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Abstract 

In this article, we present a novel method for encrypting medical images, based on a significant improvement of the 

classical Vigenère technique. This method utilizes dynamically generated large-sized substitution tables derived from 

multiple pseudo-random vectors. After vectorizing the original image and applying confusion with a pseudo-random 

vector, the first Vigenère round encryption is performed using two substitution tables, followed by a genetic crossover 

adapted for image encryption and controlled by a pseudo-random table. Next, a second Vigenère round encryption is 

applied, implementing new confusion and diffusion functions to maximize the avalanche effect and protect our system 

against all differential attacks. The output vector is then fully subjected to permutation to increase attack complexity. 

Simulations are conducted on a large number of images of various sizes and formats to ensure that our approach is 

not vulnerable to known attacks. 

 

Notations 

1.       ⁄       

2.  : XOR operator. 

3.  ( )                                     
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1. Introduction 

The need for data transmission in insecure networks through the internet and social networks has led to the invention 

of various encryption techniques. With the advancement in information transmission technology, different forms of 

multimedia data, such as images, are transmitted over the internet. However, due to the intrinsic properties of images, 

such as strong correlation between neighboring pixels and the large size of the data, conventional techniques exhibit 

weaknesses and disadvantages. 

1. Introduction
The need for data transmission in insecure networks through the 
internet and social networks has led to the invention of various 
encryption techniques. With the advancement in information 
transmission technology, different forms of multimedia data, such 
as images, are transmitted over the internet. However, due to the 
intrinsic properties of images, such as strong correlation between 
neighboring pixels and the large size of the data, conventional 
techniques exhibit weaknesses and disadvantages.

The rapid advancement in chaos theory mathematics, along with 
the unique properties of chaotic systems such as randomness and 
sensitivity to initial conditions, provides researchers with the op-
portunity to further enhance certain classical encryption systems. 
Given the significant interest in security, numerous image encryp-
tion techniques have emerged in the digital world, attempting to 

improve some classical techniques such as Hill Caesar, Vigenère 
and Feistel [1-9].

In recent years, substitution tables have been recognized as one 
of the most widely used tools in symmetric encryption systems. 
These S-boxes enable the confusion process [10]. Several research 
works based on the utilization of substitution tables have been 
proposed. In this regard, the authors of reference introduced an 
image encryption system based on the utilization of a new chaotic 
system composed of two maps: Sine and Tent [11]. A wide chaotic 
range characterizes this new chaotic system (STS). This property 
allows for the generation of improved chaotic sequences used in 
generating two substitution tables, S1 and S2. The utilization of 
two S-boxes enhances the resistance of the encryption algorithm 
against all four types of attacks. 
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The authors of have developed an image encryption system for 
square images of size N×N, based on the utilization of two hy-
per-chaotic systems, the logistic map and the tent map [12]. Pseu-
do-random number sequences are used for constructing N S-box-
es. Each S-box is employed for encrypting a row of the plaintext 
image.

In reference the authors proposed a digital image encryption al-
gorithm based on two permutation-substitution phases. In the first 
phase, a pixel position rearrangement of the plaintext image is 
performed to break the correlation between adjacent pixels [13]. 
Then, the logistic-sine map is used to generate a robust S-box for 
establishing a substitution phase of pixel values in the scrambled 
image. This confusion technique ensures non-linearity in the com-
ponents of the encrypted image.

The authors of the article proposed a new encryption algorithm 
based on the combination of the logistic map and the tent map for 
the development of a new chaotic system denoted as (STL) [14]. 
The properties of the STL system and linear algebra are exploit-
ed for constructing strong S-boxes against all types of attacks. In 
most image encryption systems, the encryption process is typically 
different from the decryption process.

In the article  the authors proposed a cryptosystem in which the 
encryption and decryption algorithms are identical. This type of 
cryptosystem is referred to as a unified image encryption algo-
rithm. In this article, a three-dimensional S-box is proposed [15].

The authors of the article proposed an image encryption scheme 
based on the development of three large-sized S-boxes: SR, SG, 
and SB. These tables are used to establish the two encryption pro-

cesses, confusion and diffusion [16].

1) Problematic
In the conventional Vigenère system, the identification of the pri-
vate key size makes the algorithm susceptible to statistical attacks, 
as revealed and elaborated by Babbage. Moreover, the knowledge 
of the substitution matrix renders the conventional system suscep-
tible to brute-force attacks. Furthermore, in the absence of diffu-
sion operations and chaining functions, conventional systems re 
remain vulnerable to differential attacks.

2) Our Contribution
Our contribution aims to enhance the functionality and structure 
of the conventional Vigenère encryption through the utilization 
of dynamic matrices as a replacement for the traditional substitu-
tion matrix. This involves constructing two improved encryption 
functions and generating two substitution matrices using the most 
widely adopted chaotic maps in the field of cryptography. Addi-
tionally, we employ the principle of double encryption, applying it 
to all pixels of the original image. Furthermore, a chaotic diffusion 
function is employed in the second round to amplify the avalanche 
effect and fortify the system against differential attacks. We also 
incorporate a genetic crossover operation between the two rounds 
of improved Vigenère rounds. Notably, our approach deviates 
from the classical method by employing different S-boxes for the 
decryption process.

2. Preliminary 
1) The Classic Vigenère Method
The technique was based on a static matrix (V) [26] presented by 
[figure 1]:
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With  (P):plaintext, (C):ciphertext; (K):encryption key, (V)Vi-
genère matrix and (lm):clear text size.

2. Genetic Crossover
a. Definition:
In a genetic algorithm, crossover is a genetic operation used to 
modify the genes of the descendants. This operation is based on a 
coupling of two individuals of the parent pool, chosen in a pseudo 
random way in order to generate strong individuals. The method 
chosen depends on the coding method.

b. Different Types of Genetic Crossover:
The most well-known crossover operators are:
• Single Crossover: A specific crossover point is chosen along 

the parent organism’s chain, at which point the data beyond 
that point in the organism’s chain is swapped between the two 
parent organisms [figure 2].

Example: Single Crossover: A specific crossover point is chosen along the parent organism's chain, at which point the 

data beyond that point in the organism's chain is swapped between the two parent organisms [figure 2]. 

Example: 

 
Figure 2 Single crossover 

 Double crossover: This represents a particular instance of the K-point crossover technique, where two random 

points are selected on the individual chromosomes (chains), facilitating an exchange of genetic material between these 

designated points [figure 3]. 
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3. The Proposed Method:
The proposed method consists of two stages. In each stage, confu-
sion and diffusion operations based on the use of two S-boxes are 
applied. Additionally, a genetic crossover is performed between 
the two stages. The following steps describe our algorithm:
• Construction of chaotic sequences.
• Generation of two substitution matrices.
• Defining a new cipher function.
• Transformation of the original image into a single vector.
• Combination of the original image with a chaotic vector.
• Application of the first round of Vigenère.
• Application of genetic crossover.
• Application of the second Vigenère round.

• Applying a global permutation.
• Encryption process simulation result.

a. Generation of Chaotic Sequences
The encryption parameters necessary for the optimal performance 
of our system are obtained from the two most extensively utilized 
chaotic maps in cryptography. This selection is motivated by their 
ease of implementation and high sensitivity to initial parameters.

a) The Logistic Map
The logistic map is a recurrent sequence described by a simple 
quadratic polynomial defined by equation (2) [17,18].
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a. Generation of Chaotic Sequences 

The encryption parameters necessary for the optimal performance of our system are obtained from the two most 

extensively utilized chaotic maps in cryptography. This selection is motivated by their ease of implementation and 

high sensitivity to initial parameters. 

 

a) The Logistic Map 

The logistic map is a recurrent sequence described by a simple quadratic polynomial defined by equation (2) [17,18]. 

 {         ]      [            [         ]              (    )
    (2) 

The Lyapunov exponent λ of the logistic map is λ = log(2) > 0, which proves that this sequence is highly sensitive to 

initial conditions. 

 

b) HENON Map 

Henon's two-dimensional chaotic map  was first discovered in 1978. It is described by equation (3) [19,20]. 

  {
                             [         ]

              
        

  ( ) 

We can convert the two-dimensional map expression into a one-dimensional map which is easy to implement in the 

encryption system. This formula is described by equation (4). 

 

      {                 [    ]                     [        ]                 
    ( ) 

This chaotic map is also sensitive to initial conditions and possesses a very large key size, which makes it highly 

secure against brute-force attacks.  

 

c) Chaotic Vector Design 

Our work requires the construction of three chaotic vectors (   ) (   ) and (   ), with coefficients in (    ), and 

two binary vectors  (  )     (  ), which will serve as control vectors. This construction is presented in algorithm 1. 

 

 

 

 Combination of the original image with a chaotic vector. 

 Application of the first round of Vigenère. 

 Application of genetic crossover. 

 Application of the second Vigenère round. 

 Applying a global permutation. 

 Encryption process simulation result. 

 

 

 

 

a. Generation of Chaotic Sequences 

The encryption parameters necessary for the optimal performance of our system are obtained from the two most 

extensively utilized chaotic maps in cryptography. This selection is motivated by their ease of implementation and 

high sensitivity to initial parameters. 

 

a) The Logistic Map 

The logistic map is a recurrent sequence described by a simple quadratic polynomial defined by equation (2) [17,18]. 

 {         ]      [            [         ]              (    )
    (2) 

The Lyapunov exponent λ of the logistic map is λ = log(2) > 0, which proves that this sequence is highly sensitive to 

initial conditions. 

 

b) HENON Map 

Henon's two-dimensional chaotic map  was first discovered in 1978. It is described by equation (3) [19,20]. 

  {
                             [         ]

              
        

  ( ) 

We can convert the two-dimensional map expression into a one-dimensional map which is easy to implement in the 

encryption system. This formula is described by equation (4). 

 

      {                 [    ]                     [        ]                 
    ( ) 

This chaotic map is also sensitive to initial conditions and possesses a very large key size, which makes it highly 

secure against brute-force attacks.  

 

c) Chaotic Vector Design 

Our work requires the construction of three chaotic vectors (   ) (   ) and (   ), with coefficients in (    ), and 

two binary vectors  (  )     (  ), which will serve as control vectors. This construction is presented in algorithm 1. 

 

 

 

 Combination of the original image with a chaotic vector. 

 Application of the first round of Vigenère. 

 Application of genetic crossover. 

 Application of the second Vigenère round. 

 Applying a global permutation. 

 Encryption process simulation result. 

 

 

 

 

a. Generation of Chaotic Sequences 

The encryption parameters necessary for the optimal performance of our system are obtained from the two most 

extensively utilized chaotic maps in cryptography. This selection is motivated by their ease of implementation and 

high sensitivity to initial parameters. 

 

a) The Logistic Map 

The logistic map is a recurrent sequence described by a simple quadratic polynomial defined by equation (2) [17,18]. 

 {         ]      [            [         ]              (    )
    (2) 

The Lyapunov exponent λ of the logistic map is λ = log(2) > 0, which proves that this sequence is highly sensitive to 

initial conditions. 

 

b) HENON Map 

Henon's two-dimensional chaotic map  was first discovered in 1978. It is described by equation (3) [19,20]. 

  {
                             [         ]

              
        

  ( ) 

We can convert the two-dimensional map expression into a one-dimensional map which is easy to implement in the 

encryption system. This formula is described by equation (4). 

 

      {                 [    ]                     [        ]                 
    ( ) 

This chaotic map is also sensitive to initial conditions and possesses a very large key size, which makes it highly 

secure against brute-force attacks.  

 

c) Chaotic Vector Design 

Our work requires the construction of three chaotic vectors (   ) (   ) and (   ), with coefficients in (    ), and 

two binary vectors  (  )     (  ), which will serve as control vectors. This construction is presented in algorithm 1. 

 

 

 

The Lyapunov exponent λ of the logistic map is λ = log(2) > 0, which proves that this sequence is highly sensitive to initial conditions.

b) HENON Map
Henon’s two-dimensional chaotic map  was first discovered in 1978. It is described by equation (3) [19,20].

We can convert the two-dimensional map expression into a one-dimensional map which is easy to implement in the encryption system. 
This formula is described by equation (4).

This chaotic map is also sensitive to initial conditions and possesses a very large key size, which makes it highly secure against brute-
force attacks. 

c). Chaotic Vector Design
Our work requires the construction of three chaotic vectors (VC1),(VC2) and (VC3), with coefficients in (G256 ), and two binary vectors  
(VB)  and (BV), which will serve as control vectors. This construction is presented in algorithm 1.
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Algorithm 1: chaotic vectors 

Input: two chaotic sequences u, v  

Output: (VC1), (VC2), (VC3) chaotic vectors 

Begin 

     For i =1 to 3nm 

              ( )      ( (   ( ( )  ( ))  ( )
          ) 

 ) 

               ( )      ( (   ( )    ( )          )  ) 

              ( )   (     ( )      ( )
 ) 

     End For 

end 

 

The design of (VB) and (BV) vectors is illustrated by Algorithm 2. 

 

 

Algorithm 2: design of binary control vectors (VB) and (BV) 

Input: (VC1), (VC2) chaotic vectors  

Output: (VB) binary vector 

Begin 

     For i =1 to 3nm 

         Yew    ( )     ( ) then  

                  ( )    

         Else  

                  ( )    

          End If   

     End For 

end 

Input: u, v chaotic sequences  

Output: (BV) binary vector 

Begin 

     For i =1 to 3nm 

         If u( )   ( ) then  

                  ( )    

         Else 

                  ( )    

          End If   

     End For 

end 

 

d) Global Permutation Design 

 

This permutation is generated by Algorithm 3: 

Algorithm 3: global permutation design 

Input: binary control vector (VB) 

Output: Global permutation (GP) 

Begin 

     k=1 

     For i =1 to 3nm 

          If VB(i) = 0 then 

Algorithm 1: chaotic vectors 

Input: two chaotic sequences u, v  

Output: (VC1), (VC2), (VC3) chaotic vectors 

Begin 

     For i =1 to 3nm 

              ( )      ( (   ( ( )  ( ))  ( )
          ) 

 ) 

               ( )      ( (   ( )    ( )          )  ) 

              ( )   (     ( )      ( )
 ) 

     End For 

end 

 

The design of (VB) and (BV) vectors is illustrated by Algorithm 2. 

 

 

Algorithm 2: design of binary control vectors (VB) and (BV) 

Input: (VC1), (VC2) chaotic vectors  

Output: (VB) binary vector 

Begin 

     For i =1 to 3nm 

         Yew    ( )     ( ) then  

                  ( )    

         Else  

                  ( )    

          End If   

     End For 

end 

Input: u, v chaotic sequences  

Output: (BV) binary vector 

Begin 

     For i =1 to 3nm 

         If u( )   ( ) then  

                  ( )    

         Else 

                  ( )    

          End If   

     End For 

end 

 

d) Global Permutation Design 

 

This permutation is generated by Algorithm 3: 

Algorithm 3: global permutation design 

Input: binary control vector (VB) 

Output: Global permutation (GP) 

Begin 

     k=1 

     For i =1 to 3nm 

          If VB(i) = 0 then 

The design of (VB) and (BV) vectors is illustrated by Algorithm 2.

d) Global Permutation Design
This permutation is generated by Algorithm 3:

Algorithm 1: chaotic vectors 

Input: two chaotic sequences u, v  

Output: (VC1), (VC2), (VC3) chaotic vectors 

Begin 

     For i =1 to 3nm 

              ( )      ( (   ( ( )  ( ))  ( )
          ) 

 ) 

               ( )      ( (   ( )    ( )          )  ) 

              ( )   (     ( )      ( )
 ) 

     End For 

end 

 

The design of (VB) and (BV) vectors is illustrated by Algorithm 2. 

 

 

Algorithm 2: design of binary control vectors (VB) and (BV) 

Input: (VC1), (VC2) chaotic vectors  

Output: (VB) binary vector 

Begin 

     For i =1 to 3nm 

         Yew    ( )     ( ) then  

                  ( )    

         Else  

                  ( )    

          End If   

     End For 

end 

Input: u, v chaotic sequences  

Output: (BV) binary vector 

Begin 

     For i =1 to 3nm 

         If u( )   ( ) then  

                  ( )    

         Else 

                  ( )    

          End If   

     End For 

end 

 

d) Global Permutation Design 

 

This permutation is generated by Algorithm 3: 

Algorithm 3: global permutation design 

Input: binary control vector (VB) 

Output: Global permutation (GP) 

Begin 

     k=1 

     For i =1 to 3nm 

          If VB(i) = 0 then 



Volume 6 | Issue 1 | 6J Gene Engg Bio Res, 2024

Algorithm 1: chaotic vectors 

Input: two chaotic sequences u, v  

Output: (VC1), (VC2), (VC3) chaotic vectors 

Begin 

     For i =1 to 3nm 

              ( )      ( (   ( ( )  ( ))  ( )
          ) 

 ) 

               ( )      ( (   ( )    ( )          )  ) 

              ( )   (     ( )      ( )
 ) 

     End For 

end 

 

The design of (VB) and (BV) vectors is illustrated by Algorithm 2. 

 

 

Algorithm 2: design of binary control vectors (VB) and (BV) 

Input: (VC1), (VC2) chaotic vectors  

Output: (VB) binary vector 

Begin 

     For i =1 to 3nm 

         Yew    ( )     ( ) then  

                  ( )    

         Else  

                  ( )    

          End If   

     End For 

end 

Input: u, v chaotic sequences  

Output: (BV) binary vector 

Begin 

     For i =1 to 3nm 

         If u( )   ( ) then  

                  ( )    

         Else 

                  ( )    

          End If   

     End For 

end 

 

d) Global Permutation Design 

 

This permutation is generated by Algorithm 3: 

Algorithm 3: global permutation design 

Input: binary control vector (VB) 

Output: Global permutation (GP) 

Begin 

     k=1 

     For i =1 to 3nm 

          If VB(i) = 0 then 
                k=k+1 

          end If 

     end For 

     For i =3nm to 1 

          If VB(i) = 1 then 

                k=k+1 

          end If 

     end For 

end 

 

Example: 

[Table 1] illustrate an example of permutation generated using algorithm 3  

 

 

VB 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 

count 10 9 8 11 12 7 13 6 5 14 4 15 3 2 16 17 1 18 0 19 

   (                                                                                                                                                                                                       ) 

 

 

 Table 1 Example of permutation in (   ). 
b) Encryption process 

a) First confusion of the original image 

Initially, the original image of size (n, m, 3) is transformed into a vector (img) of size (3nm). Subsequently, a 

confusion operation is applied between the vector (img) and the chaotic vector (VC1). This procedure is detailed in 

[Figure 5] and Algorithm 4. 

 
Figure 5 : First confusion of the original image 
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 Table 1 Example of permutation in (   ). 
b) Encryption process 

a) First confusion of the original image 

Initially, the original image of size (n, m, 3) is transformed into a vector (img) of size (3nm). Subsequently, a 

confusion operation is applied between the vector (img) and the chaotic vector (VC1). This procedure is detailed in 

[Figure 5] and Algorithm 4. 

 
Figure 5 : First confusion of the original image 

 

 

Example:
[Table 1] illustrate an example of permutation generated using algorithm 3 
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b) Encryption Process
a) First Confusion of the Original Image
Initially, the original image of size (n, m, 3) is transformed into a vector (img) of size (3nm). Subsequently, a confusion operation is 
applied between the vector (img) and the chaotic vector (VC1). This procedure is detailed in [Figure 5] and Algorithm 4.
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Algorithm 4: First confusion of the original image   

Input: original image (img) and chaotic vector (VC1)  

Output: (X) 

Begin 

     For i =1 to 3nm 

          ( )     ( )       ( ) 
     End For 

end 

b)  

c) First round of improved Vigenère: 

By taking inspiration from the classical Vigenère technique, we will generate two chaotic substitution matrices, (   ) 
and (   ), each with a size of  (       )  using the following procedure: 

 (  ): Permutation obtained by a large ascending sort of the first 256 values of the sequence.( )   
 (  ): Permutation obtained by strict descending sorting of the first 256 values of the sequence.( ). 
 

 

This new construction is entirely governed by the vector (  ). It is given by algorithm 5. 
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This new construction is entirely governed by the vector (BV). It 
is given by algorithm 5.
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This is a chaotic displacement applied at the level of line i-1 to generate the elements of line i. It is noteworthy that the construction of 
the two matrices is entirely controlled by the vector (BV). [Figure 6] illustrates an example of a substitution matrix with values in (G8 ).

This is a chaotic displacement applied at the level of line i-1 to generate the elements of line i. It is noteworthy that the 

construction of the two matrices is entirely controlled by the vector (  ). [Figure 6] illustrates an example of a 

substitution matrix with values in (  ). 

 

(SM1) 0 1 2 3 4 5 6 7  B.V. VC1 VC2  (SM2) 0 1 2 3 4 5 6 7 

0 3 5 0 6 2 7 1 4      0 0 4 5 7 1 2 6 3 

1 2 7 1 4 3 5 0 6  1 5 4  1 6 2 1 7 3 0 4 5 

2 4 3 5 0 6 2 7 1  1 3 5  2 7 1 2 4 5 6 3 0 

3 2 7 1 4 3 5 0 6  0 3 4  3 5 2 3 0 6 7 1 4 

4 0 6 2 7 1 4 3 5  1 4 2  4 0 4 1 3 2 6 7 5 

5 7 5 2 4 6 1 0 3  0 4 5  5 6 3 4 7 0 5 1 2 

6 1 3 2 6 0 4 7 5  0 5 2  6 4 7 5 1 6 0 3 2 

7 2 0 4 7 6 1 3 5  1 2 3  7 5 1 7 2 3 4 6 0 

Figure 6: substitution matrix with values in (  ) 

i) Expression of the classical Vigenère function 

The matrices (   ) and (   ) will be used in the encryption process through a substitution function. Equation 5 

illustrates the substitution function of the classical Vigenère method: 

      ( )     (   ( ))         ( ) 

With ( ) is the encryption key. 

 

ii) New mathematical expression for the substitution function. 

Equation 6 illustrates the new effective expression of the image Y(i) as a function of the pixel X(i) using the advanced 

Vigenère method. 
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Begin 

     For i =1 to 3nm  

           ( )     ( ( )) 
     End For 

end 

Figure 6: substitution matrix with values in (G8 )

i) Expression of the classical Vigenère function
The matrices (SM1) and (SM2) will be used in the encryption process through a substitution function. Equation 5 illustrates the substi-
tution function of the classical Vigenère method:

With (K) is the encryption key.

ii) New mathematical expression for the substitution function.
Equation 6 illustrates the new effective expression of the image Y(i) as a function of the pixel X(i) using the advanced Vigenère method.

Note that (AV1) is the cipher function of the first round.

iii) The First Round of the Encryption Process 
The first round of encryption process is defined by Algorithm 6.
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[Figure 7] shows the first round of the encryption process.
[Figure 7] shows the first round of the encryption process. 

 
Figure 7 First round of enhanced Vigenère 

After completing the first round, the resulting vector (Y) will be regarded as a clear image and subsequently employed 

for genetic crossover. 

 

It is observed that this first round produces a slightly encrypted image [Table 2], but is safe from any frequency and 

statistical attacks. In order to increase the complexity of attacks, we add a second encryption round. 

 

 

Image Cipher Parameters 

  

Vertical 

correlation 

R 0.00350 

G -0.00056 

B -0.00180 

Horizontal 

correlation 

R 0.00019 

G 0.00194 

B -0.00247 

Diagonal 

correlation 

R -0.00057 

G 0.00092 

B 0.00385 

Entropy 

R 7.99870 

G 7.99873 

B 7.99876 

 

Table 2. Vigenère first round results 

d) Genetic Crossover Suitable For Image Encryption: 

The classical genetic algorithm is considered a class of optimization algorithm; therefore, the original data 

(population) is lost by applying a crossover operation, which is not suitable for an encryption process [21-34]. 

[Figure 7] shows the first round of the encryption process. 
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d) Genetic Crossover Suitable For Image Encryption: 

The classical genetic algorithm is considered a class of optimization algorithm; therefore, the original data 

(population) is lost by applying a crossover operation, which is not suitable for an encryption process [21-34]. 

Figure 7: First round of enhanced Vigenère

After completing the first round, the resulting vector (Y) will be regarded as a clear image and subsequently employed for genetic cross-
over.

It is observed that this first round produces a slightly encrypted image [Table 2], but is safe from any frequency and statistical attacks. 
In order to increase the complexity of attacks, we add a second encryption round

Table 2: Vigenère first round results
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d) Genetic Crossover Suitable For Image Encryption:
The classical genetic algorithm is considered a class of optimi-
zation algorithm; therefore, the original data (population) is lost 
by applying a crossover operation, which is not suitable for an 
encryption process [21-34].
The main idea of our technique is to apply the k-point crossover 
method by subdividing the vector (Y) and the chaotic vector (VC1) 
into n blocks of size 3m, and then creating a genetic crossover ta-
ble (CT) of size (n, 3), defined as follows:
• The first column is a permutation obtained by sorting the first 

n values of the sequence (u) in ascending order, indicating the 
index of the block (Y).

• The second column is a permutation obtained by sorting the 
first n values of the sequence (v) in ascending order, indicating 
the index of the block (VC1).

• The third column is a permutation obtained by sorting the first 
n values of the sequence (VC3) in ascending order, indicating 
the index of the block (YC) obtained by the crossover of the 
first two blocks.

The crossover operation is illustrated by Algorithm 7.

The main idea of our technique is to apply the k-point crossover method by subdividing the vector (Y) and the chaotic 

vector (VC1) into n blocks of size 3m, and then creating a genetic crossover table (CT) of size (n, 3), defined as 

follows: 

 The first column is a permutation obtained by sorting the first n values of the sequence (u) in ascending order, 

indicating the index of the block (Y). 

 The second column is a permutation obtained by sorting the first n values of the sequence (v) in ascending 

order, indicating the index of the block (VC1). 

 The third column is a permutation obtained by sorting the first n values of the sequence (VC3) in ascending 

order, indicating the index of the block (YC) obtained by the crossover of the first two blocks. 

The crossover operation is illustrated by Algorithm 7. 

 

Algorithm 7: genetic crossover  

Input: (Y) vector of size (3nm), VC1 chaotic vector and (CT) crossover table  

Output: (YC) vector of size (3nm) 

Begin 

   For i =1 to n 

         For j=2 to 3m 

     ((  (   )  )      )     ((  (   )  )      )  ((  (   )   )      ) 

         End For 

    End For 

end 

 

Example: 

Let (Y) and (VC1) be two vectors of size 9, divided into 3 blocks of size 3 each, and let CT be a crossover table of size 

(3,3), this table is described by [Table 3]. 

 

 

Y block 

index 

VC1 block 

index 

YC block 

index 

3 2 3 

2 1 1 

1 3 2 

Table 3. Cross table of size (3,3) 

Each row of (CT) represents the indices of the blocks interacting with each other in the genetic crossover operation. 

For instance, the first row of (CT) indicates that the crossover operation is performed between the 3rd block of (Y) and 

the 2nd block of (VC1), and the result is stored in the 3rd block of (YC). The rest of the process is described in [Figure 

8]. 
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Example:
Let (Y) and (VC1) be two vectors of size 9, divided into 3 blocks of size 3 each, and let CT be a crossover table of size (3,3), this table 
is described by [Table 3].

Table 3: Cross table of size (3,3)

Each row of (CT) represents the indices of the blocks interacting 
with each other in the genetic crossover operation. For instance, 
the first row of (CT) indicates that the crossover operation is per-

formed between the 3rd block of (Y) and the 2nd block of (VC1), 
and the result is stored in the 3rd block of (YC). The rest of the 
process is described in [Figure 8].
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Figure 8. Genetic crossing operation 

The resulting vector of the crossover operation will be the object of a second rounds. 

 

e) Second round of the improved Vigenère method 

After the genetic crossover, a second round of Vigenère encryption is performed, distinguished from the first round by 

the implementation of a new confusion function associated with a diffusion phase. This round begins with the 

calculation of an initialization value. 

 

i) Calculation of the initialization value 

At the end of the genetic crossover, an initialization value (IV) will be calculated, according to Algorithm 10, to 

initiate the encryption process. 
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Input: (YC) vector of size 3nm, chaotic vectors (VC3) 

Output: (IV) second initial value 

Begin 

     For i =2 to 3nm 
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     End For 

end 

ii) Expression of the confusion function in the second round. 

 

The second round can also be ensured by using another confusion function using the matrices of the first round. This 

function is given by equation 7. 
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Figure 8: Genetic crossing operation

The resulting vector of the crossover operation will be the object 
of a second rounds.

e) Second round of the improved Vigenère method
After the genetic crossover, a second round of Vigenère encryp-
tion is performed, distinguished from the first round by the imple-
mentation of a new confusion function associated with a diffusion 

phase. This round begins with the calculation of an initialization 
value.

i) Calculation of the initialization value
At the end of the genetic crossover, an initialization value (IV) will 
be calculated, according to Algorithm 10, to initiate the encryption 
process.

ii) Expression of the confusion function in the second round.
The second round can also be ensured by using another confusion function using the matrices of the first round. This function is given 
by equation 7.
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Note that (   ) is the cipher function of the second round. (   ) are two invertible factors in (    ) and (   ) two 

values of (    ). The most judicious measure consists in making the functions defined by equations 8-9 reversible: 
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The number of transformations ( ) greatly exceeds              . This guarantees strong protection against brutal 

attacks. 

 

iii) Diffusion Function Expression in Second Round 

The second round will be equipped with the diffusion function (Ω) provided by the substitution matrix (SM2). The 

expression of this function is defined by equation 10. 
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iv) The Second-Round Encryption Process: 

The second-round encryption process is defined by Algorithm 9: 
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[Figure 9] shows the second-round encryption process. 
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[Figure 9] shows the second-round encryption process. 

Note that (AV2) is the cipher function of the second round. (a,c) are two invertible factors in (G256) and (d,b) two values of (G256 ). The 
most judicious measure consists in making the functions defined by equations 8-9 reversible:

The number of transformations (h) greatly exceeds 2127+256 ≈2380. This guarantees strong protection against brutal attacks.

iii) Diffusion Function Expression in Second Round
The second round will be equipped with the diffusion function (Ω) provided by the substitution matrix (SM2). The expression of this 
function is defined by equation 10.

iv) The Second-Round Encryption Process:
The second-round encryption process is defined by Algorithm 9:
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[Figure 9] shows the second-round encryption process.

 
 

Figure 9 Second round of Vigenère 

Example: 

Let's consider the first 4 pixels of the vector (YC) taking values in G8. By using Algorithm 10 and the 2 S-boxes 

(SM1) and (SM2) mentioned in [Figure 6], we obtain the corresponding encrypted pixels stored in the vector (Z) after 

calculating the initialization value (IV). This process is controlled by the pseudo-random vectors (BV), (VC1), (VC2), 

and (VC3), along with the 4 pseudo-random parameters a, b, c, and d. [Figure 10] illustrates the progression of this 

process. 
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Figure 9: Second round of Vigenère

Example:
Let’s consider the first 4 pixels of the vector (YC) taking values in 
G8. By using Algorithm 10 and the 2 S-boxes (SM1) and (SM2) 
mentioned in [Figure 6], we obtain the corresponding encrypted 
pixels stored in the vector (Z) after calculating the initialization 

value (IV). This process is controlled by the pseudo-random vec-
tors (BV), (VC1), (VC2), and (VC3), along with the 4 pseudo-ran-
dom parameters a, b, c, and d. [Figure 10] illustrates the progres-
sion of this process.

Figure 10: Encryption Using Second Round of Enhanced Vigenère 

The following operations are used to calculate the encrypted pixel corresponding to the original pixel with index 2 (YC(2)).
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f) Applying a Global Permutation 

To increase the time complexity of any attack, the vector obtained ( ) will be subjected to a global permutation (  ) 
algorithm 10. 

Algorithm 10: global permutation  

Input: (Z) vector of size (3nm),  

Output: (ZC) vector of size (3nm) 

Begin 

     For i =1 to 3nm 

            ( )    ( ( )) 
     End For 

end 

The vector (  ) represent the image encrypted by our algorithm. 

 

b. Decryption Process 

Our technique is a symmetric encryption algorithm, uses the same secret key and the same encryption parameters. The 

decryption process begins with the last encryption operations with the use of inverse functions and must follow the 

following steps: 

 

 

 Global inverse permutation.(  ). 
 Inverse of the second Vigenère round ensured by the inverse substitution matrices (MS1) and (MS2). 

 Recalculate initialization value (IV). 

 Application of reverse genetic crossing ensured by the same table (CT). 

 Inverse of the first Vigenère round ensured by the inverse substitution matrices (MS1) and (MS2). 

 Reconstruction of the original image. 

 

a) Generation of Reverse Encryption Parameters 

i) Reverse Permutation: 

The inverse permutation (  ) of (  ) is calculated from Algorithm 11. 
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f) Applying a Global Permutation
To increase the time complexity of any attack, the vector obtained (Z) will be subjected to a global permutation (GP) algorithm 10.

The vector (ZC) represent the image encrypted by our algorithm.

b. Decryption Process
Our technique is a symmetric encryption algorithm, uses the same 
secret key and the same encryption parameters. The decryption 
process begins with the last encryption operations with the use of 
inverse functions and must follow the following steps:

• Global inverse permutation.(PG).
• Inverse of the second Vigenère round ensured by the inverse 

substitution matrices (MS1) and (MS2).

• Recalculate initialization value (IV).
• Application of reverse genetic crossing ensured by the same 

table (CT).
• Inverse of the first Vigenère round ensured by the inverse sub-

stitution matrices (MS1) and (MS2).
• Reconstruction of the original image.

a) Generation of Reverse Encryption Parameters
i) Reverse Permutation:
The inverse permutation (PG) of (GP) is calculated from Algo-
rithm 11.

Algorithm 11: global permutation design 

Input: Global permutation (GP) 

Output: Global inverse permutation (PG) 

Begin 

     For i =1 to 3nm 

            (  ( ))    
     End For 

end 

ii) Inverse of the Substitution Matrix 

Each row of the substitution matrix is a permutation in (    ), so the decryption matrix will consist of inverse 

permutations. For this reason, two generations of substitution matrices are provided by Algorithm 12: 

Algorithm 12: inverse substitution matrix 

Input: Two s-boxes (SM1) and (SM2) 

Output: (MS1) and (MS2) two s-boxes 

Begin 

     For i =1 to 256 

          For j=1 to 256 

                   (     (   ))    
                   (     (   ))      
          End For 

     End For 

end 

Example: 

[Figure 11] represents the S-box SM1 taking values in G8 and its inverse MS1. 

 
Figure 11 Substitution Matrix and Its Inverse in G8 

iii) Reverse Substitution 

Following the same approach as the classical technique of Vigenère, the inverse substitution of the first round is given 

by equation 12, likewise for the second is defined by equation 11. 
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iii) Reverse Substitution
Following the same approach as the classical technique of Vigenère, the inverse substitution of the first round is given by equation 12, 
likewise for the second is defined by equation 11.
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b) Decrypting the Encrypted Image 

The algorithm we propose is a symmetric encryption system, meaning that the same key will be utilized during 

decryption. Furthermore, due to the diffusion function's implementation, the decryption process starts from the last 

pixel and proceeds towards the first pixel, necessitating the recalculation of the initialization value to obtain the precise 

value of the first pixel. 

 

i) Application of Permutation (PG) 

The vector (Z) is obtained by applying the inverse permutation (PG) to the vector (ZC), as illustrated in Algorithm 13: 

Algorithm 13: global permutation  

Input: (ZC) vector of size (3nm), (PG) the inverse 

permutation 

Output: (Z) vector of size (3nm) 

Begin 

     For i =1 to 3nm 
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     End For 

end 

ii) The Inverse Function of the Second Round 

The inverse function of the second round is given by Algorithm 14: 
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Input: (Z) vector of size (3nm), two S-boxes (MS1) and (MS2), chaotic vectors (VC1), (VC2) and (VC3). 
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Begin 
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b) Decrypting the Encrypted Image
The algorithm we propose is a symmetric encryption system, 
meaning that the same key will be utilized during decryption. Fur-
thermore, due to the diffusion function’s implementation, the de-
cryption process starts from the last pixel and proceeds towards the 
first pixel, necessitating the recalculation of the initialization value 

to obtain the precise value of the first pixel.

i) Application of Permutation (PG)
The vector (Z) is obtained by applying the inverse permutation 
(PG) to the vector (ZC), as illustrated in Algorithm 13:
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ii) The Inverse Function of the Second Round
The inverse function of the second round is given by Algorithm 14:

The computation of the initialization value (IV) will allow us to recover the exact value of pixel YC(1).

iii) The Reverse of the Genetic Crossing Operation
The inverse of the genetic crossover operation is given by Algorithm 15.
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The computation of the initialization value (IV) will allow us to recover the exact value of pixel YC(1). 
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This operation is described by algorithm 17. 
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iv) The Inverse Function of the First Round
The inverse function of the first round is given by Algorithm 16:

The original image (img) is retrieved through the XOR operation between the vector (X) and the chaotic vector (VC1). This operation 
is described by algorithm 17.

Algorithm 17: First confusion of the original image   

Input: (X) vector and chaotic vector (VC1)  

Output: original image (img)  

Begin 

     For i =1 to 3nm 

         img( )   ( )       ( ) 
     end For 

end 

 

4. Examples and Simulations: 

To measure the performance of our encryption system, we randomly select a large number of reference images and use 

them for testing our method. In this section, All simulations were performed using the Python programming language 

under Ubuntu 20.04, on a basic personal computer equipped with an i5 processor, 8 GB of RAM, and a 500 GB hard 

drive. 

1) Key Space Analysis 

The chaotic sequences used in our method ensure a high sensitivity to initial conditions and can protect against brute-

force attacks. The secret key of our system is composed of... 

                ,               , for the logistics map. 

                                                 for the map of Henon. 

If we use single-precision real numbers       for the calculation, the total key size will greatly exceed       
    , which is enough to avoid brute force attacks. 

2) Secret Key Sensitivity Analysis 

Our encryption key has high sensitivity, which means that a slight modification of a single parameter will 

automatically lead to a significant difference compared to the original image. [Figure 12] illustrates this property, 

ensuring that in the absence of the correct encryption key, the original image cannot be restored. 

 
Figure 12: Encryption Key Sensitivity 

3) Security Against Statistical Attacks: 
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4. Examples and Simulations:
To measure the performance of our encryption system, we ran-
domly select a large number of reference images and use them for 
testing our method. In this section, All simulations were performed 
using the Python programming language under Ubuntu 20.04, on 
a basic personal computer equipped with an i5 processor, 8 GB of 
RAM, and a 500 GB hard drive.
1) Key Space Analysis
The chaotic sequences used in our method ensure a high sensitivi-
ty to initial conditions and can protect against brute-force attacks. 
The secret key of our system is composed of...
• u0=0,8753418021,  μ1=3.97451652, for the logistics map.

• v0=0,356000001,v1=0,956100001 b=1.09231541 for the map 
of Henon.

If we use single-precision real numbers 10-10 for the calculation, 
the total key size will greatly exceed ≈2180 2110, which is enough to 
avoid brute force attacks.
2) Secret Key Sensitivity Analysis
Our encryption key has high sensitivity, which means that a slight 
modification of a single parameter will automatically lead to a 
significant difference compared to the original image. [Figure 12] 
illustrates this property, ensuring that in the absence of the correct 
encryption key, the original image cannot be restored.
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3) Security Against Statistical Attacks: 

Figure 12: Encryption Key Sensitivity

3) Security Against Statistical Attacks:
a) Simulation and Histogram
[Table 4] provides examples of images before and after encryp-
tion. This illustration demonstrates that no visual information can 
be extracted from the encrypted image. 

All the images tested by our algorithm have a uniformly distrib-
uted histogram [Table 4]. This indicates that the entropy of the 
encrypted images is around 8, making the system immune to sta-
tistical attacks.



Volume 6 | Issue 1 | 19J Gene Engg Bio Res, 2024

a) Simulation and Histogram 

[Table 4] provides examples of images before and after encryption. This illustration demonstrates that no visual 

information can be extracted from the encrypted image.  

 

All the images tested by our algorithm have a uniformly distributed histogram [Table 4]. This indicates that the 

entropy of the encrypted images is around 8, making the system immune to statistical attacks. 

 

 

 name size images Histograms 
Im

g1
 

24
3x

41
1 

or
ig

in
al

 ia
m

ge
 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

im
g2

 

 

or
ig

in
al

 im
ag

e 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

im
g3

 

55
2x

55
0 

or
ig

in
al

 im
ag

e 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

Im
g4

 

51
2x

51
2 

or
ig

in
al

 im
ag

e 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

Im
g5

 

10
24

x1
02

4 

or
ig

in
al

 im
ag

e 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

Im
g6

 

25
6x

25
65

 

or
ig

in
al

 im
ag

e 

 

 



Volume 6 | Issue 1 | 20J Gene Engg Bio Res, 2024

En
cr

yp
te

d 
im

ag
e 

 
 

Im
g4

 

51
2x

51
2 

or
ig

in
al

 im
ag

e 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

Im
g5

 

10
24

x1
02

4 

or
ig

in
al

 im
ag

e 

 
 

En
cr

yp
te

d 
im

ag
e 

 
 

Im
g6

 

25
6x

25
65

 

or
ig

in
al

 im
ag

e 

 

 

En
cr

yp
te

d 
im

ag
e 

 

 

Table 4 Original images and Cipher images histograms ‘ 

b) Entropy Analysis 

The entropy  of a size image (    ) is given by equation 14: 
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 ( )is the probability of occurrence of level ( )in original image. 

All the images that our method tested have an entropy very close to 8 [Table 5], which is the maximum value. This 

parameter ensures that entropy attacks are avoided by our system. 

 

c) Correlation Analysis  

The correlation  of a size image (    )is given by equation 15. 
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Pixel correlation measures the independence of neighboring pixels. the correlation values obtained are very close to 

zero for all the images encrypted by our method [Table 5]. This parameter ensures that statistical attacks are avoided 

by our system. 
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R 0.00024 -8.37e-05 -0.00213 7.998032 

G -0.00146 0.00062 0.00160 7.998075 

B -0.00204 -0.00302 0.00130 7.998090 
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R 0.00012 -0.00038 7.06e-05 7.999635 

G -0.00182 -0.00286 -0.00052 7.999646 

B 0.00241 -0.00314 0.00162 7.999617 

im
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R 0.00015 -0.00074 0.00237 7.999454 

G -0.00208 0.00295 -0.00014 7.999393 

B 0.00223 0.00187 -4.01e-05 7.999333 
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g4

 R -0.00323 0.00386 -0.00293 7.999295 

G 0.00084 0.00061 0.00104 7.999275 

Table 4: Original images and Cipher images histograms ‘
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c) Avalanche Effect 

Our approach is based on a CBC operating mode. Therefore, any small change in the original image results on a larger 
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[Table 6] shows that the differential parameters results obtained in the desired ranges (NPCR close to 100%, UACI > 

33% and EA > 50%). 
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b) The UACI Constant
Unified Average Changing Intensity (UACI) [24] mathematical analysis of an image is given by equation 17.

c) Avalanche Effect
Our approach is based on a CBC operating mode. Therefore, any 
small change in the original image results on a larger change in the 
pixels of the encrypted image. The avalanche effect corresponds 

to the number of bits that have been modified if a single bit of the 
original image is modified [25]. The mathematical expression of 
this avalanche effect is given by equation 18.

[Table 6] shows that the differential parameters results obtained in the desired ranges (NPCR close to 100%, UACI > 33% and EA > 
50%).

Table 6: Differential Parameters

5) Encryption Time Complexity 
The encryption time is a crucial benchmark for assessing the effi-
ciency of an image encryption algorithm. Effectively encrypting 
substantial data, such as images, within a reasonable timeframe 
has become a challenging aspect of algorithm development. In our 

study, we present the encryption times for images of sizes 256x256 
and 512x512 in [Table 7], along with a comparison to other recent 
works. Furthermore, the time complexity of our method for an im-
age of size (N, M) is O(NM).
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256x256 0.6956  0.65 8.22 0.156 

512x512 1.7551 ---- ---- 0.406 
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6) Comparison With Other Approaches 

In [Table 8], we provide a comparison between the entropy and differential parameters of several images encrypted 

using our approach and the same images encrypted using other algorithms. 
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5. Conclusion 

In this article, we have proposed a novel medical image encryption scheme based on two Vigenère encryption rounds 

using large S-boxes, separated by a genetic crossover adapted for image encryption and a permutation applied to the 

output vector [35-40]. The results obtained by testing several randomly chosen images from a database have shown 

very promising and encouraging outcomes, ensuring better protection against any known attacks. As the time 

complexity of our approach is polynomial, the execution time in the encryption and decryption processes is 

reasonable. In our perspective, we plan to integrate genetic algorithms acting at the level of DNA and RNA to enhance 

the security of our system. 

Table 7: Encryption Time
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5. Conclusion
In this article, we have proposed a novel medical image encryp-
tion scheme based on two Vigenère encryption rounds using large 
S-boxes, separated by a genetic crossover adapted for image en-
cryption and a permutation applied to the output vector [35-40]. 
The results obtained by testing several randomly chosen images 
from a database have shown very promising and encouraging out-
comes, ensuring better protection against any known attacks. As 
the time complexity of our approach is polynomial, the execution 
time in the encryption and decryption processes is reasonable. In 
our perspective, we plan to integrate genetic algorithms acting at 
the level of DNA and RNA to enhance the security of our system.
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