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Abstract 
Myrosinase activity on broccoli glucosinolates has been widely and extensively discussed. 

Purpose: Studies on cruciferous vegetables, especially broccoli, have gained significance in the fight against cancer. 
Glucosinolates in broccoli transformation into sulforaphane occur after its exposure through chewing. However, the 
relationship between individual chewing patterns and denture morphology has not been studied extensively. Research on 
human digestion has demonstrated how the mechanical breakdown of larger food particles into smaller ones is a crucial 
precursor to chemical food breakdown. This study is a comparative analysis of how chewing on broccoli tissues by dif-
ferent individuals enables the enzyme myrosinase to break down broccoli glucosinolates chemically. We investigate the 
individual chewing patterns linked to the surface anatomy of the pre-molars and molars and the myrosinase activity on 
broccoli glucosinolates.

Methods: Three individuals chewed a 4-millimeter broccoli floret four times sequentially (2 grams), and we measured the 
floret length at each bite until the sample was ground. Then, we combined the chewed broccoli with distilled water, filtered 
it, and myrosinase activity was measured using photo spectrometric measurements and an agar diffusion test. Individual 
pre-molars and molars samples were measured in millimetres.

Results: Data from the three human chewing mechanisms compared to the mechanical breakdown performed by an au-
tomatic mixer shows different and individually specific values. 

Conclusion: Individual chewing patterns link to the unique surface anatomy of the pre-molars and molars, subsequently 
impacting the myrosinase activity on broccoli glucosinolates’ breakdown individually
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1. Introduction 
In humans, two significant events occur following food intake: 
mechanical and chemical digestion before absorption. The me-
chanical part of the digestion event in the mouth, including chew-
ing and grinding, has yet to be widely discussed compared to the 
chemical one, which includes the enzymatic breakdown of essen-
tial nutrients. Glucosinolate is found in broccoli florets, and its 
transformation into sulforaphane is critical in cancer prevention 
[5,7]. Halkier et al. elucidated the biology and biochemistry of glu-
cosinolates [33]. Glucosinolates' hydrolysis has been discussed [5-
9,17,33,36]. The myrosinase structure, function, and occurrence 

are widely studied, and its identification, purification, and charac-
terization [7,10-27,29,31,32,34,35,37-43]. 

This study compares broccoli's mechanical breakdown pattern in 
three individuals and then investigates any correlation between 
chewing pattern and myrosinase activity. Therefore, we compared 
the length, enamel, and other parts of the pre-molars and molars 
as they play a crucial function in chewing and grinding foods (Ta-
ble 1, Figure 1). Molar mass effects on viscosity and diffusion in 
liquid foods and mechanical and other physical properties of sol-
id and semi-solid foods and films have been studied [20-23]. In 
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these functions, the molar mass is one of the critical factors, and 
therefore, the effects of molar mass on various health problems 
related to noncommunicable diseases or symptoms such as cancer, 
hyperlipidemia, hyperglycemia, constipation, high blood pressure, 
knee pain, osteoporosis, cystic fibrosis, and dysphagia. Methods 
and tools for measuring chewing (mastication) force are available 
and have been discussed [26,27].

Postoperative dietary intake reduction was more common after an 
exclusively mandibular extraction than after an extraction includ-
ing the maxilla [21]. Age and sex also may play critical factors in 
mechanical food breakdown and intake [4,22,25,26]. The role of 
the chewing pattern and the bioaccessibility of food nutrients are 
discussed [6,23,24,28].

2. Objective
This study was undertaken to see if it is possible to replicate my-
rosinase enzymatic activity in a lab setting and further understand 
how our natural physiology (the size and shape of our teeth) plays 
a role in the mechanical digestion of broccoli myrosinase. Further-
more, we collected comparative data between human chewing and 
an automatic blender.

3. Hypothesis
The experiment hypothesizes that there may not be any chewing 
pattern difference between the three tested individuals or any en-
zymatic difference in myrosinase activity when comparing human 
chewing to an artificial blender.

4. Material and Method
• Fresh, organic Broccoli from Neimans’ market
• Human pre-Molars and Molars (UDM Dental school models)\
• Blender (Rolling) & Morser
• Agar (Difco) for agar-diffusion-test
• Thioglucosinolase (Myrosinase), Sigma, Aldrich, masks
• Aqua dest (deionized)
• Graduated Beakers, Erlenmeyer flasks, cylinders, stirrer
• Lab scale, measuring ruler
• Spectrophotometer-Monochromator Unit-Genesys20 at 600 

nm

5. Experiment
Glucosinolates –Extraction from Broccoli
Water Extraction Versus Ethanol Extraction- More effective, 
less hazardous dilution
Day One - Created two broccoli solutions with crushed broccoli 
as the solute: 1) 100ml distilled water + 2.7 grams of broccoli, 2) 
20ml ethanol + 2.7 grams of broccoli.

Our goal was to crush the broccoli to resemble the texture of 
chewed broccoli. The broccoli was mashed mechanically using a 
scientific/lab blender and then ground by hand with a mortar and 
pestle to achieve the desired texture—the ethanol-broccoli solu-
tion was placed in the refrigerator. We strained the water-broccoli 
solution with filter paper and a strainer to keep all solid particles 

of the broccoli separated from the supernatant solution. We chose 
Water extraction over ethanol extraction because of convenience, 
effectiveness, and less hazard [1].

Broccoli-Agar-Formulation
45ml of this strained broccoli water was set aside to be added to 
the agar solution and poured into the Petri dishes. Agar Petri dishes 
were made using two grams of agar and 400 ml of distilled water. 
The flask containing this solution was stirred mechanically using a 
magnetic stirrer to keep it liquid until we placed it in the autoclave. 
After placing the solution in the autoclave, we stirred the 45ml of 
strained broccoli solution into the liquid agar solution (~50oC ). 
The agar-strained broccoli solution was filled in 13 Petri dishes 
and was left overnight to harden.

Day Two: Upon interacting with the hardened Petri dishes, we 
realized that the resulting agar solution was too firm to introduce 
the enzyme properly. Any attempt to create holes in the agar dishes 
resulted in cracks running through the plate, making it unsuitable 
for our purposes, so we prepared another agar solution. This solu-
tion consisted of 500ml of distilled water (100ml more than our 
previous solution) and two grams of agar. Again, we placed this 
solution in the autoclave for sterilization. We collected another 45 
ml of strained broccoli water from the original water-broccoli ex-
traction, added it to the autoclaved agar solution, and stirred and 
filled 15 Petri dishes. (Final Solution: 2g agar + 500 ml distilled 
water + 45 ml broccoli extract). To prepare the enzyme solution 
for later amylase testing (as reference), we combined 0.1 grams of 
amylase with 100 ml of distilled water. This solution was placed 
in the freezer to preserve it when the new agar petri dish solution 
solidified.

Preparation of Chewed Broccoli Samples
Three individuals chewed four times sequentially into a four-mil-
limeter-long broccoli floret (2 grams), and we measured the floret 
length at each bite until the sample was ground. Then, we com-
bined the chewed broccoli with distilled water and filtered it for 
photospectrometric measurements and an agar diffusion test.

To replicate human chewing, We placed 2 grams of broccoli florets 
in a lab blender and then crushed them into a paste by hand with a 
mortar and pestle. We combined the resulting paste with 100 ml of 
distilled water and filtered it for photospectrometric measurements 
and an agar diffusion test.

Agar-Diffusion-Test
The Myrosinase activity was measured spectrometrically using an 
agar diffusion test—0.1 ml inoculum in each hole.

The broccoli agar Petri dishes were incubated at 37 and 30 degrees 
Celcius for one day. The myrosinase Inhibition zone could be seen 
and measured in millimeters.

Human Pre-Molars-Molars measurements
The teeth were collected from extracted teeth at the Detroit Mercy 
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Dental School. A periodontal probe was used to measure the width 
and height of each tooth in millimeters.

Chewed Broccoli Measurements 
Three Individuals were selected to chew 2 g (4mm length) broccoli 

in four bites in approximately 2 minutes. -Chewed broccoli was 
spread on filter paper, dry, and spread. The size of the vegetables 
was measured and recorded.

6. Results

6. Results 
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Table 1: Human Pre-Molars-Molars measurements (mm)

Figure 1: Human Pre-Molars-Molars measurements

Time ( Minutes) Photometric Measurements (A)
0 0.970
15 1.032
30 1.038
45 1.046
60 1.102
90 1.123

Table 2: Individual#1-Spectrophotometric Measurement of Myrosinase Activity /Time (minutes)
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Table 2: Individual#1-Spectrophotometric Measurement of Myrosinase Activity /Time 

(minutes) 

 
Figure 2: Individual#1’s Spectrometric Measurements with data from Table 2 
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Figure 2: Individual#1’s Spectrometric Measurements with data from Table 2 
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Figure#3: Individual#2’s Spectrometric Measurements with data from Table 3 

 
Table 4: Individual#3’s Spectrometric Measurements of Myrosinase Activity /Time (minutes) 

 

  
Figure#4: Individual#3’s Spectrometric Measurements with data from Table 4  

 

Figure#3: Individual#2’s Spectrometric Measurements with data from Table 3
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Figure#3: Individual#2’s Spectrometric Measurements with data from Table 3 

 
Table 4: Individual#3’s Spectrometric Measurements of Myrosinase Activity /Time (minutes) 

 

  
Figure#4: Individual#3’s Spectrometric Measurements with data from Table 4  
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Figure#4: Individual#3’s Spectrometric Measurements with data from Table 4  

 

Table 4: Individual#3’s Spectrometric Measurements of Myrosinase Activity /Time (minutes)

Figure#4: Individual#3’s Spectrometric Measurements with data from Table 4

Time (Minutes) Spectrophotometric Measurements (A)
0 0.893
15 1.027
30 1.051
45 1.055
60 1.225
90 1.332

Table 5: Spectrometric Measurements of broccoli from Blender/minutes
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Time (Minutes) Spectrophotometric Measurements 
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Table 5: Spectrometric Measurements of broccoli from Blender/minutes 

 

 
Figure 5: Spectrophotometric measurements of blended broccoli, with data from table 5 

 

 
Table 6: Chewing Pattern Expressed in Broccoli Particles Measurements (mm)/bite 
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Figure 5: Spectrophotometric measurements of blended broccoli, with data from table 5

Table 6: Chewing Pattern Expressed in Broccoli Particles Measurements (mm)/bite

 
Figure 6: Legend-Series1-Individual#1 Series2-Individual#2 Series3-Individual#3 

 

    
Figure 7: Myrosinase-Activity-Proof-On-Glucosinolate- Agar-Petri dishes (Agar-Diffusion-

Test) 

 

The Myrosinase activity was measured not just spectrometrically but also using an agar diffusion 

test. 0.1 ml inoculum in each hole, Myrosinase activity (inhibition zone) between 1.1-1.7 mm 

diameter. 
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Figure 7: Myrosinase-Activity-Proof-On-Glucosinolate- Agar-Petri dishes (Agar-Diffusion-Test)

The Myrosinase activity was measured not just spectrometrically but also using an agar diffusion test. 0.1 ml inoculum in each hole, 
Myrosinase activity (inhibition zone) between 1.1-1.7 mm diameter.

Figure 8: Chewed Broccoli Sample

7. Discussion
This study was undertaken to see if it is possible to replicate my-
rosinase enzymatic activity in a lab setting and further understand 
how our individual teeth anatomy (the size and shape of our teeth) 
plays a role in the mechanical digestion of broccoli myrosinase. 

In the table above, data was collected by two third-year dental 
students. The teeth were collected from extracted teeth at Detroit 
Mercy Dental. Students measured sets #1 and #2 of teeth. A peri-
odontal probe was used to measure the width and height of each 
tooth in millimeters. The x-axis shows the tooth that was mea-
sured, and the y-axis demonstrates the measurements gathered 
in millimeters. The results from Table #1 and Figure #1 give us 
a clear idea of the variations in teeth anatomy that might impact 
chewing patterns and, subsequently, the myrosinase activity.

Molars 1, 2, and 3, as well as premolars 1 and 2 of set#1, vary in 
height and width compared to set#2 teeth. The results from this 
study show that myrosinase activity's effectiveness in transform-
ing glucosinolate into isocyanates in older adults and patients with 
teeth issues may be negatively impacted. A mechanical blender 
could resolve this issue. According to orthognathic surgeons, hard 

food chewing occurs mainly on 1st molar and 2nd premolar areas 
[2]. Molars are perfect for grinding and crushing, and premolars 
are suitable for tearing and biting. Based on their anatomy, molars, 
have four cusps and more ridges, than premolars, which only have 
two cusps and fewer ridges.

Mastication efficacy has been studied and showed that it depends 
on the orofacial anatomical features of the subject, the coordina-
tion of these anatomical features, and the consistency of the food 
used during testing [6,23]. Studies confirm the impact of chewing 
and the bioaccessibility of nutrients after a meal [23-24].

Furthermore, the myrosinase activity on chewed broccoli samples 
varies among the three individuals (Figures 1, 2 and 3). Individu-
al 1 reached the highest myrosinase activity of 1.102 Absorbance 
after ninety minutes of incubation at 20oC (Table 2 and Figure 2), 
Individual 2 had the highest myrosinase activity at fifteen and thir-
ty minutes (Table 3 and Figure 3), and Individual 3 got the most 
increased myrosinase activity at thirty minutes (Table 4 and Figure 
4). The results of the chewing pattern among the tested individuals 
in Table 5 and Figure 5 confirm our hypothesis [3]. In contrast, 
(Figure 6) demonstrates the correlation between teeth anatomy, 
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chewing patterns, and impact on myrosinase activity. 

Finally, the blended broccoli samples showed the highest myrosi-
nase activity of 1.332 Absorbance after ninety minutes compared 
to human-chewed broccoli samples. And the myrosinase activity 
was confirmed and detected on glucosinate-containing agar. The 
inhibition zone varied between 1.1 to 1.7 mm in diameter (Figure 
7). The size of the vegetables was measured and recorded in Figure 
8.

The above-cited studies described the instability and properties 
complexity of myrosinase. Myrosinase, as an enzyme, is very 
sensitive to changes in temperature and the environment. Further-
more, glucosinolates must be converted to their bioactive form, 
known as isothiocyanates, better to exert its physiologic activ-
ity by the heat-labile enzyme myrosinase. However, Nandini et 
al., 2020 stated that this enzyme is destroyed on cooking or even 
steaming or blanching for more than a minute, as boiling the broc-
coli or thawing it below −85°C will spoil its anticancer properties. 
Shikita et al., 1999, Burmeister et al., 1997, and Cottaz et al. 1997 
brought some awareness to myrosinase activation, inhibitor, and 
substrate recognition-active site mechanisms.

Three individuals chewed broccoli and then recorded their results 
to see how the enzymatic activity would compare to the crushed 
broccoli. Comparing Tables 2-6, they display the level of myrosi-
nase activity through readings on the mass spectrometer; it is clear 
that crushed broccoli yields a level of enzymatic activity similar to 
chewed broccoli. While it will need to be investigated further, Ta-
ble 9 reveals that the duration of enzymatic activity in the crushed 
broccoli appears longer than the chewed broccoli. This result 
could be due to other enzymes in the sample of chewed broccoli, 
such as amylase, further catalyzing the enzymatic activity. Com-
paring the chewed models, the selection of chewed broccoli from 
Individual #1 in Table 2 and Figure 2 yielded the most enzymatic 
activity. Further investigation into the physiology of their mouth 
might be warranted in future studies to determine how their enzy-
matic activity was so robust in comparison. As we only used one 
brand of blender, this experiment would need to be replicated with 
more samples of crushed/blended broccoli from different blenders 
to confirm this study's results.

These observations yield promise that there may be other ways 
to unlock the anticancer abilities of broccoli and myrosinase 
than chewing only. Unfortunately, the requirement that broccoli 
is fresh, uncooked, and naturally chewed to extract the benefits 
means these anticancer properties are unobtainable to specific 
populations. Many people do not necessarily have access to fresh 
fruits and vegetables, and specific populations, such as older peo-
ple, only sometimes possess the physiological requirements neces-
sary to mechanically digest broccoli by chewing. Knowing how to 
process fresh broccoli in a way that is accessible to these popula-
tions where these anticarcinogenic properties are preserved would 
be scientifically significant. Suppose we see what physiological 
properties of teeth, such as the measurements in our table, lead 

to the highest enzymatic activity. In that case, we could replicate 
the mechanism of artificially breaking down broccoli. Understand-
ing how to preserve the enzymatic activity of myrosinase properly 
also opens the possibility of more accessible and further study of 
this enzyme. Based on these reasons and others, it becomes clear 
that knowing how myrosinase acts and reacts within different tem-
peratures and environments is critical to unlocking its potential 
health benefits.

This experiment's results also raise the question of what methods 
can be used to create the optimal enzymatic environment to facili-
tate myrosinase activity. While we used a blender, would the same 
result be yielded by chopping the broccoli? What kind of pressure 
is optimal for breaking down the broccoli? Would more or less 
pressure result in the same enzymatic activity or somehow change 
it? Would exposing it to oxygen in the air affect enzymatic activ-
ity? Would this enzymatic reaction still happen in more relaxed 
environments like refrigerators? Could adding other substances 
to the broccoli, as Okunade et al. (2018) did with mustard seeds, 
foster the production of even more anticancerous isothiocyanates? 
Given the incredible health benefits, these and other questions re-
garding myrosinase production are worth further investigation.

8. Conclusion
This study data enlighten how the intersection between teeth 
anatomy, food chemistry, and engineering can help advance un-
derstanding of the myrosinase activity between in-vivo chewing 
mechanism versus the mechanical blender, as well as the impact 
of individualized chewing pattern on human overall health, which 
opens up uncountable research opportunities for the next step of 
digestion among them the bioavailability of biomolecules such as 
sulforaphane from Brassicaceae. From this study, we also formu-
late a novel solid medium for agar diffusion testing of myrosinase.
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