
Citation: Abuzreda, A. (2023). Nanopolymers Types, Classification, Properties, and Uses. Adv Env was Man Rec, 6(2), 402-408.

Nanopolymers Types, Classification, Properties, and Uses 

Review Article

Dr. Abdelsalam Abuzreda*

*Associate Professor & Postdoctoral Research fellow, Depart-
ment of Health Safety and Environmental (HSE), Arabian Gulf 
Oil Company (AGOCO) and University of Benghazi , Beng-
hazi, Libya

*Corresponding Author
Dr. Abdelsalam Abuzreda, Associate Professor & Postdoctoral Research 
fellow, Department of Health Safety and Environmental (HSE), Arabian Gulf 
Oil Company (AGOCO) and University of Benghazi , Benghazi, Libya. Tel.: 
+218 -928004767, E-mail address: Bozrida@yahoo.com.

 Submitted: 2023, Apr 28; Accepted: 2023, May 19: Published: 2023, May 30

Advance in Environmental Waste Management & Recycling 

Abstract
Nanopolymers have come to play an essential and holistic role in everyday life due to their unique properties, They are 
essential materials in everyday industrial sectors, such as adhesives, building materials, paper, apparel, fibers, plastics, 
ceramics, concrete, liquid crystals, photoresists, and coatings. Nanopolymers are also present in most soil components, 
plants, and living organisms. They are important in nutrition, mechanical engineering, the structure of organisms, medi-
cine, computers, space exploration, health, and the environment. The word plastic or elastomers is used incorrectly to refer 
to Nanopolymers, while Nanopolymers include a huge variety of synthetic and natural materials with varying properties. 
Natural inorganic Nanopolymers include diamond, graphite, sand, asbestos, garnet, flint, feldspar (aluminosilicate), mica, 
quartz, and talc. Natural organic Nanopolymers include polysaccharides such as starch, cellulose, amino acids, and pro-
teins. Inorganic synthetic Nanopolymers include boron nitride, concretes, many high-temperature superconductors, and 
many glassware. Siloxanes or polysiloxanes are organometallic synthetic Nanopolymers.
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1. Introduction 
A polymer (or polymer) Is a high molecular weight compound 
composed of repeating subunits, these materials may be organic, 
inorganic, or mineral-organic, and may be natural or synthetic in 
origin. [1, 2]. Nanopolymers have come to play an essential and 
holistic role in everyday life due to their unique properties. [3, 4]. 
They are essential materials in everyday industrial sectors, such 
as adhesives, building materials, paper, apparel, fibers, plastics, 
ceramics, concrete, liquid crystals, photoresists, and coatings. 
Nanopolymers are also present in most soil components, plants, 
and living organisms. They are important in nutrition, mechanical 
engineering, the structure of organisms, medicine, computers, 
space exploration, health, and the environment [5]. The word 
plastic or elastomers is used incorrectly to refer to Nanopolymers, 
while Nanopolymers include a huge variety of synthetic and 
natural materials with varying properties. Natural inorganic 
Nanopolymers include diamond, graphite, sand, asbestos, 
garnet, flint, feldspar (aluminosilicate), mica, quartz, and talc. 
Natural organic Nanopolymers include polysaccharides such as 
starch, cellulose, amino acids, and proteins. Inorganic synthetic 
Nanopolymers include boron nitride, concretes, many high-
temperature superconductors, and many glassware. Siloxanes or 
polysiloxanes are organometallic synthetic Nanopolymers [6]. 
Synthetic Nanopolymers save energy when compared to metals. Its 

light weight reduces fuel consumption in vehicles and aircraft. It is 
superior to most metals in relation to its strength-to-weight ratio. 
Nanopolymers have been developed and have good properties and 
have become economical in manufacturing. It can also be used for 
engineering purposes, so we use gears, rollers, and structures made 
of Nanopolymers [7]. Label and the science of Nanopolymers 
originated and developed in an industrial environment, so it is 
natural for each polymer to have a common name, and a name 
based on its structure determined by the International Union of 
Pure and Applied Chemistry. Most Nanopolymers are identified 
by their initials. For example, polystyrene has the symbol PS 
from its name (polystyrene). Many companies use brand names to 
identify their polymer products. For example, Furrell-polyester is 
polyethylene terephthalate or PET fiber. The polymer may have a 
generic name such as rayon, polyester, and nylon [8].

2. Polymer Synthesis
Nanopolymers consist of structures consisting of identical 
repeating building blocks. These units, in turn, are made up of 
smaller molecules called monomers or monomers (plural of 
monomers) [9]. The monomers react with each other to form a 
polymer. The profile shows a propylene monomer and the repeating 
unit that makes up a polypropylene [10]. With the exception of 
the terminal group in the polypropylene chain, it consists entirely 
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of this repeating unit [11]. The number of such units (n) in the 
polymer chain is called the degree of polymerization or DP [12]. 
Other Nanopolymers, such as proteins, can be described by writing 
the approximate repeating unit as in the following figure [13].

Where the nature of R is variable (replaced by an atom or group 
of atoms) [14]. The changes that occur in the monomers affect the 
properties of the polymer such as elasticity, solubility, or tensile 
strength of the polymer [15]. These changes in the proteins can 
enable the polymer to have the appropriate structure, rather than 
a random coil [16]. Although most Nanopolymers are organic 
(that is, they are composed of a carbon chain), there are also 
inorganic Nanopolymers, and their chains are often based on 
a silicon origin [17]. The term polymer covers a wide range of 
molecules, including materials such as proteins and filaments that 
have high tensile strength such as Kevlar filaments [18]. The basis 
for differentiating Nanopolymers from other macromolecules 
is the presence of repeating units (monomers) in the polymer 
chains [19]. This occurs in the process of polymerization, in 
which the monomers are linked together to form a long polymer 
chain [20]. For example, the process of forming polyethylene or 
polyethene involves entangling thousands of units of molecules 
of the two together to form a chain with the repeating unit -CH2, 
Nanopolymers are often named after the constituent monomers 
of the polymer [21]. For example, polyethylene is represented as 
follows:

And because the distinction between Nanopolymers is often based 
on their constituent monomers, the polymer chains in any material 
do not have the same length [22]. This is unlike other molecules 
that consist of a certain number of atoms, and each molecule has 
a specific molecular weight [23]. The lengths of the polymer 
chains vary because the chains end in a random manner during 
the evolution of the polymerization process [24]. Proteins are 
nothing but amino acids in the form of a polymer [25]. From about 
a dozen to several hundred monomers that make up the chain, the 
sequence in which a protein is formed determines its properties 
and activity [26]. However, in these proteins there are so-called 
active regions, which are surrounded by what are believed to be 
structural regions, whose primary role is to display this active 
region(s) [27]. Therefore, the original sequence of the amino 
acid is of little importance, as long as these active regions can 
be accessed efficiently [28]. Since the formation of polyethylene 
occurs randomly, those who manufacture vital proteins and nucleic 
acids must have a catalyst (a substance that facilitates or speeds 
up a reaction) [29]. Since the 1950s, catalysts have played a major 
role in the manufacture of Nanopolymers [30]. With more control 

over the polymerization reactions, they made Nanopolymers with 
unique properties, such as the ability to emit colored light [31]. 
In order to obtain good properties of the polymer, several factors 
must be controlled [32]. This is because the polymer is actually 
made up of distributions of chains of different lengths, and each 
chain is made up of monomers that affect the properties of the 
polymer, some of these factors are described below [32].

3. The Physical Properties of Nanopolymers
The physical properties of Nanopolymers include the degree of 
polymerization and molar mass distribution [33]. Fork Branching 
can occur during the process of evolution of polymer chains [34].   
In the polymerization of radicals, this occurs when a chain winds 
back and bonds to an earlier part of it [35]. When this coil is broken, 
small fragments are left as buds in the main carbon chain [36].  
Branched chains cannot line up as closely together as unbranched 
chains [37]. This leads to less contact between the atoms in the 
different chains, and this reduces the chances of permanent dipoles 
occurring or induction can occur [38]. There are also parts of the 
chains with a low density [39]. Evidence for this is the low melting 
points and weak tensile strength of the resulting polymer, because 
the intermolecular forces are weak and can be easily broken [40]. 

4. Spatial Uniformity 
Stereo regularity or regularity describes the "isomeric" arrangement 
of functional groups on the carbon chain [41]. Chains that have 
an isotactic form are known to have the active groups present 
on one side of the chain [42]. This enables them to line up close 
together and form crystalline regions, resulting in a polymer with 
high hardness [43]. Conversely, the chains that have an atactic 
form, the groups in which are randomly distributed on the sides 
of the chain [44]. As a result, the chains are not linked together 
in a good way, and the intermolecular forces become weak [45].   
This results in a lower density and poor tensile strength, but a high 
degree of flexibility [46].  Clusters can also be distributed in a 
"syndiotactic" manner, in which the clusters are distributed in an 
inverse but uniform manner [47]. Since this is a type of regularity, 
the syndiotactic chains can organize themselves close to each 
other but of course not to the degree that they do in the isotactic 
chains [48]. Syndiotactic Nanopolymers have higher compressive 
strength and more than isotactic Nanopolymers   because they 
have higher elasticity due to weaker intermolecular forces [49]. 

5. Polymer Composition
Copolymerization , contribution is multiplied Copolymerization is 
a polymerization with two or more types of monomers [50]. An 
example of this is the monomers of the amino acids mentioned 
above, which make up proteins [51]. Copolymerization of different 
monomers results in Nanopolymers with different properties [52]. 
For example, two-to-low-density copolymerization of hex-1-
ene is a method for producing Linear Low Density Polyethylene 
LLDPE (read Polyethylene) [53]. C4 branchings produced from 
hexene reduce density and prevent the formation of crystalline 
regions in the polymer as happens In High Density Polyethylene 
(HDPE), this means that LLDPE can withstand tensile forces while 
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remaining flexible [54]. The next figure shows a specific type of 
copolymerization called capacitive polymerization [55]. In this 
particular type a small molecule is released during polymerization 
[56]. In the following reaction form a water molecule is released 
and nylon is formed [57]. And the type of nylon (its name and 
properties) can be controlled by the two groups R, R' used. Radical 
polymerization cationic polymerization Anionic polymerization 
condensation polymerization [58]. Chemical properties of 
Nanopolymers intermolecular forces [59]. 

6. Intermolecular Forces 
The attractive forces between polymer chains play a major role in 
determining polymer properties [60]. Because the polymer chains 
are so long, the attractive forces between the molecules are greater 
than the normal intermolecular forces [61]. Long chains are also 
amorphous (the way they are oriented is random) [62]. The shape 
of the Nanopolymers can be visualized as if they are long, many, 
tangled strands, and the greater the tangle, the more difficult it is 
to separate one of its strands [63]. These intermolecular forces 
lead to high tensile forces and raise melting temperatures [64]. 
Intermolecular forces are determined by the dipoles between the 
monomers [65].  Nanopolymers containing amide groups can 
form hydrogen bonds with neighboring chains [66]. The positive 
hydrogen atoms in the N-H groups of one chain are strongly 
attracted to the oxygen atoms of the C=O groups of the other chain 
[67]. These hydrogen bonds lead to, for example, an increase in 
the tensile strength and melting point of Kevlar. Polyesters have 
dipole-dipole bonding between oxygen atoms in C=O groups and 
hydrogen atoms in H-C groups [68]. Dipole bonding is not as 
strong as hydrogen bonding, so the melting temperature and tensile 
strength of polyethylene are lower than Kevlar, but polyesters 
have higher elasticity [69]. Polyethylene generally does not 
have a permanent bi-polarity [70]. The attractive forces between 
polyethylene chains result from weak van der Waals forces [71]. 
As if the molecules were surrounded by a cloud of negative 
electrons [72]. When two polymer chains approach each other, the 
electron cloud in each pushes against the other [73]. This reduces 
the electron density on one side of the polymer chain, resulting in 
a small positive charge on that side [74]. This charge is sufficient to 
attract the other polymer chain [75]. Van der Waals forces are very 
weak, therefore, polyethylene melts at lower temperatures [76]. 

7. Properties of Nanopolymers
Several laboratory techniques are used to determine the properties 
of a polymer, such as large-angle X-ray scattering, small-angle 
X-ray scattering, and small-angle neutron scattering, which are 
used to determine the crystal structure of a polymer [77]. A gel-
transmission chromatography technique is used to determine the 
average molecular weight number, and the average molecular 
weight and multiple-dispersion infrared spectroscopy using 
Fourier transform is used to determine the composition [78]. 
Thermal properties such as the glass transition temperature 
can be determined using differential scanning calorimetry, and 
mechanical and motion analysis [79].  Pyrolysis followed by 
analysis of small components is another technique for determining 

the potential composition of a polymer [80]. The polymer known 
as the polymer material is used in making banknotes in Australia 
and New Zealand and is used in commemorative banknotes in 
some countries [81]. 

8. Idea about Nanopolymers
Plastics started from nature, such as gum arabic and natural 
rubber [82]. And in the 19th century, scientists began trying to 
imitate nature [83]. In the twentieth century, when the need for 
rubber increased in World War II, German scientists were able to 
produce synthetic rubber [84]. It gives the same specifications as 
natural rubber and almost the same chemical composition [85].  
Nanopolymers are chemical compounds that are characterized by 
chain length, but the chain length that causes the large molecular 
weight of the compound results from the repetition of similar 
units in the same order along the chain [86]. Hence the compound 
is called a polymer [87]. The basic unit of a polymer may be 
composed of one or more substances [88]. The repeating unit of 
a polymer is called a monomer i.e. a lone unit [89]. For example, 
material A can react with itself under certain conditions and give the 
polymer A + A = A-A [90]. Among these examples is polyethylene 
used in the manufacture of plastic bags and so on, resulting from 
the interaction of ethylene with itself under conditions of high 
pressure and high temperature in the presence of a catalyst for the 
reaction, which is often from Metals The reaction is as follows: 
n CH2=CH2 → (CH2-CH2)n [91].  The molecular weight of 
ethylene is 28, but with the interaction of thousands of molecules 
together, a compound whose molecular weight may reach millions 
is produced [92].

9. Nanopolymers and Environmental Pollution 
Nanopolymers have become materials of great importance to 
modern life due to the diversity of purposes in which they are used 
and their suitability for these purposes, and the accompanying 
manufacturing possibilities for disposal in construction so that the 
output matches a specific function [93]. However, these materials 
are foreign to the natural environment, and therefore they are 
not subject to biodegradation, and if they are transferred to the 
environment, they remain in it, a form of pollution whose effects 
are exacerbating day after day [94]. Nanopolymers contribute to 
the distortion of nature as a result of the accumulation of waste, 
and may be a hotbed for the growth of insects and rodents [95]. 
Its waste has spread in the seas and oceans, and the movement of 
water has transported it to remote areas, and it has become a threat 
to fish [96]. The problem of disposal of these materials remains, 
as burning them leads to air pollution, in addition to the fact that 
this process is not complete and its effectiveness is not complete, 
for example, rubber tires burn, giving off thick smoke and bad 
smells. As for polyvinyl chloride, harmful hydrogen chloride gas 
is released from it [97]. 
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