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Abstract
Background: The repetitive nature of physical rehabilitation may result in excess muscular fatigue, which can adversely impact 
an individual's motor function, leading to discomfort or even physical injury. Moreover, individuals who have experienced trauma 
tend to encounter difficulties concentrating, which can significantly impede their physical capabilities. Regrettably, existing 
therapeutic approaches do not appear to consider the potential mental exhaustion of patients. This study aimed to create a 
bidirectional long short-term memory (Bi-LSTM) model for assessing muscle fatigue stage and mental stress conditions during 
physical rehabilitation of trauma-injured patients.

Methods: Data corresponding to 188 EMG signals and 223 ECG signals were collected from the Jimma University physiotherapy 
clinic and prepared for signal processing. Since the 4th-order Butterworth filter performs better than the other filters, it was 
chosen to denoise the data. The data were then split at a ratio of 60:20:20 to train, validate, and test the data. Finally, the 
developed Bi-LSTM model was deployed.

Results: The Bi-LSTM model achieved an accuracy of 95% for multiclass muscle fatigue classification, and 97% accuracy 
was achieved for the binary classification of mental stress. The GUI provides a setting appropriate for routine model usage.

Conclusion: The results indicate that monitoring the muscle condition and mental status of traumatized patients can be performed 
in a clinical setting for effective physical rehabilitation.
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1. Introduction
An upper arm injury has a significant impact on a person's 
performance, as most activities of daily living are highly 
dependent on the hand. Road traffic accidents (RTAs), war or 
conflict, and sudden falls are the main causes of upper arm 
injuries [1]. In Ethiopia, injuries are the third leading cause 
of hospital admission [2]. To restore the hand to its working 
condition, physical rehabilitation is the most effective way to 
treat upper arm injury through repeated isolated movements [3]. 
Due to the nature of the brain's plasticity, which is the capacity 
to alter and grow over time in response to its environment by 
forming new neural connections, increasing the therapeutic 

dosage, intensity of exercise, and execution of task-oriented 
exercises can promote plasticity and functional recovery [4]. 
Since rehabilitation exercises require controlled, repetitive 
movements, frequent exercise can result in muscular fatigue. 
Fatigue is described as a decline in physical performance as a 
result of a task or exercise being too intense [5]. It is a common, 
nonspecific symptom and a source of concern for those who are 
receiving physical treatment or training [6]. Muscular fatigue 
causes a change in stance and movement that raises the risk of 
injury, chronic fatigue syndrome, overtraining syndrome, and 
immune dysfunction [7,8]. It is also common for trauma-injured 
patients to experience mental stress [9,10]. Loss of concentration 
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is the most common mental reaction to trauma [11].

Studies are being performed to improve the efficacy of physical 
therapy by monitoring muscle fatigue. Traditional machine 
learning has been widely used in previous studies. In recent years, 
deep learning has been applied for the analysis of fatigue. Wang 
et al. used long short-term memory (LSTM) as a classifier for 
lower extremity muscle fatigue classification after performing 
a manual feature extraction method, and the model achieved 
an accuracy of 95.18% [12]. Another study used long short-
term memory (LSTM), an RNN, and a binary feedforward NN 
(BFNN) to predict different gesture fatigue levels in a variety 
of channels via the Daubechies 3rd-order wavelet to extract 
features of the EMG signal, and the results showed that the 
LSTM model performed better [13]. A study of the upper arm 
muscles during weight uplift was performed using 16 features 
of the EMG signal and the FNN, and an accuracy of 88% was 
found [14]. In the study of mental stress, Bi-LSTM models were 
used in emotion recognition to classify four emotion classes 
from the EEG signal with an accuracy of 84.2% [15].

The common approach to assessing muscle fatigue during 
physical rehabilitation is patient-report-based. However, this 
method does not provide complete information about the 
patient's muscle condition and is highly dependent on patient 

experience and physiotherapist expertise. The limited number 
of physiotherapy experts and neurologists, especially in third-
world countries, results in severe challenges. Additionally, the 
psychological conditions, such as mental stress, of traumatized 
patients, which may result in cognitive fatigue, are forgotten. 
The existing studies focus on physical fatigue that occurs in daily 
living activities using single physiological parameters. Moreover, 
end-to-end deep learning has not been widely applied. Hence, 
muscle fatigue that occurs during trauma injury rehabilitation 
exercises needs further analysis to determine whether this 
fatigue is due to the intensity of physical rehabilitation or due to 
the mental stress that the patient is experiencing, as this can also 
cause physical fatigue. Therefore, the aim of this study was to 
implement deep learning-based muscle fatigue and mental stress 
assessments for trauma injury rehabilitation.

2. Methods
A Bi-LSTM model was developed to detect muscle fatigue 
and mental stress from EMG and ECG signals, respectively. 
To develop the model, the data were collected, prepared, pre-
processed, and subsequently input to the training algorithm. 
The test data were subsequently input to the classifier, whose 
performance was assessed using a variety of metrics. Figure 
1 shows the general block diagram of the method used in this 
study.
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Subjects were informed about the experimental procedure and consented to confidentiality 

before the setup. The SCU-7 EMG system with reusable electrodes was used for data recording. 
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2.1. Experiment Setup
Subjects were informed about the experimental procedure and 
consented to confidentiality before the setup. The SCU-7 EMG 
system with reusable electrodes was used for data recording. 
Warm-up exercises were performed to prevent cramps or injury, 
and electrodes were subsequently placed on the flexor and 

extensor digitorum muscles of the dominant arm, as shown in 
Figure 2. Isometric exercises were selected because they can be 
easily performed and increase muscle mass [16]. For healthy 
subjects, the hand grasp was set at 25 kg for males and 15 kg 
for females.
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Figure 2. EMG signal recording and electrode placement 

2.2. Dataset preparation 

A study involving 40 healthy subjects aged 21–32 years and 7 with moderate severity score 

trauma injury aged 32–38 years was selected for EMG data recording during isometric 

contraction using a hand grip. The subjects had no muscle-related injuries, cardiovascular or 

metabolic diseases, or mental disorders. The study excluded pregnant patients, smokers, and 

patients who had prostheses or orthoses. The moderate severity scale was chosen to prevent 

patient risk during the experimental procedure. A total of 188 myoelectric signals were obtained 

from 40 healthy subjects and 7 injured datasets for each fatigue class. The wearable stress and 

affection dataset (WESAD) was utilized for mental stress analysis using various annotation 

methods and stress generation techniques based on arousal and valence [17]. The study involved 

15 subjects aged 24-35 years, with the exclusion criteria for pregnancy, heavy smoking, mental 

disorders, and chronic diseases. The biosignal data included ECG, blood volume, pulse, 
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positive and negative affect schedules, self-report questionnaires, a state trait anxiety inventory, 

Figure 2: EMG signal Recording and Electrode Placement

2.2. Dataset Preparation
A study involving 40 healthy subjects aged 21–32 years and 7 
with moderate severity score trauma injury aged 32–38 years was 
selected for EMG data recording during isometric contraction 
using a hand grip. The subjects had no muscle-related injuries, 
cardiovascular or metabolic diseases, or mental disorders. The 
study excluded pregnant patients, smokers, and patients who had 
prostheses or orthoses. The moderate severity scale was chosen to 
prevent patient risk during the experimental procedure. A total of 
188 myoelectric signals were obtained from 40 healthy subjects 
and 7 injured datasets for each fatigue class. The wearable 
stress and affection dataset (WESAD) was utilized for mental 
stress analysis using various annotation methods and stress 
generation techniques based on arousal and valence [17]. The 
study involved 15 subjects aged 24-35 years, with the exclusion 
criteria for pregnancy, heavy smoking, mental disorders, and 
chronic diseases. The biosignal data included ECG, blood 
volume, pulse, electrodermal activity, EMG, respiration, and 
temperature data. The data were labelled using positive and 
negative affect schedules, self-report questionnaires, a state trait 
anxiety inventory, and self-assessment manikins. From WESAD 

recordings, 238 ECG datasets were obtained, consisting of 223 
normal states and 15 stress classes.

2.3  Signal Pre-Processing
The EMG signals consisted of four classes: nonfatigue, low-
level fatigue, medium-level fatigue, and high-level fatigue. The 
signal is filtered using a bandpass Butterworth 4th-order filter, 
a notch filter, and a 3rd-order Butterworth bandpass filter to 
remove artefacts.

The WESAD dataset includes baseline, stress, amusement, and 
meditation classes and includes six sensor datasets. The data 
points in each class are labelled as normal, while stress signals 
are used under stress conditions. The dataset was balanced using 
the synthetic minority oversampling technique (SMOTE), which 
duplicates data points from the minority class to create a balance 
between classes. SMOTE was applied only to the training 
dataset to reduce overfitting problems. The class distributions 
of the ECG data for normal and understress patients before and 
after SMOTE was applied are shown in Figure 3.
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2.4. Signal Analysis
A random selection of five people was used to determine 
how muscle fatigue affects the root mean square (RMS) and 
median frequency (MDF) of temporal and frequency domain 
characteristics. Figures 4(a) and 4(b) show the MDF and 

RMS feature plots, respectively, in relation to the labelled 
classes. These two characteristics were selected because they 
are commonly used to analyse muscle fatigue based on EMG 
signals [80].
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and choose the model that performed the best. With an Adam optimizer, categorical cross-
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Figure 4: (a) Box plot of the RMS and (b) MDF of Five Subjects at Each Fatigue Level

The amplitude change in the average RMS and the frequency 
change in the average MDF were determined as muscle fatigue 
increased. As shown in Figure 4, an increase in fatigue results 
in an increase in the amplitude of the RMS and a decrease in the 
MDF.

2.5. Deep Learning Model
After the signals were properly preprocessed, the dataset was 
successfully divided into training, validation, and testing 
datasets at a ratio of 60:20:20 using the holdout strategy. After 
smoothing, the preprocessed signals were eventually fed to the 
Bi-LSTM model.

Additionally, 1D CNN and MLP models were developed to 
compare the accuracy of each model and choose the model 
that performed the best. With an Adam optimizer, categorical 
cross-entropy, a learning rate of 0.01, and 50 iterations, the 
hyperparameters were changed. An overview of the suggested 
model development is shown in Figure 5. The model's 
performance was evaluated using the accuracy, precision, 
recall, F-measure, confusion matrix, and specificity curve 
metrics. Figure 5 shows the general deep learning architecture 
implemented in this study.
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shown in Table 1. The same procedure was used for the EMG model. However, the 
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Figure 5: Shows the Structure of the Bi-LSTM Model
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Table 1: Class Distribution of the WESAD Stress Training Dataset

The classification of an input signal into one of several classes, 
together with a specific likelihood percentage of 100%, is 
ultimately made possible via a precisely designed graphical user 
interface within the streamlit environment.

3. Experimental Results and Discussion
3.1. Results
3.1.1. Experiment Results of the Deep Learning Model
The proposed Bi-LSTM model was found to be the most ideal 
model at 50 epochs for the classification of muscle fatigue and 
mental stress, as shown in Table 3. The accuracy, precision, and 
F1 score of the Bi-LSTM model for muscle fatigue classification 
are described in the confusion matrix in Table 2.
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Table 3. The F1 score, recall, and precision of the mental stress Bi-LSTM model with the confusion matrix are shown in Table 3.

Table 3. F1 Score, Recall, and Precision on the Confusion Matrix of the Bi-LSTM ECG Model

Figure 7 shows the accuracy and loss plot of the mental stress deep learning models at 25 epochs for binary classification. The 
precision, recall, and F1-score results are also shown in Table 3.
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An overview of the model user interface is shown in Figure 8. 
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Figure 7: Shows the Accuracy and Loss Curve of the ECG Signal

Table 4 shows the outcomes of 100% of the tests conducted using the proposed Bi-LSTM, 1D CNN, and MLP models.

Table 4: The Summarized Accuracy and F1 Score of the Muscle Fatigue and Mental Stress Models

3.1.2. Web-Based System Development
An overview of the model user interface is shown in Figure 8.



    Volume 2 | Issue 3 | 8 Int Internal Med J, 2024

 

 

Figure 8. General overview of the developed GUI on the (a) home page, (b) EMG classification 

panel, and (c) EMG classification panel. 

3.2. Discussion 

The common approach to assessing muscle fatigue during physical rehabilitation is patient-

report-based, and existing studies focus on physical fatigue that occurs in daily living activities 

without including psychological conditions such as mental stress in the traumatized patient. This 

study proposes the development of a deep learning model for the detection of muscle fatigue and 

the assessment of mental stress by using EMG and ECG signals during physical rehabilitation. A 

Bi-LSTM model was developed with an accuracy of 95% in multiclass muscle fatigue 

classification and 99% accuracy in mental stress classification. 

Figure 8. General Overview of the Developed GUI on the (a) Home Page, (b) EMG Classification Panel, and (c) EMG 
Classification Panel

3.2. Discussion
The common approach to assessing muscle fatigue during 
physical rehabilitation is patient-report-based, and existing 
studies focus on physical fatigue that occurs in daily living 
activities without including psychological conditions such as 
mental stress in the traumatized patient. This study proposes 
the development of a deep learning model for the detection of 
muscle fatigue and the assessment of mental stress by using 
EMG and ECG signals during physical rehabilitation. A Bi-
LSTM model was developed with an accuracy of 95% in 
multiclass muscle fatigue classification and 99% accuracy in 
mental stress classification.

In this study, good accuracy was obtained in four-stage fatigue 
classification by using an end-to-end deep learning method 
with optimal deep layers to help the model learn detailed 
features and avoid maximum voluntary contraction (MVC)-
based measurements, which cannot always be performed in 
clinical settings. A study that employed MVC-based upper limb 
isometric contraction to detect low-level fatigue by using wavelet 
decomposition based on selected features was performed with 
an accuracy of 83% [19]. Another study that was performed 
based on EMG signals in cyclo-ergometric exercise by using an 
SVM for a set of nine features obtained an accuracy of 82% [8].

Conclusion
Even though physical therapy is the most effective treatment 
for traumatic injuries, individuals with posttraumatic mental 
stress and/or muscle fatigue may experience a slower recovery. 

Unfortunately, existing clinical muscle fatigue evaluation 
systems are manual or subject report-based, and the mental 
condition of traumatized patients is not treated by considering 
posttraumatic mental stress, which is common in traumatized 
patients. Furthermore, the present muscle fatigue research 
focused on work-related muscular fatigue, leaving a gap in 
understanding the causes of fatigue.

In this study, a method for identifying mental stress and muscle 
exhaustion in trauma patients during physical rehabilitation was 
built using deep learning and EMG and ECG signals. To detect 
muscle fatigue and the presence of mental stress in traumatized 
patients during physical rehabilitation, the system addresses 
earlier shortcomings and now offers the ability to include other 
parameters that can induce muscle fatigue.
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