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Abstract
 Rigorous multiobjective nonlinear model predictive control on the diabetes model incorporating single and multiple control 
strategies. The amount of glucose is minimized with the Bergman model considering the effects of insulin and exercise. The 
optimization language pyomo is used in conjunction with the state-of-the-art global optimization solvers IPOPT and Baron. 
Pareto surfaces are generated. When some optimal control profiles were found to exhibit sharp spikes, an activation factor 
involving the hyperbolic tangent function was used. It is observed that a greater amount of glucose minimization is achieved 
when more control procedures were incorporated. This demonstrates that it is more beneficial to use multiple control strate-
gies. 
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1. Introduction 
The number of people with diabetes in the world has risen 
substantially during the last few years. Diabetes results in 
blindness, kidney failure, heart attacks, stroke, and lower limb 
amputation. For people with diabetes, glucose tends to build up 
in the bloodstream and may reach dangerously high levels if it 
is not treated properly. Insulin and other drugs are used to lower 
blood sugar levels.

A considerable amount of investigation has been performed 
regarding the use of various strategies to control the glucose 
level in the human body. The dynamics of the glucose-insulin 
interaction have been studied by various researchers [1-4]. 
Bergman et al developed a three-compartment model dealing 
with the glucose-insulin dynamics [5,6]. This model is very 
commonly used by researchers and investigators and control 
strategies have been incorporated into this model to come up 
with ways to control the damage done by diabetes. A model 
that studies the effects of glucose production and utilization 
was developed by Cobelli et al [7,8]. The issues of glucose 
effectiveness and insulin sensitivity were studied by Cobelli et 
al [8]. The effects of exercise on glucose were studied by several 
workers Wasserman et al, Wolfe et al, Wahren et al; Ahlborg et 
al; Pruett, Zinman) [9-17]. 

Optimal control has been used to minimize glucose while limiting 
the use of insulin (Swan, Fisher and Teo, Ollerton, Parker et al, 
Acikgoz and Diwekar [18-20,2,21]. Hernjak and Doyle III have 
investigated the use of a PID controller for diabetes models, Dua 
et al use parametric programming to obtain the insulin delivery 
rate while [22, 23].

A classic model used to describe glucose reduction with insulin 
is the Bergman model (1979) [5,6].  Ferjouchia et performed 
optimal control on the minimalistic Bergman model with one 
control parameter while Roy et al performed optimal control 
on the Bergman model with two and three control parameters 
which are the insulin exogenously and external infusion of 
glucose and exercise [24,25]. The aim of this work is to perform 
multiobjective nonlinear model predictive control with the 
Bergman model using one, two, and three control strategies 
[5,6].

2. The Bergman Model 
The original Bergman model which is used to model the insulin 
effects on diabetes is given by the following equations [24]. 

      (1)

        (2)
    

       (3)

Where the variable values are 
• g(t): Blood glucose concentration
• Ix(t): Blood insulin concentration
• X(t) : is effect of active insulin
• u(t): control Variable exogenous insulin
• ma(t): meal disturbance function
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1( ( ) ) ( ) ( ) ( )b
dg p g t g x t g t ma t
dt

= − − − +

2 3( ) ( ( ) )b
dx p x t p IX t I
dt

= − − −

( ) ( )dIx nIx t u t
dt

= − +
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2.1 The Bergman Model with One Control Variable
For the original Bergman with one control variable, the original 
model has a minor modification in equation 1 and is given by the 
equations [24].

Where the control variable u(t) is again the exogenous insulinIn 
both these models G(0) = 287 mg/dL. The parameter values for 
both these models are given in Table 1
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Parameter Value Units
P1 0.03082 1/min
P2 0.02093 1/min
P3 1.062e-05   
n 0.3 1/min
gb 92 mg/dl
Ib 7.3 Mu/dl

Parameter Value Units
P1 0.035 1/min
P2 0.05 1/min
P3 0.000028   

0.3 1/min
P4 0.098 1/ml
n 0.142 1/min
Volg 0.117 dl
gb 80 mg/dl
Ib 7.3 Mu/dl

2/ .minml Uµ

Table 1

2.2 The Bergman Model with Two Control Variables
In this model, the two control variables are u1 and u2 which represent the insulin is infused exogenously and external infusion of 
glucose [25]. 

           (4)

             (5)
      

           (6)

2
1

( )( ( ) ) ( ) ( )b
g

u tdg p g t g x t g t
dt Vol

= − − − +

2 3( ) ( ( ) )b
dx p x t p Ix t I
dt

= − + −

4 1( ) ( )dIx nIx t p u t
dt

= − +

The parameter values are given in table 2

2/ .minml Uµ

Table 2

2.3 Bergman Model with Three Control Variables 
The equations of the Bergman model with three control variables, u1,u2 and u3 which represent the insulin is infused exogenously 
and external infusion of glucose and exercise are [25].

In this model, the two control variables are 1u  and 2u  which represent the insulin is infused 

exogenously and external infusion of glucose [25].  
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 4 1( ) ( ) ( )e
dIx nIx t p u t I t
dt

      (8) 

 2 3( ) ( ( ) )b
dx p x t p Ix t I
dt

      (9) 

 max
1 2 2 ( )prod

prod

dg
a PVO a g t

dt
    (10) 

 

 max
3 2 4 ( )up

up

dg
a PVO a g t

dt
    (11) 



         (mg/kg/min) represents the the rates of glucose uptake 
while (mg/kg/min)    is the hepatic glucose production 
induced by exercise. W (kg) represents the weight of the subject.

Variable          (mg/kg/min) is the decline of the glycogenolysis 
rate during prolonged exercise because of the depletion of li ver 

glycogen stores.

A(t) is the integrated exercise intensity, while  ATH is the critical 
threshold value for A(t).       is the power at maximum   

The additional parameters are in table3.
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Parameter Value Units
a1 0.035 mg/kg.min2
a2 0.05 1/min
 40 mL/kg/min
w 80 kg
a3 0.000028 mg/kg.min2
a4 0.098 1/min
a5 0.142   

a6 0.117 1/min
k 80 mg/kg.min2
T1 7.3 min

max
2PVO

/ .minU mlµ

Table 3
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3. Methodology (MNLMC Method)
The multiobjective nonlinear optimal control (MOOC) method 
was first proposed by Flores Tlacuahuaz et al14and used by 
Sridhar [26,27]. This method does not involve the use of 
weighting functions nor does it impose additional constraints 
on the problem unlike the weighted function or the epsilon 
correction method [28]. For a problem that is posed as 

       

The MNLMPC method first solves dynamic optimization 
problems Xi independently. minimizing/maximizing each   
individually. The minimization/maximization of Xi will lead to 
the values Xi

*. Then the optimization problem that will be solved 
is 

      

This will provide the control values for various times. The 
first obtained control value is implemented and the remaining 
discarded. This procedure is repeated until the implemented and 
the first obtained control value are the same. 

The optimization package in Python, Pyomo , where the 
differential equations are automatically converted to a Nonlinear 
Program (NLP) using the orthogonal collocation method [29]. 
The Lagrange-Radau quadrature with three collocation points 
is used and 10 finite elements are chosen to solve the optimal 
control problems. The resulting nonlinear optimization problem 
was solved using the solvers IPOPT and Baron [30,31]. BARON 
implements a Branch-and-reduce strategy to provide valid 
lower and upper bounds for the optimal solution and provides 
a guaranteed global optimal solution. This algorithm combines 
constraint propagation, interval analysis, and the duality in 
it reduces arsenal with enhanced branch and bound concepts 
as it winds its way through the hills and valleys of complex 
optimization problems in search of global solutions. BARON is 
accessed through the Pyomo-GAMS27.2 [32]. 

To summarize the steps of the algorithm are as follows 
1. Minimize/maximize Xi  subject to the differential and algebraic 
equations that govern the process using Pyomo and Baron. This 
will lead to the value Xi

* at various time intervals ti.. The subscript 
i is the index for each time step. 

2. Minimize      subject to the differential and algebraic 
equations that govern the process using Pyomo and Baron. This 
will provide the control values for various times.
3. Implement the first obtained control values and discard the 
remaining.
4. Repeat steps 1 to 4 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables. 

3.1 Methodology (Tanh Activation Factor)
In the one control problem, the control profile exhibited sharp 
spikes. These spikes are inconvenient as they make it difficult 
to implement the control measures. Figure 4a demonstrates the 
existence of spikes. To circumvent this problem, an activation 
factor involving the hyperbolic tangent function (tanh) was used 
and the control variable u(t) was modified to    
The newly obtained control profile ( figure 4b) shows that the 
use of the tanh activation factor eliminates the spikes. While the 
tanh activation factor was not needed in the 2 control problem, 
it was used as a precautionary measure in the three component 
problem because of the different constraints for the derivatives   
           in equations 14 and 15. Here,     were 
replaced by     
is chosen to be 10-5. 

4. Results and Discussion (MNLMC of the Bergman Model)
In the Bergman model with one control parameter, the variables 
g, ix and u are minimized individually while the variable x is 
maximized. The corresponding resulting objective values are 
287, 7.3, 0 and 1.77905. This will lead to the NLMPC problem
minimize   

The obtained NLMPC control value of u is 1.79 X 10-7.

In the Bergman model with two control parameter, the variables 
g, ix of u1, u2 are minimized individually while the variable x 
is maximized. The corresponding resulting objective values are 
100.16, 14.6, 0, 0.002 and 0.03568. This will lead to the NLMPC 
problem minimize   

The obtained NLMPC control value of  u1, u2 are 100 and 0. 

In the Bergman model with three control parameter, the variables 
g, ix of u1, u2, u3 are minimized individually while the variable 
x is maximized. The corresponding resulting objective values 
are 80 7.3, 0, 0, 0 and 0.02976. This will lead to the NLMPC 
problem minimize   

The obtained NLMPC control value of  u1, u2, u3 0.0316 0.0243 
and 0.003. The increase in the control tasks causes a significant 
decrease in g, the glucose level from 287 to 100.16 to 80. 
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2 2 2 2 2 2
1 2 3( 0.02976) ( 80) ( 7.3) ( 0) ( 0.0) ( 0.0)i i i i i ix g Ix u u u− + − + − + − + − + −∑ ∑ ∑ ∑ ∑ ∑
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Figures 1-3 4a and 4b show the variation of the variables g, ix 
and x with time while figures 4a and 4b show the control profiles 
without and with the use of the tanh activation factor. Figure 
4a demonstrates the existence of spikes in the control profile 
while figure 4b shows that the use of the tanh activation factor 
eliminates the spikes. 

Figure 1: Single control g versus t

Figure 2: Single control ix versus t

Figure 3: Single control x versus t

Figure 4a: Single control u versus t (spikes)

Figure 4b: Single control u versus t (spikes eliminated)

The tanh activation factor was not needed in the 2 control 
problem. Figures 10-14 show the variation of g, ix, x,   with 
time. No spikes are observed in the control profiles of   with time. 
Figures 15-20 show the pareto surfaces for the Bergman model 
when two control procedures were used. For the three-control 
problem, Figs 21-23 show the variation of the three control 
variables   with time while figures 24-26 show the variation of 
g, ix, x, with time. Figures 27-35 show the pareto profiles for the 
three-control problem. In the three control problem also, the tanh 
activation factor was used because of the different constraints for 
the derivatives    in equations 14 and 15.

Figure 5: Single control t, ix, u surface

Figure 6: Single control t, g, u surface

 

 

 

 

 
 

 

 

Fig. 1 Single control g versus t 

 

 
 

Fig. 2 Single control ix versus t 

 

 

 

 
Fig. 3 Single control x versus t 

 

 

 

 

 

 

 

 

 
Fig. 4a Single control u versus t (spikes) 

 

 

 
 

Fig. 4b Single control u versus t (spikes eliminated) 

 

 

 

 
Fig. 4a Single control u versus t (spikes) 

 

 

 
 

Fig. 4b Single control u versus t (spikes eliminated) 
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Fig. 5 Single control t, ix, u surface 

 

 

 

 
Fig. 6 Single control t, g, u surface 

 

 

 
Fig. 5 Single control t, ix, u surface 

 

 

 

 
Fig. 6 Single control t, g, u surface 

 

 



Figure 7:Single control x, g, u surface

Figure 8: Single control t, x, u surface

Figure 9: Single control x, g, ix surface

Figure 10: two controls g versus t

Figure 11: two controls ix versus t

Figure 12: two controls x versus t

Figure 13: two controls u1 versus t

Figure 14: two controls u2 versus t
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Fig. 7 Single control x, g, u surface 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Single control t, x, u surface 

 

 

 

 
Fig. 9 Single control x, g, ix surface 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 two controls g versus t 

 

 

 

 

 

 
 

 

Fig. 11 two controls ix versus t 

 

 

 

 

 

 

 

 
Fig. 12 two controls x versus t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 two controls u1 versus t 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 two controls u2 versus t 

 

 

 

 

 

 



Figure 15: two controls g  t u1 surface

Figure 16: two controls g t  u2 surface

Figure 17: two controls ix  t  u1 surface

Figure 18: two controls ix  t  u2 surface

Figure 19: two controls x t  u1 surface

Figure 20: two controls x t  u2 surface

Figure 21: 3 controls u1 versus t

Figure 22: 3 controls u2 versus t
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Fig. 15 two controls g t u1 surface 

 

 

 

 

 

 

 

 

 
Fig. 16 two controls g t u2 surface 

 

 

 

 

 

 

 

 

 
Fig. 17 two controls ix t u1 surface 

 

 

 

 

 

 
Fig. 18 two controls ix t u2 surface 

 

 

 

 

 

 

 

 
Fig. 19 two controls x t u1 surface 

 

 

 

 

 

 

 

 

 
Fig. 20 two controls x t u2 surface 

 

 

 

 

 

 

 

 

 

 

 
Fig. 21 3 controls u1 versus t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22 3 controls u2 versus t 
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Figure 23: 3 controls u3 versus   t

Figure 24: 3 controls g versus t

Figure 25: 3 controls ix versus t

Figure 26: 3 controls x versus t

Figure 27: 3 controls t g u1 surface

Figure 28: 3 controls t g u2 surface

Figure 29: 3 controls t g u3 surface

Figure 30: 3 controls t ix u1 surface

 
Fig. 23 3 controls u3 versus t 

 

 

 

 

 

 

 

 
Fig. 24 3 controls g versus t 

 

 

 

 

 

 

 

 

 

 

 
Fig. 25 3 controls ix versus t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 26 3 controls x versus t 

 

 

 
 

Fig. 27 3 controls t g u1 surface 

 
Fig. 26 3 controls x versus t 

 

 

 
 

Fig. 27 3 controls t g u1 surface 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 28 3 controls t g u2 surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 29 3 controls t g u3 surface 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 30 3 controls t ix u1 surface 
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 Figure 31: 3 controls t ix u2 surface

Figure 32: 3 controls t ix u3 surface

Figure 33: 3 controls t x u1 surface

Figure 34: 3 controls t x u2 surface

Figure 35: 3 controls t x u3 surface

Conclusions
A rigorous multiobjective nonlinear model predictive control 
of the diabetes model involving one, two and three control 
strategies was performed. In the one-control problem, the 
control profile exhibited spikes making the incorporation of 
the control strategy difficult. This was remedied by using an 
activation factor involving the hyperbolic tangent function. Such 
an activation factor was not needed in the two-control problem. 
In the three control problem the activation strategy was used 
as a precautionary measure because of different constraints for 
the differential equations under different conditions. The results 
indicate that the use of more than one control strategy was more 
efficient in minimizing the blood glucose concentration and 
controlling the damage done by diabetes. 
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