypergraphs?

Question 4.2. Are existed some connections amid degree and 
co-degree inside this concept and external connections with 

Figure 7. Vertices are suspicions about choosing them.
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other types of neutrosophic degree and neutrosophic co-degree in 
neutrosophic hypergraphs?
Question 4.3. Is it possible to construct some classes on 
neutrosophic hypergraphs which have “nice” behavior?
Question 4.4.  Which applications do make an independent study 
to apply these types degree, co-degree, neutrosophic degree and 
neutrosophic co-degree in neutrosophic hypergraphs?
Problem 4.5.  Which parameters are related to this parameter?
Problem 4.6.  Which approaches do work to construct applications 
to create  independent study?
Problem 4.7.  Which approaches do work to construct definitions 
which use all definitions and the relations amid them instead of 
separate definitions to create independent study?

Conclusion and Closing Remarks
This study introduces different types of degree of vertices, 
degree of hyperedges, co-degree of vertices, co-degree of 
hyperedges, neutrosophic degree of vertices, neutrosophic degree 
of hyperedges, neutrosophic co-degree of vertices, neutrosophic 
co-degree of hyperedges, neutrosophic number of vertices, 
neutrosophic number of hyperedges in neutrosophic hypergraphs. 
The connections of neutrosophic vertices which are clarified 
by general hyperedges differ them from each other and and put 
them in different categories to represent one representative for 
each color. Further studies could be about changes in the settings 
to compare this notion amid different settings of neutrosophic 
hypergraphs theory. One way is finding some relations amid these 
definitions of notions to make sensible definitions. In Table (2), 
some limitations and some advantages of this study are pointed 
out.

Table 2: A Brief Overview about Advantages and Limitations 
of this study
Advantages Limitations
1.Defining degree
2. Defining co-degree
3. Defining neutrosophic 
degree
4. Applying colortring
5. Defining neutrosophic co-
degree

1. General Results

2. Connections With 
Parameters

3. Connections of Results
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