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Abstract

The fundamental frequency feature is essential for Automatic Speech Recognition because its
patterns convey a paralanguage and its tuning normalizes other speech features. Human speech is
multidimensional because it is minimally represented by three variables: the intonation (or pitch), the
formants (or timbre), and the speech resolution (or depth). These variables represent the hidden states
of the local glottal variation, the vocal tract response, and the frequency scale, respectively. Computing
them one by one is not as efficient as computing them together, so this article introduces a new speech
feature extraction approach.
The article is introductory; it focuses on the basic concepts of our new approach and does not elaborate
on all applications. It demonstrates that the unit of a cepstral value, which is a spectral value of
spectrums, is a unit of acceleration since its discrete variable, the quefrency, can be expressed in
Hertz-per-microsecond. The article shows how to produce refined voice analysis from robust estimates
and how to reconstruct speech signals from feature spaces. And it concludes that the pitch track of the
new approach is as good as two open-source pitch extractors.
Combining multiple processes, attenuating background noises, and enabling distant-speech
recognition, we introduce the Speech Quefrency Transform (SQT) approach as well as multiple
quefrency scales. SQT is a set of frequency transforms whose spectral leakages are controlled per
a frequency-modulation model. SQT captures the stationarity of time series onto a hyperspace that
resembles the cepstrogram when it is reduced for pitch track extraction.
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1. Introduction
At first glance at Figure 1, one can notice the parallel
curves in the spectrogram of the human voice (Figure 1a)
but not in the bird chirp (Figure 1b). These salient curly
harmonics of the voice render a hidden state that appears
contentious when connecting the dots. The spectrogram
graphs show snaps of spectrums, which is the energy
distribution of the frequency components, versus time.
The contrasts of the graphs in this article were adjusted

for printing such that the higher the energies, the darker
the pixels, but the energy scales were omitted, and the
color scheme can be reversed when printed on monitors.
The human speech has two features that are visible in the
spectrograms: the pitch and the harmonic intensities,
whose patterns can represent abstract concepts and boost
intelligence. In order to have artificial agents processing or
understanding spoken languages naturally, it is crucial to
realize a mathematical representation for speech that is

J Electrical Electron Eng, 2022 Volume 1 | Issue 1 | 01

Journal of Electrical Electronics Engineering



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4

3

2

1

0

Time (s)

F
re
q
u
en
cy

(k
H
z)

(a) Human Babble [1]
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(b) Canary Chirp

Figure 1: Spectrograms of Multi- and Mono-Resonance
Communication Systems

accordingly attuned since human intelligence and language
may appear tangled up during development.

Voice producers flap in response to changes in internal air
pressure, air molecules are compressed and released
periodically, and the pulse shape makes speech signals
transmittable through air. The linearly-spaced curves in
the spectrogram are the outcome of a periodic time signal
that is locally stationary. Hence, the periodicity and the
period shape fluctuate slowly when compared to the
sampling rate. In the spectrograms, the more the signal is
locally stationary, the sharper the curves are. The time
distance between two adjacent compressions (i.e., bursts,
pulses, or cycles) is the wave period (T0), measured in
seconds per cycle (1/Hz). The wave-interval is the
reciprocal of the minimum frequency shift between two
harmonic curves, as in Equation 1. This minimal shift is
the speech fundamental frequency (f0). Per context, it is
also the pitch and the frequency carrier. However, being in
an air medium as its communication channel, the signal’s
actual periodicity is measured in meters per cycle. The λ0

and υ in the equation are the corresponding wavelength
and the speed of sound in the channel. Although the
variables are time variants, the υ is usually assumed to be
constant, but the temperature, humidity, and wind speed,
all of which slightly affect υ, are not constant along the air
paths from the speech producer (vocal folds, cords, or
glottis) to the speech receivers (eardrums’ cochleas,

microphones, and acoustic beamformers).

T0 = λ0/υ = 1/f0 (seconds per cycle) (1)

In Figure 1b, the transitioning of the birdsong f0 is
constrained in the producer’s hyper-coordinates, but the
f0 observations are projected onto the two-dimensional
spectrogram. The projection onto the periodicity space is
non-linear since the f0 teleports in the spectrogram as
though two frequencies (such as 1 kHz and 4 kHz) are
identical because there are unaccounted independent axes.
For example, the fundamental waveform of the canary is
visually rotated around a time-variant axis parallel to the
time axis, and its perimeter path renders a visual effect of
cylinders that are visible. Assuming the bird’s mono f0
was traveling with a constant angular velocity in a polar
coordinate, the inferred radius of a pictured cylinder is
about 1 kHz and centered at 2 kHz.

Similarly, the infant voice in Figure 1a appears with a
deeper voice during an emotional outburst, between
Second 3.25 and 3.6. The event is noticeable in the figure
and also in the audio playback. The tone-change
phenomenon, which usually happens during puberty,
doubles the fundamental interval and folds up the spectral
code bandwidth. This creates the speech resolutions. Deep
and high human voices are not represented equally in a
telephone bandwidth (within 4 kHz). Additionally, there
have been several frequency scales, and the variable
scaling of the spectral bandwidth appears to have been
one of the main challenges in Automatic Speech
Recognition (ASR). In order to normalize the speech
features, the speaker’s pitch must be considered during the
feature extraction process.

Per the juxtaposition of the two spectrograms, the human
voice has a fundamental waveform, whose shape
transformed in the figure at a relatively slow pace, and
each of whose parallel spectral curve produced a
component. The spectral energies of the harmonic
components are mainly the speech features. The harmonic
components can also be called timbre or overtone series.
They function as the frequency-modulating signal and the
vocal tract response, denoted B in this work for modeling
the speech system. According to Stefanatos et al. [2], the
human perception of speech is similar frequency
demodulation. If the parallel curves were the openings of
window blinds, a few shaded patterns would appear
behind the blinds. The shaded patterns are the formants,
and their mixtures’ variations compose the phonemes. A
phoneme is a distinctive sound, resulting from convolving
the multitone signal with the formant system, as
illustrated in Figure 2. The human speech consists of these
components, which are conveying the hidden shape of the
spatial cavities of the vocal tract (the nasal and oral
cavities). The collective shape of the tract is a system
through which the molecules’ excitations of the
fundamental waveform pass. The output of the
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modulating system is the speech signal, which, due to its
local stationarity, consists of recognizable time units.
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Figure 2: Phoneme Representation in the Spectrum

Unlike the birdsong but like many mammals’ sounds,
human speech consists primarily of the multitone signal
that travels through a multi-resonance vocal system, and
it is characterized by local periodicity as sketched in
Figure 3. Equivalently, in the frequency domain, as shown
in Figure 2, the glottal train of the multitone signal is
multiplied by a Gaussian Mixture Model of the formants.
The periodicity, hence the fundamental frequency f0,
controls the frequency spacing between the elements of the
speech code in the channel bandwidth, and high speech
components are attenuated. Two commonplace
approaches to pitch and speech feature extractions are
modulation-based and are applied to the frequency
domain. The Fast Fourier Transform, albeit invaluable for
several applications, can complicate some speech
processing tasks such as f0 tracking. Also applying the
Fourier and/or the Cosine Transforms twice for the
quefrency domain does not normalize the speech features.
Bogert [3] coined the term quefrency, which was derived
from the term frequency; compare qu-e-fr-ency and
fr-e-qu-ency. The quefrencies are sometimes regarded as
the inverse of frequencies. The next section (Section 2)
goes through a brief review of the related literature.
However, for the SQT methodology in Section 3, the
quefrencies are simply frequencies of frequencies. Then, an
SQT algorithm for pitch extraction is defined in Section 4,
tested in Section 5, and analyzed in Section 6. The
analysis section (Section 6) discusses further findings. The
article is concluded by a summary, implications, and
future work.
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Figure 3: Pulse Trains

2. Related Work
The pitch track represents the glottal state, and it can be
extracted from speech signals in several ways. The points
of strengths of some approaches complement the points of
weaknesses of other approaches, and so the features of
their methods can be combined in some applications. In
this overview, a few examples are highlighted for their
unique specifications, but there are many methods to
extract the pitch track in literature. Even though several
techniques had existed for pitch extraction according to
Rabiner et al. [4], it was still one of the most
computationally demanding modules according to Hess [5].
The leading methods include Normalized Correlation
Function (NCF), Pitch Estimation Filter (PEF),
Cepstrum Pitch Determination (CPD), and Mel-Frequency
Cepstral Coefficients (MFCC). Generally, the pitch track
methods operate in the temporal, spectral, and cepstral
domains. ”It is about transforming data from passive to
active, from static to dynamic - transforming data into
insight. Now, all of this demands a new approach to
information technology from the approaches of the 80s or
the 90s,” Carly Fiorina said at Oracle OpenWorld 2004.

In the time domain, the signal can be matched with its
lagged versions using auto-correlation, which is one of the
basic methods for pitch extraction, as shown by Rabiner
et al. [4]. Since the speech signal is assumed to be
stationary, it can be compared with itself, and the self
similarity is measured high when the lag matches the
wavelength. Another general way to estimate the pitch is
from the number of the zero crossings or the sign flipping.
In the frequency domain, the spectral components of the
signal are obtained first, as has been shown in the
spectrogram. Since the speech signals have overtones, the
frequency components can indicate the fundamental
frequency. A common spectral method is the harmonic
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product spectrum, which De La Cuadra et al. [6] showed
effective in adjusting acoustic instruments, but it is very
prone to noise, and so it may not be used for speech pitch
tracks. Moreover, the instantaneous frequency and phase
can be combined with the time analysis to extract the
pitch track, as shown by Kawahara [7], Charpentier [8],
although reacquiring high frequency resolutions. Pitch
Estimation Filter (PEF) uses the frequency domain, and
its performance is in Section 5. In the cepstral domain,
which is commonly used as the power spectrum of the
logarithm of the power spectrum according to Bogert et al.
[9], Noll [10], Oppenheim and Schafer [11], the pitch track
and its overtones become separated from the fromant
features, and cepstral filtering, also known as liftering, is
applied to identify the pitch track from the overtone
lookalikes. Examples of this approach are Cepstrum Pitch
Determination (CPD) and Mel-Frequency Cepstral
Coefficients (MFCC). The equation for calculating the
cepstrum is defined as F−1log|F{•}| where F{•} denotes
a forward Fourier transformation,
e−jθ = cos(θ)− j · sin(θ), and j =

√
−1 according to Lathi

and Green [12]; hence, Equation 2.

p[n] =
1

c

c−1∑

m=0

ej2π
nm
c log

∣∣∣
c−1∑

u=0

e−j2πmu
c s[u]

∣∣∣ (2)

The main concern of the pitch track methods is
differentiating between the pitch and its first overtone.
The tones that are one unit octave apart from the true
pitch track are lookalikes since they have in-common
components. Using the Normalized Cross-Correlation
(NCF) method, Talkin [14] showed three tones that two of
which were lookalike noises. Also the methods by Talkin
[14], Ewender et al. [15], Atlas and Janssen [16], Li and
Atlas [17] were not instantaneously able to filter the pitch
from its partial harmonic components. Similarly, the
overtone ambiguity is present in the Mel-Frequency
Cepstral Coefficients (MFCC), which is considered one of
the best speech feature extractions as it has been proven
robust in various speech applications according to
Ganchev et al. [18]. To visualize the pitch ambiguity in
the MFCC features, consider the MFCC cepstrograms of
four utterances in Figure 4, which depicts the first
hundred MFCC features versus time. A cepstrogram is a
spectrogram of spectrograms, and quefrency is the
independent variable of the cepstrum just as frequency is
so of the spectrum. In the first cepstrogram (Figure 4b,
the utterances were isolated and did not have background
noise. However, in the second cepstrogram (Figure 4c, the
utterances were coupled by child cries. In the first graph,
the overtone noise appeared in the two words that were
uttered by female voices. For example, there were two
tones at 0.5 second. In the second MFCC graph, the
background noise appeared distorting the pitch track.
There are two strategies to mitigate the drawbacks:
combining and smoothing. In the first strategy, the pitch

ambiguity are circumvented by putting together the pitch
tracks of various methods according to Moorer [19]. Since
the various features of the methods may be partially
independent, putting them together may reduce the
collective number of their blind spots. For
example, Zahorian and Hu [20] combined observation
candidates from more than one pitch detection approach
in the ”Yet Another Algorithm for Pitch Tracking”
(YAAPT). The other workaround is smoothing. Since the
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(a) Spectrogram of Utterances, from Kepuska [13]
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Figure 4: Cepstral Perplexity of the MFCC Pitch Tracks
(Generated in Python by Librosa)
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pitch track is likely not to have abrupt changes due to the
stationarity, multiple observations may stabilize the
reading and filter out the outliers. Although the temporal
averaging has been used to address the main concern by
Kawahara et al. [21], it obviously lowers the detection
quality, especially at the edges of the voice activity
intervals. The original characteristics of the data get
corrupted when mean filters are applied on the pitch track.
Generally, the bulk of the algorithms in the literature
perplexes with the overtones because of the f0 harmonic
characteristic. Sometimes, human perception regards them
more similar than other tones. However, the ambiguity in
f0 should not exist in the acoustic frontend since human
beings can easily differentiate between the speech depths.

”It is about transforming data from passive to active, from
static to dynamic - transforming data into insight,” Carly
Fiorina said at Oracle OpenWorld 2004. The MFCC
cepstrograms in Figure 4 are not as good as the SQT
cepstrograms in Figure 5 for several reasons. First, SQT
has a flexible quefrency scale while the MFCC series is
fixed. Consequently, SQT can provide higher cepstral
resolutions than MFCC does. For example, the MFCC
resolution in Figure 4b is lower than the SQT cepstral
resolution in Figure 5a. Second, SQT may satisfactorily
lifter out the overtone noise where MFCC struggles with
the overtone noise of the high voices. Therefore, SQT
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Figure 5: SQT Cepstral Features (SQT, Python)

appears to be more suitable in crosstalk applications than
MFCC does. For example, the separation between the
simultaneous pitch tracks in Figure 4c is not as good as
the feature separability of SQT in Figure 5b. The SQT
methodology attitudes the resolution of the speech noise.
It is analogous to the human ability to tune to one speaker
and have the ambient voice disregard (or suppressed and
blurred). Third, SQT is not prone to white noise as
MFCC is, and so it is more suitable than the cepstral
approaches for distance pitch extraction. When the
speaker is a few meters away from a low quality
microphone, the signal-to-noise ratio can become small
even when the background noise is not speech. Because
the SQT approach is designed based on a human speech
model, its cepstrograms are good for pitch track extraction
in the case of distance speech recognition when compared
with the cepstral approaches. For these reasons, the SQT
cepstrograms are novel and distinctive. The SQT
flexibility in terms of quefrency scales and cepstral
resolution makes it practical for a wide range of
applications, as it enables custom quefrency distribution,
multi-speaker, and distant (far field) pitch track
extractions. The SQT approach is noise resilient because
it is based on sound theorems and numerical proofs as
shown in the next section.

3. Approach
The acoustic perception is receptive to
frequency-modulated signals. From Lathi and Green [12],
the amplitude of a single tone can be modulated into a
Direct Current (DC) value when it is multiplied by a
similar tone, as in the frequency demodulation derivation
in Equation 3. The filter is similar to the tone when their
frequencies are matched (f1 = f2) and their phase is
synchronized (ϕ1 = ϕ2). The DC value (2B) is obtained
by taking the arithmetic average of the result of that
multiplication. As shown in the MFCC cepstrogram
(Figure 4), the quefrency domain is a sophisticated speech
feature space since it separates between the voice feature
and the tract feature, but there is a need for a new model
to overcome the cepstral drawbacks. Liftering the
cepstrum to locate the pitch track after its construction is
hardly useful. The cepstral filtering has to be integrated
before hand in the spectrograms, whose frequency bands
can be wide and narrow. In our new approach, the bands
of the spectrograms respond to the desired cepstral
sinusoide filters, which measure cycle accelerations. In a
multi-dimensional SQT method, responsive spectrograms
are generated by Speech Quefrency Transform and are
then reduced in dimensionality to produce the SQT
cepstrogram.
Quefrency is simply a measurement of acceleration. This
can be derived directly from the relevant definitions when
they are applied on a spectral impulse train. In simple
words, a frequency shift changes the cycle velocity. Some
people may argue that the cepstrum looks like the time
space as it is commonly used for lossy compression, and
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Filter · Tone = 2A cos(αf1 + ϕ1) · 2B cos(αf2 + ϕ2)

= (A e−iαf1e−iϕ1 +A eiαf1eiϕ1)(B e−iαf2e−iϕ2 +B eiαf2eiϕ2)

=
∣∣∣
f1=mf2

AB e−iαf1(1−m)e−i(ϕ1−ϕ2) +AB eiαf1(1−m)ei(ϕ1−ϕ2)

+AB e−iαf1(1+m)e−i(ϕ1+ϕ2) +AB eiαf1(1+m)ei(ϕ1+ϕ2)

= 2AB cos(αf1(m− 1) + ϕ2 − ϕ1) + 2AB cos(αf1(m+ 1) + ϕ2 + ϕ1)

=
∣∣∣
ϕ1=ϕ2, m=1, & A=1

2B︸︷︷︸
DC Value

+2B cos(2αf1 + 2ϕ1) (3)

thus its unit must be seconds, but this is not necessarily
true. Some spaces retain similar characteristics; however,
they have different units. For example, the second
derivative of f(x) = x3 is monotonically increasing just
like the original function, yet f(x) and f ′′(x) have different
units. However, if the unit of F (x) is meters per second
and the unit of x is second, then the unit of F (F (x)) is
meters per second squared, which is a unit of acceleration.
While frequency measures the velocity (cycles per second),
quefrency measures the acceleration of the cycles.
Additionally, while the speech time samples have positive
and negative values oscillating around a zero mean, the
speech frequency samples are usually represented with
positive energy magnitudes, each of which has an angular
phase whose range is in [0, 2π) radians (rad). However, the
spectral components can have negative values. For
example, the real part of the energy vector is considered
negative in the third and fourth quarters: [π, 2π) rad.

The spectral oscillating function of the SQT approach is
attainable by applying the well known theories of Fourier,
Stone-Weierstrass, and Nyquist on the frequency domain.
Per Fourier, the quefrency filter osculates in the frequency
domain; in other words, positive and negative frequency
bands (or banks) have to be designated for each cepstral
filter. Based on Stone-Weierstrass Theory, the
time-bounded spectral signals are approximated by sums

1 2 3
−1

1
t (λ0 s)

Frequency Filter

1 2 3
−1

1
f (f0 Hz)

Gaussian Mixture ≈ cos(2π 1
f0
f) |0.5<f0f<3

Figure 6: A Cosine Function & Its Third-Order-Gaussian
Approximation

of polynomials. Therefore, for the real quefrency filter, the
cosine function can be approximated by its first M
exponential terms, as in Equation 4. Note that the
exponential terms are mixture of Gaussian windows, as
shown in Equation 5. Figure 6 demonstrates that there is
negligible difference between the cosine function and its
approximation when the independent variable is in the
range (0.5,M). Based on Nyquist Theory, the SQT
approach requires that the width of the main lobe of the
window function be less than or equal to f0/2. This is
because the spectral oscillation requires an alternating
sign.

cos(2πλ0 f) ≈
M∑

m=1

e−(f−m·f0)2/σ2 − e−(f−(m−0.5)·f0)2/σ2

(4)

wg[u] =





f0
2fs

· e−
1
2 ·
(
u

f0
fs

−1

)2

, if u ∈ {1, 2, · · · , ⌈2fs/f0⌉}
0, otherwise

(5)

The cosine function is directly applicable in the time
domain but may not be directly applicable in the
frequency domain. One possible way to construct a
spectral sinusoide filter is designing an all-pass filter whose
phase curve approximates a cosine function. Another
hypothetical way is to design an all ripple frequency
response. However, both of them are not straightforward
as we found out. The practical method is to obtain one
component at a time. The computational complexity of
the multi-dimensional method increases linearly, while the
other two methods factorially, which is faster than
exponentially. The quefrency model, therefore, should be
constructed by a set of temporal sinusoidal filters whose
frequency responses assemble spectral sinusoidal filters
when they are aggregated. In either methodology, the
window function has to vary per quefrency and should be
applied on the frequency filters to assemble the quefrency
filters. The proof in the previous section is shown using
Gaussian window because of its simplicity, but the window
does not have to be Gaussian. As long as the conditions
are met, several other windows can be applied. For
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example, because Parseval’s Theorem is defined on
rectangular windows, as in Equation 6, extracting the SQT
features using rectangular windows gives accurate energy
extraction and signal reconstructions. However, the SQT
matrix of rectangular windows is two times bigger than
the SQT matrix of Gaussian windows. This is because the
optimal main lobe width of the Gaussian window is f0/2.
Meanwhile, the optimal main lobe width of the rectangular
window is f0/4, as shown in Figure 7 and Equation 7. In
the figure, the sinc mixture is depicted with M = 4, and
its equation converges to a cosine function in the interval
between 0.5 and M as M → ∞. For that reason, the
rectangular window of SQT is defined in Equation 8.

This section presented the SQT approach, which
constructs quefrency filters by utilizing the spectral
leakage of the windowing filters. Note that, once the signal
is in frames (convolved by sliding), the speech sequence is
re-sampled from the sampling rate to the frame rate (Rs),
which is measured in frame-per-second. Because speech
exists once it is in a physical medium, the original unit of
its cycles is in meters (or miles), and so quefrencies are
accelerations just as frequencies are velocities (cycles per

second). The section covered the Gaussian and
rectangular windows, but other windows may be
applicable as well. For example, The Dolph-Chebyshev
window may distribute the spectral noise uniformly
according to Ykhlef et al. [22], so its pitch tracks may be

RMS[t] =

√
1

c

∑

u

s2[u, t] ≈
√∑

m

B2[m, t] (6)

cos(2πλ0f)
∣∣∣
0.5<f0f<M

≈
2M∑

τ=1

(−1)τ · sinc
(
(f − τ/2) · λw[n]

)

(7)
∣∣∣ sinc(x) = sin(πx)

πx

wr[u] =

{
f0
4fs

, if u ∈ {0, 1, · · · , ⌈4fs/f0⌉ − 1}
0, otherwise

(8)
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more noise resilient than other windows. Nevertheless, to
center the measurements, it is crucial that the number of
cycles inside the window be even. While the rectangular
window has speech recognition applications, the Gaussian
window appears sufficient for extracting the pitch track.
Therefore, this article continues with the Gaussian
window. Figure 8 shows the filtering implications of the
SQT approach when it encounters undertone and white
noises. These two types of noises are likely to be canceled
out in their mean filter values because they tend to have
equal powers (or energies) at the positive and negative
sub-bands of the quefrency filters. To show how to utilize
the SQT approach using the multi-dimensional method,
the next section defines three quefrency scales and an
algorithm that includes further cepstral filtering.

4. Procedures
Speech signals are continuous with an infinite sampling
rate (fs), but they become time-discrete when sampled or
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Figure 8: SQT Filtering

digitized. The sampling rate (fs) is 8 kHz in the
telephonic narrowband applications and is 16 kHz in the
multimedia wideband. The sampled speech series is then
again discretized to time frames, as shown in Figure 9. In
the figure, the frame rate (Rs) was lowered only for
simplification, but there has to be some overlapping
between the adjacent frames. From Frame 1 of the
Onward utterance, the pitch is roughly 200 Hz since the
wavelength (period or cycle interval) appears at 5 ms. The
sampling rate of the auditory and the visual perceptions
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Figure 9: Window Sliding by Frame Rate Rs
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RLin[n] =
{
r : r = fmin + (fmax − fmin) · n/N, n ∈ {0, 1, · · · , N}

}

RGeo[n] =
{
r : r = fmin · (fmax/fmin)

RLin[n]/N · n/N, n ∈ {0, 1, · · · , N}
}

(9)

RRec[n] =
{
r : r = 1/(1/fmin + (1/fmax − 1/fmin) · n/N), n ∈ {0, 1, · · · , N}

}

may be relevant. For example, 60 frames per second (fps)
is considered a high frame rate standard for video, and it
may be so as well for the audio frame rate (Rs). Although
fs is proportional to the frequency range, it does not have
a direct relationship with its in-frame resolution. The
frequency resolution relies on the window interval (span or
length). In other words, one needs to increase the window
length to measure lower frequencies. Human hearing may
perceive frequencies down to 20 Hz according to
psychoacoustic experiments by Wölfel and McDonough
[23]. The spectral range of the audio instruments is above
50 Hz according to Rabiner and Gold [24], and the speech
volume at 50 Hz is considered to be the lowest level in the
standardized acoustic loudness contours according to
Standard of International Organization for
Standardization [25].

Three quefrency scales are applied in Figure 10 and
defined in Equation 9; they are: Linear-Space, (RLin),
Geometric (RGeo), and Reciprocal (RRec). From the
bandwidth of the three pitch tracks in the figure, one can
see why the geometric scale is better than the linear and

reciprocal spaces. It is because the SQT geometric scale
distributes the cepstral pixels moderately. On the other
hand, the resolution of the linear space is biased toward
high quefrencies while the resolution of the reciprocal
space is biased toward low frequencies. It is commonly
believed that human perception differentiates between
deep voices better than it differentiates between high
voices. This is similar to both the reciprocal scale and the
MFCC scale. It is worth to note that the cepstral
resolution (N) in the SQT figure (Figure 10c) is ten times
higher than the cepstral resolution in the MFCC figure
(Figure 4b). However, the information gain of the pitch
track can be increased when the quefrency scale represents
the speakers’ distribution regardless of the listeners’
perception. For that reason, we prefer the geometric scale
to the linear and the reciprocal scales (R[n] = RGeo[n]).

When the spectral resolution is M pixels and the cepstral
resolution is N pixels, the complex SQT transformer of the
multi-dimensional method is defined in Equation 10, and its
real part is depicted in Figure 11, where the ⌈•⌉ operator
rounds up the • value to the nearest integer. In the SQT
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u

R[n]
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−1

)2

2fs/R[n] cos(fi(u− c
2 ) + k), if fi ≤ π & |u− c

2 | ≤
fs

R[n]

0, otherwise

(10)

∣∣∣ k = (⌊v/N/M/2⌋ mod 2) π/2, fi = 2π(m− d/2 + 1) R[n]/fs
∣∣∣ d = ⌊v/N/M⌋ mod 2, m = ⌊v/N⌋ mod M, n = v mod N,
∣∣∣ v ∈ {0, 1, · · · , 4MN − 1}, u ∈ {0, 1, · · · , c− 1},
∣∣∣ and c = ⌈2fs/R[0]⌉
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Figure 11: SQT Matrix

matrix (T ), all harmonic filters of an f0 value are measured
in the same window. Additionally, the maximum window
length is defined by the minimal quefrency (R[0]) in the
equation, as has been explained: The interval of the sliding
frame corresponds to the lower limit of the fundamental
frequency since fmin is reciprocal to the number of cycles
in the window. At least two f0 cycles must be enclosed
in the frame to be able to detect the local stationarity of
speech signals, as in Frames 2-4 in Figure 9. From the
demodulation perspective, the quefrency of filter has to be
at least double the frequency of the modulated signal. That
is, based on Nyquist theorem, at least two cycle observations
are necessary for a reliable detection. The minimal window
interval required to detect f0 without aliasing is f0

2 .

Feature engineering steps of an SQT processare
summarized in the block-diagram of Figure 12. These
steps obtain the pitch track and an M × N responsive
spectrogram, with both of which, the speech series may be
approximated (or reconstructed) back. SQT is applied by
matrix multiplication with the Frame Matrix, shown in
Figure 9: Frames × T . In the multi-dimensional SQT
space, two binary variables (d and k) expand the speech
dimensions into the real (d = 0) and imaginary (d = 1)
parts and the positive (k = 0) and negative (k = 1) parts.
In the diagram, the two dimensions are reduced once they
are extracted. The Distance values are obtained from the
real and imaginary parts using Pythagorean theorem
(|B| =

√
B2

ℜ +B2
ℑ). The Rectify values are obtained by
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Figure 12: Hyperspace Reduction Paradigm

subtracting the negative part from the positive part and
zeroing the negative values: max(B+ − B−, 0). It can
optimally be preceded with a linear mean filter along the
time axis to smooth the high harmonic components. The
remaining dimensions are the spectral (m) and cepstral
(n) dimensions. The Multiply operator is a non-linear
multiplication filter that is applied along the m-axis. It
multiplies the adjacent harmonic terms to filter the
overtone noise. In this process, it is applied on the
responsive spectral domain to lifter the cepstrogram just
as the window is usually applied on the temporal domain
to filter the spectrogram. Finally, to obtain the pitch
track, The m and n dimensions are reduced by Aggregate,
which returns the sum along the m dimension, and

ArgMax, which returns the n index along the last
dimension. The n index, which is defined in the quefrency
scale, is then used to slice the Distance matrix.
Additionally, to obtain the filtered cepstrogram, the
Aggregate operator is applied along the n-axis. More
operators may be added to this minimal example for the
applications other than the pitch track extraction.

Figure 13 shows the outputs of an extraction example
whose N is 50, M is 32, and R̂s is 30. The first graph
(Figure 13a) depicts the real and imaginary parts of its
complex responsive spectrogram (B). The cepstral
resolution shown in the cepstrogram of the second graph
(Figure 13b) is much lower than the one in Figure 5a. The
third graph (Figure 13c) plots the pitch track by applying
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the ArgMax operator on the low resolution cepstrogram.
The edges of the pitch track appears sharp, as premised.
Another output example is in Figure 14, whose estimator
is compared with the original frames of Figure 9. This
time, the quality of the pitch extraction was tested by
reconstructing the original speech signal using the complex
spectra. A linear-interpolation formula for the
reconstruction is simplified in Equation 11, which
embodies a modular function (Equation 12) and a limiting

compressor with a normalized threshold: α ∈ [0, 1). To
use this formula, the actual frame rate (Rs) during the
feature extraction must be updated by Rs = fs/⌊ fs/R̂s ⌋,
when R̂s is estimate by end-users. Speech utterances
sound natural when they are carried on the f0 pattern.
For instance, the syllables of verbs are emphasized
differently than those of nouns. Consequently, the pitch
track is one of the most important speech feature in
Natural Languages Processing. According to Albert
Mehrabian [26], the nonverbal human tone carries shades
of meanings. The emotions, such as happiness and
sadness, may correlate with the pitch pattern according
to Green et al. [27]. As annotated in Figure 13c, the pitch
tracks can highlight some parts of speech, and the alerting
acceleration may be crucial for Wake-Up-Word
recognition.

5. Results
In the previous sections, we showed the output of the
approach by high cepstral resolutions; however, the pitch
track can be extracted by lower time costs. This section
shows that the multi-dimensional SQT methodology is
relatively robust when implemented in Central Processing
Unit (CPU) environments. The section compares our
method with Pitch Estimation Filter (PEF) by Gonzalez
and Brookes [28] and the Normalized Correlation
Function (NCF) by Atal [29]. This comparison, which was
based on an independent pitch extraction test and an
independent pitch labeled dataset, was conducted because
PEF and NCF appeared better than three other pitch
extraction techniques in the Mathworks
[30] documentation: Cepstrum Pitch Determination by
Noll [10], Log-Harmonic Summation by Hermes [31], and
Summation of Residual Harmonics by Drugman and
Alwan [32]. For this evaluation, the resolution parameters
(M and N) were lowered in an early Matlab SQT
implementation such that its average extraction time was
slightly similar to the average extraction times of the PEF
and NCF implementations that were available in the
Matlab Signal Processing toolbox, as shown in Table 1.
The Gaussian SQT matrix had twelve-sized spectrums
(M = 12), but only the first five tones were used to
estimate the pitch track.
The performance metrics in the comparison are
thresholded Gross Pitch Error (GPE) and Root Mean

Table 1: Time Complexities of Pitch Track Extractions in
Matlab

Matlab Implementations Average Extraction Time* (%)
PEF 18.14
SQT 8.29
NCF 6.57

* Normalized by the average extraction time of a twelve-sized
Fast Fourier Transform, which took 0.007 seconds in that
machine on average.
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ŝt[u] =





M∑

m=1

b[t, u] · sin( 2π · pm[t, u] + π/4 ), if fm[t, u] ≤ 0.5

0, otherwise

(11)
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Square Error (RMSE). The thresholded GPE is a test of
significance; it measures the probability that an extracted
value is not within a percentage of its corresponding label
value. It is used to decide whether the error of an
application is acceptable or not; however, it does not show
the variance of the error. On the other hand, RMSE
measures the standard deviation from the error, and so it
shows the scale of the error. In this case, 68.27% is the
probability that error is less than the RMSE value, and
99.73% is the probability that error is less than three
times the RMSE value. The smaller the divergence, the
better. The metrics are defined in Equation 13. The
metrics are measured under two types of common noises
(white and turbine noises) and under three
Signal-to-Noise-Ratio settings (20dB, 10dB, and 0dB).
The background noise in the 0dB setting is on average as
loud as the speech signal; 0dB is louder than 20dB. The
noises were generated and mixed by a predefined Matlab
function. The result of each metric was the average of 30
tests, determined at the most fitting GPE lags between
the extracted pitch tracks and the target label values.

GPE-ξ = P ( |f̂0 − f0| > f0 · ξ/100 )

=
1

T

T∑

t=1

x[t]
∣∣∣ x[t] =

{
1, if |f̂0[t]−f0[t]|

f0[t]
> ξ/100

0, otherwise

RMSE =

√√√√ 1

T

T∑

t=1

∣∣f̂0[t]− f0[t]
∣∣2

(13)
Unfortunately, there was not an abundance of reliable
labeled data when the experiments were being conducted,
so the data of the verification was narrowed to a
low-volume dataset known as the Fundamental Frequency
Determination Algorithm (FDA) evaluation database by
Bagshaw [33] although it had missing labels. The labels of
the transitioning states to and from the speech activity
segments were also missing in several other datasets.
Therefore, the sharp edges in the pitch tracks may not
have been counted in the averages. The f0 targets of the
FDA data are labeled at 20 kHz sampling rate of a
5.53-minute audio of male and female speakers. The audio
was downsampled to 8 kHz before the extractions’
evaluations to increase the difficulty for the pitch
extractors. The outputs of the methods were also
post-processed using a size-three median filter. The
utilized platform was Matlab Online 2019b (9.7.0).
Figure 15 compares the GPE of the three thresholds: 5%,
10%, and 20%, where 20% is the least strict requirement
or threshold of the three. The common threshold for the
pitch extraction application is 10%. The figure shows that
the p-value of the three methods was less than 5% when
the observed value was 20%, and was less than 10% when
the observed value was 10%, but the significance of the
three methods was not as expected when the observed
value was 5%. In either case, the figure also shows that
the SQT null hypothesis is less likely than the PEF and

NCF null hypotheses. The difficulty of the task was
further increased by the adding additive noise.
Figures 16a and 16b repeat the verification but with the
white and turbine noises. The tests were repeated with the
different levels of SNRs. For the 10% observed value case,
the figures show that the p-value for SQT remained less
than 10% under the 20 and 10dB additive noise cases. The
same can be said for PEF and NCF but only under the
white noise cases and the 20dB turbine environment
condition noise. Finally, Figure 17 summarizes the Root
Mean Square Error (RMSE) results for the seven cases.
Although the performance of PEF and NCF had similar
p-values, NCF appeared better than PEF by the MSE
figures. Additionally, even though PEF had better MSE
than NCF had in the 0dB turbine condition, the MSE
error rate of NCF was obviously less affected by the white
noise than PEF was.
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Figure 15: GPE Error Rates

In conclusion, the SQT method is as significant as the well
established methods if not greater. While the SQT
hypothesis appeared less wrong than 10% of the times
when SNR was greater than 10dB, the PEF and NCF
hypotheses appeared less wrong less than 10% of the times
when SNR was greater than 20dB. The bar charts in the
two figures show that white noise was easier to deal with
than the turbine noise. Additionally, SQT did less error
than PEF and NCF did in the RMSE cases. This was
expected since the SQT error appeared correlated with the
quantization error. This means the RMSE in this
evaluation was a direct result of the limited resolution
parameters. On the one hand, increasing the cepstral
resolution (N) increases the number of the quantization
levels, and so it decreases the quantization error that is
due to the f0 rounding. For example, the pitch track that
is extracted using the N -16 cepstrogram in Figure 18a has
a lower RMSE error than the pitch track that is extracted
using the N -8 cepstrogram in Figure 18b. On the other
hand, increasing the cepstral resolution (M) increases the
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Figure 16: GPE Error Rates, Grouped by Additive Noise
Level & Type

number of observable energy components (when not
capped by the sampling frequency), and so it decreases the
maximum quantization value of RMS and reduces the
effect of random noise on the pitch track. For example, by
applying Parseval’s Theorem, one can see that the
detected SNR in Figure 18a is higher than the detected
SNR in Figure 18b. Note that ensemble cepstrograms can
be boosted gradually since the high resolution
cepstrgorams can be obtained from low resolution
cepstrgorams. For example, the program may extract an
M -3 cepstrogram then boost M to 5 if the SNR appears
low or may extract an N -8 cepstrogram then boost N to
16 if a voice activity appears in the frames, and vice versa
when in energy saving mode.
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6. Analysis
In the normal spectrogram, the formants of the high voices
are more spread-out than the formants of the deep voices
are. In other words, the speech that is carried in high f0
voices occupies relatively large bandwidths, and so it may
be clipped by the bandwidth channels. For example, in the
8 kHz spectrogram of Figure 20a, there are four formants
of the deep voice but only three fromants of the high voice.
This is because the signal was low-pass filtered before it was
recorded to reduce the storage space. Similarly, the medium
of the air particles is also a low-pass channel; its attenuation
correlates positively with the acoustic frequency according
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Figure 18: Adaptive Cepstral Feautres

to Islam et al. [34], Kapoor et al. [35]. However, the vast
majority of the speech information is conveyed by the low
frequency components that carry the first speech formant.
Since the formants are the speech features that represent the
different phonemes, the normalization and the extraction of
the formants’ features optimize both the storage and the
telecommunication of the speech signals.

The normalization of the formants is achieved in the
responsive spectrograms by slicing the multi-dimensional
feature space to collect the harmonic energies of the pitch
track. In other words, extracting the harmonic series of
the fundamental frequency regulates the scale and the

bandwidth of the formant features. Note that indexing is
the only operator that is required for obtaining the
responsive spectrogram once the multi-dimensional
method is applied for obtaining the pitch track. The
formants are normalized when its frequency axis is scaled
responsively such that there is an alignment between the
order of the formants of the similar voiced signals. For
example, the pattern of the first two formants had the
same scale in Figure 20 for the ”Voyager” WUWs that
were uttered by two different speakers. The formants that
are in the spectrum that resulted from SQT (Figure 20)
are more aligned than the formants that are in the
corresponding fixed-band spectrum in Figure 20a.

Because the pitch track normalizes the formant features,
the vocal track systems must be correlated with the glottal
signals. The speech code correlates with the shape of one
period of the fundamental waveform. It can be modeled in
the time domain, in which it exhibits a variation of a sine
cardinal function, i.e., sinc, or modeled in the frequency
domain, in which it can be approximated by Gaussian
Mixture Models (GMM), as shown in Figure 2. Deep
voices are commonly associated with masculinity, and high
voices are associated with infancy. Consequently, the
gender may have a degree of correlation with the formant
scaling because of the vocal folds’ lengths according to
Fitch [36]. However, the human voice can transit between
the speech depths regardless of sex and age. Adults can
produce high voices, and children can produce deep voices.
For instance, parents tend to use infant-directed speech
when they talk to their children. Likewise, children
occasionally use adolescent-directed speech, as shown in
Figure 19, which is the cepstrogram that corresponds to
the spectrogram in Figure 1a.

One may speculate about the underlying physical
constraints that prompt the λ0 doubling; however, the
teleport path shown in Figure 19 indicates that the f0 has
an additional dimension, which has been previously
speculated in literature. For example, Hoeschele
[37] and Warren et al. [38] stated a consensus of a
two-dimension view which was based on experience. The
pitch height, which is the frequency shift of the teleport, is
believed to be the multiplicative of 110Hz, as in
Equation 14. Since the f0 is considered to be congruent to
the pitch class modulo its height, the technical definition
of pitch implies the angular position while the f0 value
refers to the measurement reading. Nonetheless, the height
number is not constant, and the quefrency distribution can
apparently be customized in several ways to increase the
information gain. For example, a 2017 survey by
Bernhardsson [39] in Github showed that the arithmetic
population mean of the fundamental frequency varies per
language. However, the uniform distribution is an optimal
initiating point. Accordingly, the geometric scale, which is
defined RGeo in Equation 9, allocates equal quefrency
pixels to the four ranges between 55, 110, 220, 440, and
880, as shown in Figure 10b. This is important because
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the cepstral resolution cannot be adjusted evenly using
any other scales, as in Figures 10a and Figures 10c.
Adjusting the cepstrum size affects the f0 number of
levels, which do not affect the storage bandwidth as much
as the spectrum size does.

f0 ≡ pitch (mod 110)

= pitch + 110 · depth
∣∣∣ depth∈{0.5, 1, 2, 4, 8} (14)

In terms of bit rate, the fundamental frequency can be
represented by six bits when using the geometric scale by
Equation 15. Additionally, the first three formants may be
represented by Gaussian Mixture Model (GMM) in six
variables: three means and three variances (i.e., K=3).
The bit depth of the GMM variables can be ten bits per
variable when using the responsive spectrogram. The bit
patterns may be further compressed statistically by
variable-bit-rate quantization. Nevertheless, when the
frame rate (Rs) is 30 frames per second, the minimum bit
rate of the speech signals is theoretically 1,980 bits per
second (bps). In practice, however, any bit error in the
pitch track can negatively affect the reconstruction, so its
bits may have to be stored or transmitted redundantly in
gray code for bit error control. The quality of the audio
also heavily relies on the pitch extraction. The SQT
approach is like MPEG-1 Audio Layer 3 (MP3), which was
standardized in Standard of International Organization for
Standardization/International Electrotechnical
Commission [40] and is commonly used in the Internet for
the relative quality despite the files’ sizes. It is considered
a lossy compression technique because it extracts only the
few important frequency components from the vastly
sparse frequency space. Even more efficiency may become
vital as the Internet traffic and number of network nodes
continue to increase. The number of connected Internet of
Things (IoT) devices is expected to double within five
years from the 2020 estimated figure of
11.3 billion according to Sinha [41], generating a predicted
value of more than seventy Zettabytes (73.1 × 1021 bytes)
of data by 2025 according to Jovanovic and Vojinovic [42].

BitRate = Rs · (6 + 2 ·K · BitDepth) (bps) (15)

7. Conclusion
We showed (in Section 4) how to obtain three outputs: the
filtered cepstrogram, the sharp pitch track, and the
reconstructable responsive spectrogram. The responsive
spectrogram is sliced using the pitch track, which is
extracted using the cepstrogram. The cepstrogram was
derived (in Section 3), and the pitch track was evaluated
(in Section 5). The reconstructability was analyzed (in
Sections 5 & 6). The approach of Speech Quefrency
Transform (SQT) is mainly a quefrency filter model that is
achieved by spectral filtering. It transforms the speech
signal directly from the time domain to the quefrency

domain. In the multi-dimensional SQT method, the
quefrency dimension is expanded along the frequency,
phase, and sign dimensions. This hyperspace methodology
appears more accurate than an alternative
frequency-demodulation wavelet method although it may
appear less efficient were not there speech reconstruction.
The outlined procedure can be applied in everyday web
applications, such as adaptive-bit-rate speech streaming;
in advanced ASR deep learning, such as emotional
diagnosis in medical fields; and in scarce-bandwidth
telecommunication, such as deep sea and outer space
exploration fields.

The SQT model was numerically using Gaussian and
rectangular windows that control the spectral leakage to
form the quefrency filters. While the Mel-frequency scale
of MFCC does not make the cepstral features
reconstructable, our multi-dimensional method adjusts the
frequency banking implicitly in the frequency responses of
the SQT filters. The SQT window length is defined per
harmonic-frequency set since quefrency is a measurement
of acceleration (cycle per square second) just as frequency
is a measurement of velocity (Hertz). We applied several
theories, whose effect is well known in the time and
frequency domain, on the SQT quefrency domain. For
example, at least two f0 cycles must be enclosed in the
SQT filters since they measure the stationarity. Because of
the flexibility of the multi-dimensional approach, the
logarithmic operator did not have to be included in the
quefrency definition, and several quefrency scales were
feasible. Even though the SQT technology outperformed
several other techniques, there may still be better versions
to come.

Supporting a literature hypothesis, we defined the
Geometric quefrency scale (RGeo) and embedded it to the
novel SQT process that extracts the cepstrogram, the
pitch track, and the responsive spectrogram. Although the
quefrency scale can be distributed statistically using
domain specific prior knowledge, RGeo may be optimal for
most speech applications because of its apparently
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Figure 19: Cepstrogram of Human Babble. The height of
the jump discontinuity of the pitch track in the graph is
slightly less than 220 Hz (A2).
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Figure 20: Spectrgorams with Different Formants’ Alignments

equally-likely pixel probabilities. Similar to the findings of
Deutsch et al. [43], our findings showed that the f0
patterns can be expressed in two dimensions: the depth
(or height) and the intonation (or pitch). The two
dimensions must exist since the f0 patterns apparently
have a spectral cylindrical coordinate and since the
patterns can instantly teleport between the acceleration
depths. While the depth independent variable corresponds
to the speech resolution because it folds up the speech
code in the frequency domain, the intonation appears
crucial for Wake-Up-Word (WUW) and emotion
recognition. It can communicate urgency and breath
patterns. It may also be beneficial for Natural Language
Processing (NLP) since it can indicate syllabus stresses.

Although the size of the SQT transform in this article
process is 4MN , where M and N are the spectral and
cepstral resolutions, the process appeared as robust as
state-of-the-art techniques if not better. It appeared
robust even in noisy conditions, and its speech
reconstructions appeared viable for practical storage and
telecommunication products since it pushes the speech
compression rate to the lower limits. The proposed process

achieved a relatively very low Root Mean Square Error
(RMSE) and p-values. Its pitch tracks are estimated
robustly from its fast cepstrograms that can operate on
low energy for voice activity detection. The SQT
cepstrograms can also be boosted due to its flexible
quefrency scale. These SQT specifications are important
since it is crucial that Automatic Speech Recognition
(ASR) systems effortlessly detect and compose speech in
resolutions that conserve energy, optimize the features’
SNR, and preserve the speech components during
extraction. Attuning the speech assistant to the speech of
the client attenuates the background noise. The proposed
process appeared facilitating Multi- and Distant-Speech
Recognition.

The ASR systems with robust speech feature extractor
and producer may possibly end up having a human-like
learning phase as well as subjectivity and perhaps artificial
feelings. This is because speech processing is apparently
equivalent to Artificial Intelligence (AI) when the domain
of the speech spans multiple days instead of minute
sessions. The hierarchical spans of language models may
simulate the intelligence levels that constitutes the
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self-aware agents. In other words, the ability of
comprehending logic and sequential series of events must
have been, to a certain degree, built upon the primal
ability of recognizing sensory data, one of which is speech.
For example, increasing the contrast of sensory data may
extend the attention spans according to Asiry et al. [44].
Accordingly, the resolution of the speech features can
affect the word recognition quality, which can affect the
grammar recognition quality. Since the recognition of
temporal sequences can also enable the cognition of
long-term chronological occurrences, which, when
optimized, intellect possibly emerges, then the resulted
SQT hyperspace may boost the virtual assistants.
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