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Abstract
Probabilistic Features Combination method (PFC), which is proposed by the author, is the approach of multi-
dimensional data modeling, extrapolation and interpolation using the set of high-dimensional feature vectors. This 
method is a hybridization of numerical methods and probabilistic methods. Identification of faces or fingerprints 
need modeling and each model of the pattern is built by a choice of multi-dimensional probability distribution 
function and feature combination. PFC modeling via nodes combination and parameter γ as N-dimensional 
probability distribution function enables data interpolation for feature vectors. Multi-dimensional data is 
modeled and interpolated via nodes combination and different functions as probability distribution functions for 
each feature treated as random variable.

Keywords: Image Retrieval, Pattern Recognition, Data Modeling, Vector Interpolation, Pfc Method, Feature Reconstruction, Proba-
bilistic Modeling

Introduction
Multidimensional data modeling appears in science and industry. 
Image retrieval, data reconstruction, object identification or 
pattern recognition are still the open questions. The paper is 
dealing with these questions via modeling of high-dimensional 
data for applications of image segmentation in image retrieval 
and recognition tasks. This paper is concerned with image 
retrieval. Image retrieval is based on probabilistic modeling of 
unknown features via combination of N-dimensional probability 
distribution function for each feature treated as random variable. 
The sketch of proposed Probabilistic Features Combination 
(PFC) method consists of three steps: first handwritten letter or 
symbol must be modeled by a vector of features (N-dimensional 
data), then compared with unknown letter and finally there is a 
decision of identification. Author recognition of handwriting and 
signature is based on the choice of feature vectors and modeling 
functions. So high-dimensional data interpolation in handwriting 
identification is not only a pure mathematical problem but 
important task in pattern recognition and artificial intelligence 
such as: personalized handwriting recognition, automatic forensic 
document examination, classification of ancient manuscripts [1,2-
8]. Also, writer recognition in monolingual handwritten texts is 
an extensive area of study and the methods independent from 
the language are well-seen [9-12]. Writer recognition methods 
in the recent years are going to various directions, also based 

on Hidden Markov Model or Gaussian Mixture Model [13-19]. 
So, hybrid soft computing is essential: no method is dealing 
with writer identification via N-dimensional data modeling or 
interpolation and multidimensional points comparing as it is 
presented in this paper. The paper wants to approach a problem of 
curve interpolation and shape modeling by characteristic points in 
handwriting identification [20].

Current methods apply mainly polynomial functions, for example 
Bernstein polynomials in Bezier curves, splines and NURBS. But 
Bezier curves don’t represent the interpolation method and cannot 
be used for example in signature and handwriting modeling with 
characteristic points (nodes) [21]. Numerical methods for data 
interpolation are based on polynomial or trigonometric functions, 
for example Lagrange, Newton, Aitken and Hermite methods [22-
24]. These methods are not sufficient for curve interpolation in 
the situations when the curve cannot be build by polynomials or 
trigonometric functions [25].

This paper presents novel Probabilistic Features Combination 
(PFC) method of high-dimensional interpolation in hybrid soft 
computing and takes up PFC method of multidimensional data 
modeling. The method of PFC requires information about data 
(image, object, curve) as the set of N-dimensional feature vectors. 
Proposed PFC method is applied in image retrieval and recognition 
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tasks via different coefficients for each feature as random 
variable: polynomial, sinusoidal, cosinusoidal, tangent, cotangent, 
logarithmic, exponential, arc sin, arc cos, arc tan, arc cot or power. 
Modeling functions for PFC calculations are chosen individually 
for every task and they represent probability distribution functions 
of random variable αi ϵ [0;1] for every feature i=1, 2, N-1. So, 
this paper wants to answer the question: how to retrieve the 
image using N-dimensional feature vectors and to recognize a 
handwritten letter or symbol by a set of high-dimensional nodes 
via hybrid soft computing?

Hybrid Multidimensional Modeling of Feature Vectors
The method of PFC is computing (interpolating) unknown (unclear, 
noised or destroyed) values of features between two successive 
nodes (N-dimensional vectors of features) using hybridization of 
probabilistic methods and numerical methods. Calculated values 
(unknown or noised features such as coordinates, colors, textures or 
any coefficients of pixels, voxels and doxels or image parameters) 
are interpolated and parameterized for real number ϵi ϵ [0;1] (i = 
1, 2, N-1) between two successive values of feature. PFC method 
uses the combinations of nodes (N-dimensional feature vectors) 
p1= (x1, y1, z1), p2= (x2, y2, z2), pn=(xn,yn,zn) as h(p1,p2,…,pm) and 
m=1,2,…n to interpolate unknown value of feature (for example 
y) for the rest of coordinates:

The basic structure of eq. (1) is built on modeling function γ = 
F(α) which is used for points’ interpolation between the nodes. 
Additionally, for better reconstruction and modeling there is a 
factor with function γ=F(α) and nodes combination h.

Then N-1 features c1,…, cN-1 are parameterized by α1,…, αN-1 between 
two nodes and the last feature (for example y) is interpolated via 
formula (1). Of course, there can be calculated x(c) or z(c) using 
(1). Two examples of h (when N = 2) computed for MHR method 
[26] with good features because of orthogonal rows and columns 
at Hurwitz-Radon family of matrices that origins from some 
calculations with orthogonal matrices:

The simplest nodes combination is
                                                                                                   (3)

and then there is a formula of interpolation:
 .

Formula (1) gives the infinite number of calculations for unknown 
feature (determined by choice of F and h) as there is the infinite 
number of objects to recognize or the infinite number of images 
to retrieve. Nodes combination is the individual feature of each 
modeled data. Coefficient γ = F(α) and nodes combination h are 
key factors in PFC data interpolation and object modeling. 

N-Dimensional Probability Distribution Functions in PFC 
Modeling
Unknown values of features, settled between the nodes, are 
computed using PFC method as in (1). The simplest way of 
PFC calculation means h = 0 and γi = αi (uniform probability 
distribution for each random variable αi). Then PFC represents a 
linear interpolation. Fig.1 is the example of curve (data) modeling 
when the formula is known: y=2x.
 

Figure 1: Example of PFC modeling for function y=2x with linear 
version and seven nodes (own sources).

MHR method  is the example of PFC modeling for feature vector 
of dimension N = 2 [26]. Each interpolation requires specific 
distributions of random variables αi and γ in (1) depends on 
parameters αi ϵ [0;1]: 

γ = F(α), F:[0;1]N-1→[0;1],

F(0,…,0) = 0, F(1,…,1) = 1

and F is strictly monotonic for each random variable αi separately. 
Coefficient γi are calculated using appropriate function and 
choice of function is connected with initial requirements and data 
specifications. Different values of coefficients γi are connected 
with applied functions Fi(αi). These functions γi=Fi(αi) represent 
the examples of probability distribution functions for random 
variable αiϵ[0;1] and real number s>0, i = 1,2,…N-1:
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combination is the individual feature of each 
modeled data. Coefficient γ = F(α) and nodes 
combination h are key factors in PFC data 
interpolation and object modeling.  
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the example of curve (data) modeling when the 
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Figure 1. Example of PFC modeling for function y=2x 
with linear version and seven nodes (own sources). 
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or any strictly monotonic function between 
points (0;0) and (1;1) – for example 
combinations of these functions. 

Interpolations of function y=2x for N=2, 
h = 0 and γ = αs with s = 0.8 (Fig.2) or 
γ=log2(α+1) (Fig.3) are quite better then linear 
interpolation (Fig.1). 

 
Figure 2. PFC two-dimensional modeling of function 
y=2x with seven nodes as Fig.1 and h=0, γ=α0.8 (own 
sources). 
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or any strictly monotonic function between points (0;0) and (1;1) 
– for example combinations of these functions.

Interpolations of function y=2x for N=2, h = 0 and γ = αs with s 
= 0.8 (Fig.2) or γ=log2(α+1) (Fig.3) are quite better then linear 
interpolation (Fig.1).

Figure 2: PFC two-dimensional modeling of function y=2x with 
seven nodes as Fig.1 and h=0, γ=α0.8 (own sources).

Figure 3: PFC two-dimensional reconstruction of function y=2x 

with seven nodes as Fig.1 and h=0, γ=log2(α+1) (own sources).

Main advantage and superiority of PFC method comparing with 
known approaches are that there is no method connecting all these 
ten points below together (see Section 3):
1. Interpolation of some complicated functions using 

combinations of a simple function;
2. Only local changes of the curve if one node is exchanged;
3. No matter if the curve is opened or closed;
4. Data extrapolation is computed via the same formulas as 

interpolation;
5. Object modeling in any dimension N; 

6. Curve parameterization;
7. Modeling of specific and non-typical curves: signatures, 

fonts, symbols, characters or handwriting (for example Fig.4-
6 or 12-13);

8. Reconstruction of irregular shapes (Fig.4-6 and 12-13);
9. Applications in numerical analysis because of very precise 

interpolation of unknown values;
10. Even for only two nodes a curve can be modeled.

Functions γi are strictly monotonic for each random variable 
αi ϵ [0;1] as γ = F(α) is N-dimensional probability distribution 
function, for example:

and every monotonic combination of γi such as
γ = F(α), F:[0;1]N-1→[0;1], F(0,…,0) = 0, F(1,…,1) = 1.
For example when N = 3 there is a bilinear interpolation:

 γ1 = α1, γ2 = α2 , γ = ½(α1+ α2)                                    (4)

or a bi-quadratic interpolation:

 γ1 = α12 , γ2 = α2
2 , γ = ½(α1

2 + α2
2)                             (5)

   
or a bi-cubic interpolation:

 γ1 = α1
3 , γ2 = α2

3 , γ = ½(α1
3 + α2

3)                     (6)

or others modeling functions γ. Choice of functions γi and 
value s depends on the specifications of feature vectors. What 
is very important in PFC method: two data sets (for example a 
handwritten letter or signature) may have the same set of nodes 
(feature vectors: pixel coordinates, pressure, speed, angles) but 
different h or γ results in different interpolations (Fig.4-6). Here 
are three examples of PFC reconstruction (Fig.4-6) for N=2 and 
four nodes: (-1.5;-1), (1.25;3.15), (4.4;6.8) and (8;7). Formula of 
the curve is not given. 

Algorithm of PFC retrieval, interpolation and modeling consists of 
five steps: first choice of nodes pi (feature vectors), then choice of 
nodes combination h(p1,p2,…,pm), choice of distribution (modeling 
function) γ = F(α), determining values of αi ϵ [0;1] and finally the 
computations (1).

Figure 4: A curve in PFC modeling for γ = α2 and h = 0 (own 
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sources).

Figure 5: The example of PFC reconstruction for γ=sin(α2•π/2) 
and h in (2) (own sources).

Figure 6: Data PFC interpolation for γ = tan(α2•π/4) and h=(x2/
x1) + (y2/y1) (own sources). 

Discussion In Details Over Pfc Approach
What are the unique features of PFC method comparing with 
other methods of function interpolation, curve modeling and data 
extrapolation? This paragraph is answering this question.

Interpolation of Some Complicated Functions using 
Combinations of a Simple Function
Some mathematical formulas of functions are very complicated 
and have very high complexity of calculations. Then there is 
necessity of modeling via any simple function. Of course, one can 
take a linear function between two nodes but this is non-effective 
approach. The idea of PFC formula 

is to calculate unknown value or coordinate as follows: take 
another modeling function (not linear) between two nodes. This 
function γ = F(α) is a probability distribution function of random 
variable α ϵ [0;1]: for example, uniform distribution means linear 
interpolation when γ = α. Random variable α ϵ [0;1] is a parameter 
for known coordinate or value between two nodes:

c = α·xk+ (1-α)·xk+1.

Additionally, there is nodes combination h for better modeling. 
The simplest nodes combination is h = 0 and then PFC formula is

Only Local Changes of the Curve if One Node is Exchanged
Nodes combination h is responsible for the range of changes if one 
node is exchanged. For example h = 0 means changes between two 
nodes whereas

No Matter if the Curve is Opened or Closed
PFC formulas require the order and numbering of nodes exactly 
like on the curve, for example a graph of function. The only 
assumption for closed curve is that first node and last node are the 
same.

Data Extrapolation is Computed via the Same Formulas as 
Interpolation
Extrapolation is computed for real parameter αϵ[0;1]. Then 
modeling function γ=F(α) has to be chosen for the situation when 
α < 0 or α > 1. Sometimes one can take a parallel version of PFC 
formulas:

c = α·xk+1+ (1-α)·xk.

when for example calculations for α < 0 are impossible.

Object Modeling in Any Dimension N
Section four is dealing with this subject.

Curve Parameterization
Parameterization of the curve between each pair of nodes is 
connected with random variable α.

Modeling of Specific and Non-Typical Curves: Signatures, 
Fonts, Symbols, Characters Or Handwriting
Figures 4-6 and 12-13 show the examples of PFC modeling. In 
the individual cases one can take for each pair of nodes different 
functions γ=F(α) and different nodes combinations h.

Reconstruction of Irregular Shapes
Very important matter is dealing with closed curves. PFC 
reconstruction of the contour or shape is done with the same 
formulas.

Applications in Numerical Analysis Because of Very Precise 
Interpolation of Unknown Values
All numerical methods for numerical analysis (quadratures, 
derivatives, non-linear equations etc.) are based on the values 
of function given in the table. PFC method enables precise 
interpolation of the function (for example Fig.2).

Even for Only Two Nodes a Curve Can Be Modeled
Thankfully that PFC is modeling the curve between each pair of 
nodes, even two nodes are enough in some cases for interpolation 

),...,,()1()1()( 211 mkk ppphyycy ⋅−+−+⋅= + γγγγ

1)1()( +−+⋅= ii yycy γγ

+−++
+

= )(1),,,( 3411433321212
3

2
1

4321 yxxyxxyxxyxx
xx

pppph

)(1
4322434412212

4
2

2

yxxyxxyxxyxx
xx

−++
+

),...,,()1()1()( 211 mkk ppphyycy ⋅−+−+⋅= + γγγγ



J Sen Net Data Comm, 2021      Volume 1 | Issue 1 | 05www.opastonline.com

and reconstruction.

This section was concerned on some aspects and features of PFC 
approach from mathematical and computational points of view.

Image Retrieval via PFC High-Dimensional Feature 
Reconstruction
Having monochromatic (binary) image which consists of 
some objects, there is only 2-dimensional feature space (xi,yi) – 
coordinates of black pixels or coordinates of white pixels. No 
other parameters are needed. Thus, any object can be described 
by a contour (closed binary curve). Binary images are attractive in 
processing (fast and easy) but don’t include important information. 
If the image has grey shades, there is 3-dimensional feature space 
(xi,yi,zi) with grey shade zi. For example, most of medical images 
are written in grey shades to get quite fast processing. But when 
there are color images (three parameters for RGB or other color 
systems) with textures or medical data or some parameters, then 
it is N-dimensional feature space. Dealing with the problem of 
classification learning for high-dimensional feature spaces in 
artificial intelligence and machine learning (for example text 
classification and recognition), there are some methods: decision 
trees, k-nearest neighbors, perceptrons, naïve Bayes or neural 
networks methods. All of these methods are struggling with the 
curse of dimensionality: the problem of having too many features. 
And there are many approaches to get a smaller number of features 
and to reduce the dimension of feature space for faster and less 
expensive calculations.

This paper aims at inverse problem to the curse of dimensionality: 
dimension N of feature space (i.e. number of features) is unchanged, 
but number of feature vectors (i.e. “points” in N-dimensional 
feature space) is reduced into the set of nodes. So, the main 
problem is as follows: how to fix the set of feature vectors 
for the image and how to retrieve the features between the 
“nodes”? This paper aims in giving the answer of this question.

Grey Scale Image Retrieval using PFC 3D Method
Binary images are just the case of 2D points (x,y): 0 or 1, black or 
white, so retrieval of monochromatic images is done for the closed 
curves (first and last node are the same) as the contours of the 
objects for N = 2 and examples as Fig.1-6. Grey scale images are 
the case of 3D points (x,y,s) with s as the shade of grey. So the grey 
scale between the nodes p1=(x1,y1,s1) and p2=(x2,y2,s2) is computed 
with γ = F(α)=F(α1,α2) as (1) and for example (4)-(6) or others 
modeling functions γi. As the simple example two successive nodes 
of the image are: left upper corner with coordinates p1=(x1,y1,2) 
and right down corner p2=(x2,y2,10). The image retrieval with the 
grey scale 2-10 between p1 and p2 looks as follows for a bilinear 
interpolation (4):

2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10
2    3 4 5 6 7 8 9 10

Figure 7: Reconstructed grey scale numbered at each pixel (own 
sources).

Or for other modeling functions γi:

2    2 2 2 2 2 2 2 2
2    3 3 3 3 3 3 3 3
2    3 4 4 4 4 4 4 4
2    3 4 5 5 5 5 5 5
2    3 4 5 6 6 6 6 6
2    3 4 5 6 7 7 7 7
2    3 4 5 6 7 8 8 8
2    3 4 5 6 7 8 9 9
2    3 4 5 6 7 8 9 10

Figure 8: Grey scale image with shades of grey retrieved at each 
pixel (own sources).

The feature vector of dimension N = 3 is called a voxel.

Color Image Retrieval via PFC Method
Color images in for example RGB color system (r,g,b) are the set 
of points (x,y,r,g,b) in a feature space of dimension N = 5. There 
can be more features, for example texture t, and then one pixel 
(x,y,r,g,b,t) exists in a feature space of dimension N = 6. But there 
are the sub-spaces of a feature space of dimension N1 < N, for 
example (x,y,r), (x,y,g), (x,y,b) or (x,y,t) are points in a feature 
sub-space of dimension N1=3. Reconstruction and interpolation of 
color coordinates or texture parameters is done like in section 3.1 
for dimension N = 3. Appropriate combination of α1 and α2 leads 
to modeling of color r,g,b or texture t or another feature between 
the nodes. And for example (x,y,r,t), (x,y,g,t), (x,y,b,t)) are points in 
a feature sub-space of dimension N1=4 called doxels. Appropriate 
combination of α1, α2 and α3 leads to modeling of texture t or 
another feature between the nodes. For example color image, given 
as the set of doxels (x,y,r,t), is described for coordinates (x,y) via 
pairs (r,t) interpolated between nodes (x1,y1,2,1) and (x2,y2,10,9) as 
follows:
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2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1
2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2
2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3
2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4
2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5
2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6
2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7
2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8 10,8
2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9 10,9

Figure 9:  Color image with color and texture parameters (r,t) interpolated at each pixel (own sources).

So, dealing with feature space of dimension N and using PFC 
method there is no problem called “the curse of dimensionality” 
and no problem called “feature selection” because each feature is 
important. There is no need to reduce the dimension N and no need 
to establish which feature is “more important” or “less important”. 
Every feature that depends from N1-1 other features can be 
interpolated (reconstructed) in the feature sub-space of dimension 
N1 < N via PFC method. But having a feature space of dimension 
N and using PFC method there is another problem: how to reduce 
the number of feature vectors and how to interpolate (retrieve) the 
features between the known vectors (called nodes).

Difference between two given approaches (the curse of 
dimensionality with feature selection and PFC interpolation) can 
be illustrated as follows. There is a feature matrix of dimension N 
x M: N means the number of features (dimension of feature space) 
and M is the number of feature vectors (interpolation nodes) – 
columns are feature vectors of dimension N. One approach: the 
curse of dimensionality with feature selection wants to eliminate 
some rows from the feature matrix and to reduce dimension N to 
N1 < N. Second approach for PFC method wants to eliminate some 
columns from the feature matrix and to reduce dimension M to M1 
< M.

Result Analysis and Conclusions
PFC method is interpolating a curve between each pair of nodes 
using modeling function γ=F(α) and nodes combination h. The 
simplest way of comparing PFC with another method is to see 
the example. Here is the application of PFC method for function 
f(x)=1/x and nine nodes: y = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 
1.8. PFC represents (Fig.10) much more precise interpolation than 
Lagrange or Newton polynomial interpolation (Fig.11).

Figure 10: Points of function f(x) = 1/x using PFC method with 9 
nodes – better than polynomial interpolation (own sources).

Figure 11: Interpolation polynomial of function f(x)=1/x is 
completely wrong (own sources). Also Fig.2-3 are the examples 
of PFC interpolation much more accurate than polynomial 
interpolation by Newton or Lagrange. Very important matter is 
dealing with closed curves. PFC reconstruction of the contour or 
shape is done with the same formulas. Another important problem 
is connected with extrapolation. PFC method gives the tool of data 
anticipation or prediction.

Figure 12: Extrapolation of data right of the last node (own 
sources).
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Figure 13: Prediction of values left of first node (own sources).

PFC is a novel approach to the matter of data modeling, 
reconstruction and extrapolation.

The method of Probabilistic Features Combination (PFC) enables 
interpolation and modeling of high-dimensional N data using 
features’ combinations and different coefficients γ as modeling 
function. Functions for γ calculations are chosen individually at 
each data modeling and it is treated as N-dimensional probability 
distribution function: γ depends on initial requirements and 
features’ specifications. PFC method leads to data interpolation 
as handwriting or signature identification and image retrieval via 
discrete set of feature vectors in N-dimensional feature space. So 
PFC method makes possible the combination of two important 
problems: interpolation and modeling in a matter of image 
retrieval or writer identification. PFC interpolation develops a 
linear interpolation in multidimensional feature spaces into other 
functions as N-dimensional probability distribution functions. 
Future works are going to applications of PFC method in biometric 
recognition, computer vision and artificial intelligence.
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