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1. Introduction
It has been shown by Gisin [1] that for any entangled state of two 
quantum systems it is possible to find pair of observables whose 
correlation's violate Bell / CHSH inequality. Different types of 
noncontextuality inequalities have been proposed and recent 
experiments have confirmed that quantum mechanics cannot 
be described by NCHV theories by violate of the inequalities 
[2]. Most of the investigators studied the system for discrete 
variables. Plastino and Cabello extended the study to continuous 
variables (CV) states using 18 variables based on position 
and momentum, motivated by the fact that CV states such as 
coherent and squeezed states have served as valuable resources 
in quantum optics and quantum information [3,4]. Braunstein 
et al. showed that for any Bell / CHSH inequality based on non 
commuting observables for both systems it is always possible 
to construct a state which will yield a violation, though not 
necessarily maximal [5]. G Kar showed that for any pair of 
observables chosen on both sides, there is violation of CHSH 
inequality and the maximal violation is achieved by maximally 
entangled states [6].

It is well known that the superposition of the eigenstates of 
quantum harmonic oscillator (QHO) may exhibit classical 
properties if co-efficients are appropriately selected and QHO 

is also exactly solvable and applied to many other systems [7]. 
The most commonly discussed Bell Inequality is the Clauser-
Horne-Shimony- Holt inequality and the square of the bell 
operator is given by [8,9]. Taking the coherent state |α〉, as an 
example, it can be seen as a poissonian superposition of photon 
number states, but its dynamics resembles a classical harmonic 
oscillator and it becomes more classical as |α〉 is larger. Su et al. 
investigated quantum contextuality (QC) using two inequalities 
based on noncontextual-hidden-variable (NCHV) model [2,10]. 
The same approach has been exploited here to investigate the 
nonclassically of QHO and CV states including coherent state 
and squeezed state. The paper is organized as follows: We 
explore the QC of the eigenstates QHO in Sec.II and find that 
any eigenstate of QHO exhibits QC. In Sec.III, we study the 
coherent state as well as the squeezed state and show that they 
bear QC that can be demonstrated by measurement of four 
observables. Furthermore the state independent test of QC in CV 
states is also discussed in Sec.IV. We end with a summary and 
discussion in the last section.

2. QC of Eigenstates of QHO
It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives 

  
 
seen as a poissonian superposition of photon number states, but its dynamics 
resembles a classical harmonic oscillator and it becomes more classical as |α〉 
is larger. Su et al. [10] investigated quantum contextuality (QC) using two 
inequalities based on noncontextual-hidden-variable (NCHV) model [2].  The 
same approach has been exploited here  to investigate the nonclassically of 
QHO and CV states including coherent state and squeezed state. The paper is 
organized as follows: We explore the QC of the eigenstates QHO in Sec.II and 
find that any eigenstate of QHO exhibits QC. In Sec.III, we study the coherent 
state as well as the squeezed state and show that they bear QC that can be 
demonstrated by measurement of four observables. Furthermore the state 
independent test of QC in CV states is also discussed in Sec.IV. We end with a 
summary and discussion in the last section. 
 
 
                               IIII..    QQCC  OOFF  EEIIGGEENNSSTTAATTEESS  OOFF  QQHHOO  
  
 It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives  
 
                                   H  =  

 

    +     m     ,                                                          (1) 
  
where m is mass and ω is angular frequency and also the eigenenergy  of 
eigenstate |n〉 of H is  En = ћ ω ( n + 1) .  
We know by Roy-Singh the following non contextuality inequality : 
                                           
               F  =  ⟨AB〉 +  ⟨BC〉 +  ⟨CD〉  -   ⟨DA〉      2                                                       (2) 
 
where  { A,B,C,D} is a set of observables taking values   1 classically and 
observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. Relation (2), which is 
valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt 
inequality, but it is not limited to entangled states. 
 
 
The square of the Bell operator is given by [11], 
 
           = 4I – [ A,C ] [ B,D ] .                                                                                         (3) 

  
 
seen as a poissonian superposition of photon number states, but its dynamics 
resembles a classical harmonic oscillator and it becomes more classical as |α〉 
is larger. Su et al. [10] investigated quantum contextuality (QC) using two 
inequalities based on noncontextual-hidden-variable (NCHV) model [2].  The 
same approach has been exploited here  to investigate the nonclassically of 
QHO and CV states including coherent state and squeezed state. The paper is 
organized as follows: We explore the QC of the eigenstates QHO in Sec.II and 
find that any eigenstate of QHO exhibits QC. In Sec.III, we study the coherent 
state as well as the squeezed state and show that they bear QC that can be 
demonstrated by measurement of four observables. Furthermore the state 
independent test of QC in CV states is also discussed in Sec.IV. We end with a 
summary and discussion in the last section. 
 
 
                               IIII..    QQCC  OOFF  EEIIGGEENNSSTTAATTEESS  OOFF  QQHHOO  
  
 It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives  
 
                                   H  =  

 

    +     m     ,                                                          (1) 
  
where m is mass and ω is angular frequency and also the eigenenergy  of 
eigenstate |n〉 of H is  En = ћ ω ( n + 1) .  
We know by Roy-Singh the following non contextuality inequality : 
                                           
               F  =  ⟨AB〉 +  ⟨BC〉 +  ⟨CD〉  -   ⟨DA〉      2                                                       (2) 
 
where  { A,B,C,D} is a set of observables taking values   1 classically and 
observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. Relation (2), which is 
valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt 
inequality, but it is not limited to entangled states. 
 
 
The square of the Bell operator is given by [11], 
 
           = 4I – [ A,C ] [ B,D ] .                                                                                         (3) 

  
 
seen as a poissonian superposition of photon number states, but its dynamics 
resembles a classical harmonic oscillator and it becomes more classical as |α〉 
is larger. Su et al. [10] investigated quantum contextuality (QC) using two 
inequalities based on noncontextual-hidden-variable (NCHV) model [2].  The 
same approach has been exploited here  to investigate the nonclassically of 
QHO and CV states including coherent state and squeezed state. The paper is 
organized as follows: We explore the QC of the eigenstates QHO in Sec.II and 
find that any eigenstate of QHO exhibits QC. In Sec.III, we study the coherent 
state as well as the squeezed state and show that they bear QC that can be 
demonstrated by measurement of four observables. Furthermore the state 
independent test of QC in CV states is also discussed in Sec.IV. We end with a 
summary and discussion in the last section. 
 
 
                               IIII..    QQCC  OOFF  EEIIGGEENNSSTTAATTEESS  OOFF  QQHHOO  
  
 It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives  
 
                                   H  =  

 

    +     m     ,                                                          (1) 
  
where m is mass and ω is angular frequency and also the eigenenergy  of 
eigenstate |n〉 of H is  En = ћ ω ( n + 1) .  
We know by Roy-Singh the following non contextuality inequality : 
                                           
               F  =  ⟨AB〉 +  ⟨BC〉 +  ⟨CD〉  -   ⟨DA〉      2                                                       (2) 
 
where  { A,B,C,D} is a set of observables taking values   1 classically and 
observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. Relation (2), which is 
valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt 
inequality, but it is not limited to entangled states. 
 
 
The square of the Bell operator is given by [11], 
 
           = 4I – [ A,C ] [ B,D ] .                                                                                         (3) 

  
 
seen as a poissonian superposition of photon number states, but its dynamics 
resembles a classical harmonic oscillator and it becomes more classical as |α〉 
is larger. Su et al. [10] investigated quantum contextuality (QC) using two 
inequalities based on noncontextual-hidden-variable (NCHV) model [2].  The 
same approach has been exploited here  to investigate the nonclassically of 
QHO and CV states including coherent state and squeezed state. The paper is 
organized as follows: We explore the QC of the eigenstates QHO in Sec.II and 
find that any eigenstate of QHO exhibits QC. In Sec.III, we study the coherent 
state as well as the squeezed state and show that they bear QC that can be 
demonstrated by measurement of four observables. Furthermore the state 
independent test of QC in CV states is also discussed in Sec.IV. We end with a 
summary and discussion in the last section. 
 
 
                               IIII..    QQCC  OOFF  EEIIGGEENNSSTTAATTEESS  OOFF  QQHHOO  
  
 It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives  
 
                                   H  =  

 

    +     m     ,                                                          (1) 
  
where m is mass and ω is angular frequency and also the eigenenergy  of 
eigenstate |n〉 of H is  En = ћ ω ( n + 1) .  
We know by Roy-Singh the following non contextuality inequality : 
                                           
               F  =  ⟨AB〉 +  ⟨BC〉 +  ⟨CD〉  -   ⟨DA〉      2                                                       (2) 
 
where  { A,B,C,D} is a set of observables taking values   1 classically and 
observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. Relation (2), which is 
valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt 
inequality, but it is not limited to entangled states. 
 
 
The square of the Bell operator is given by [11], 
 
           = 4I – [ A,C ] [ B,D ] .                                                                                         (3) 

Where m is mass and ω is angular frequency and also the eigenenergy of eigenstate |n〉 of H is En = ћ ω (n + 1). 
We know by Roy-Singh the following non-contextuality inequality: 

Where {A,B,C,D} is a set of observables taking values ± 1 classically and observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. 
Relation (2), which is valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt inequality, but it is not limited 



Volume 3 | Issue 4 | 2J Math Techniques Comput Math, 2024

to entangled states.

The square of the Bell operator is given by [11],

  
 
seen as a poissonian superposition of photon number states, but its dynamics 
resembles a classical harmonic oscillator and it becomes more classical as |α〉 
is larger. Su et al. [10] investigated quantum contextuality (QC) using two 
inequalities based on noncontextual-hidden-variable (NCHV) model [2].  The 
same approach has been exploited here  to investigate the nonclassically of 
QHO and CV states including coherent state and squeezed state. The paper is 
organized as follows: We explore the QC of the eigenstates QHO in Sec.II and 
find that any eigenstate of QHO exhibits QC. In Sec.III, we study the coherent 
state as well as the squeezed state and show that they bear QC that can be 
demonstrated by measurement of four observables. Furthermore the state 
independent test of QC in CV states is also discussed in Sec.IV. We end with a 
summary and discussion in the last section. 
 
 
                               IIII..    QQCC  OOFF  EEIIGGEENNSSTTAATTEESS  OOFF  QQHHOO  
  
 It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives  
 
                                   H  =  

 

    +     m     ,                                                          (1) 
  
where m is mass and ω is angular frequency and also the eigenenergy  of 
eigenstate |n〉 of H is  En = ћ ω ( n + 1) .  
We know by Roy-Singh the following non contextuality inequality : 
                                           
               F  =  ⟨AB〉 +  ⟨BC〉 +  ⟨CD〉  -   ⟨DA〉      2                                                       (2) 
 
where  { A,B,C,D} is a set of observables taking values   1 classically and 
observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. Relation (2), which is 
valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt 
inequality, but it is not limited to entangled states. 
 
 
The square of the Bell operator is given by [11], 
 
           = 4I – [ A,C ] [ B,D ] .                                                                                         (3) 

  
 
seen as a poissonian superposition of photon number states, but its dynamics 
resembles a classical harmonic oscillator and it becomes more classical as |α〉 
is larger. Su et al. [10] investigated quantum contextuality (QC) using two 
inequalities based on noncontextual-hidden-variable (NCHV) model [2].  The 
same approach has been exploited here  to investigate the nonclassically of 
QHO and CV states including coherent state and squeezed state. The paper is 
organized as follows: We explore the QC of the eigenstates QHO in Sec.II and 
find that any eigenstate of QHO exhibits QC. In Sec.III, we study the coherent 
state as well as the squeezed state and show that they bear QC that can be 
demonstrated by measurement of four observables. Furthermore the state 
independent test of QC in CV states is also discussed in Sec.IV. We end with a 
summary and discussion in the last section. 
 
 
                               IIII..    QQCC  OOFF  EEIIGGEENNSSTTAATTEESS  OOFF  QQHHOO  
  
 It is known that the one dimensional quantum harmonic oscillator 
Hamiltonian gives  
 
                                   H  =  

 

    +     m     ,                                                          (1) 
  
where m is mass and ω is angular frequency and also the eigenenergy  of 
eigenstate |n〉 of H is  En = ћ ω ( n + 1) .  
We know by Roy-Singh the following non contextuality inequality : 
                                           
               F  =  ⟨AB〉 +  ⟨BC〉 +  ⟨CD〉  -   ⟨DA〉      2                                                       (2) 
 
where  { A,B,C,D} is a set of observables taking values   1 classically and 
observable pairs (A,B),(B,C),(C,D),(D,A) are compatible. Relation (2), which is 
valid for NCHV model is formally related to the Clauser-Horne-Shimony-Holt 
inequality, but it is not limited to entangled states. 
 
 
The square of the Bell operator is given by [11], 
 
           = 4I – [ A,C ] [ B,D ] .                                                                                         (3) 

Now introduce four operators,

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

 
Now introduce four operators, 
 
                     A =    ⨂    
                     B = cosβ    ⨂    
                     C = -    ⨂     
                  D = cosγ     ⨂                                                                                             (4) 
 
where   , ,  are Pauli matrices and   is a 2 by 2 identity matrix and β,γ are 
parameters. 
 
These operators can be written in terms of number states, 
 
A = |0〉 ⟨1| + |1〉 ⟨ | + |2〉 ⟨ | + |3〉 ⟨ |  
 
B1 =  

     = |0〉 ⟨ | + |1〉 ⟨ | +|2〉 ⟨1|  + |3〉 ⟨ |  
 
C = |0〉 ⟨ |  - |1〉 ⟨ |  -|2〉 ⟨1|  + |3〉 ⟨ |  
 
D1 =  

     = |0〉 ⟨1| + |1〉 ⟨ | - |2〉 ⟨ | - |3〉 ⟨ | .                                                             
(5)   
 
We set, B1 =  

      and D1 =  
 

      .                                                                                  (6) 
 
  Now the four observables A, B1, C, D1 are compatible operators i.e, 
 
[A, B1] =[B1, C] = [C, D1] = [D1, A] = 0,                                                                        (7) 
 
and     =     =     =   

  = I ,where I is an identity matrix. 
 
Here,        

   = 4I – [ A,C ] [  
     , 

 
     ]. 

 
i.e, BCHSH =  √   –   A, C      

     ,
 

                                                                               (8) 
 
For different states |i〉, (i=0,1,2,3), by choosing  β,γ appropriately violation of   

where σ(x,y,z) are Pauli matrices and 1 is a 2 by 2 identity matrix and β,γ are parameters.
These operators can be written in terms of number states,

Now the four observables A, B1, C, D1 are compatible operators i.e,

For different states |i〉, (i=0,1,2,3), by choosing β,γ appropriately violation of 
BCHSH can be obtained. Specifically, we observe,BCHSH can be obtained. Specifically, we observe, 

⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =    
                                                                  ) β =  ,  γ =                                                   
                                                                  ) β =   ,  γ =         (9a)  
⟨1| BCHSH|1〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =           (9b)                                                              
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =                                                
                                                                  ) β = ,  γ =              (9c) 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =             (9d)  
 
This tells that the four eigenstates { | 〉,|1〉, | 〉, | 〉 } shows QC and that the QC 
can be shown by violating the noncontextuality inequality ( ) based on four 
observables with proper measurement settings as listed in Eq. (9). 
 
We have according to Suet al.    , for every four eigenstates of QHO there exists 
a set of observables O capable of revealing the QC of the four states. For 
instance, 
 O = { A,B1,C,D1}  for {| 〉, |1〉,| 〉,| 〉 } and 
 
 O’ = { A’,B’1,C’,D’1}  for {| 〉, |5〉,|6〉,|7〉 }.   
 
Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+  )-th 
eigenstate, i =  {  ,1, ,  }; and  similarly for B’1,C’,D’1. The direct sum of 
corresponding elements in O and O’ makes a new set denoted by  
                          O   = * A ⊕ A’, B ⊕ B’1, C ⊕ C’, D ⊕ D’1 } 
 
for an eight level system. 
 
By repeating the procedure N-times, we finally obtain an observable set  
 
ON  = * A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’}  
 
For  N-level system{| n〉 , | n+1〉, | n+ 〉 , | n+  〉 } ( n= ,…N-1). When 

BCHSH can be obtained. Specifically, we observe, 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =    
                                                                  ) β =  ,  γ =                                                   
                                                                  ) β =   ,  γ =         (9a)  
⟨1| BCHSH|1〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =           (9b)                                                              
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =                                                
                                                                  ) β = ,  γ =              (9c) 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =             (9d)  
 
This tells that the four eigenstates { | 〉,|1〉, | 〉, | 〉 } shows QC and that the QC 
can be shown by violating the noncontextuality inequality ( ) based on four 
observables with proper measurement settings as listed in Eq. (9). 
 
We have according to Suet al.    , for every four eigenstates of QHO there exists 
a set of observables O capable of revealing the QC of the four states. For 
instance, 
 O = { A,B1,C,D1}  for {| 〉, |1〉,| 〉,| 〉 } and 
 
 O’ = { A’,B’1,C’,D’1}  for {| 〉, |5〉,|6〉,|7〉 }.   
 
Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+  )-th 
eigenstate, i =  {  ,1, ,  }; and  similarly for B’1,C’,D’1. The direct sum of 
corresponding elements in O and O’ makes a new set denoted by  
                          O   = * A ⊕ A’, B ⊕ B’1, C ⊕ C’, D ⊕ D’1 } 
 
for an eight level system. 
 
By repeating the procedure N-times, we finally obtain an observable set  
 
ON  = * A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’}  
 
For  N-level system{| n〉 , | n+1〉, | n+ 〉 , | n+  〉 } ( n= ,…N-1). When 



Volume 3 | Issue 4 | 3J Math Techniques Comput Math, 2024

BCHSH can be obtained. Specifically, we observe, 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =    
                                                                  ) β =  ,  γ =                                                   
                                                                  ) β =   ,  γ =         (9a)  
⟨1| BCHSH|1〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =           (9b)                                                              
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =                                                
                                                                  ) β = ,  γ =              (9c) 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =             (9d)  
 
This tells that the four eigenstates { | 〉,|1〉, | 〉, | 〉 } shows QC and that the QC 
can be shown by violating the noncontextuality inequality ( ) based on four 
observables with proper measurement settings as listed in Eq. (9). 
 
We have according to Suet al.    , for every four eigenstates of QHO there exists 
a set of observables O capable of revealing the QC of the four states. For 
instance, 
 O = { A,B1,C,D1}  for {| 〉, |1〉,| 〉,| 〉 } and 
 
 O’ = { A’,B’1,C’,D’1}  for {| 〉, |5〉,|6〉,|7〉 }.   
 
Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+  )-th 
eigenstate, i =  {  ,1, ,  }; and  similarly for B’1,C’,D’1. The direct sum of 
corresponding elements in O and O’ makes a new set denoted by  
                          O   = * A ⊕ A’, B ⊕ B’1, C ⊕ C’, D ⊕ D’1 } 
 
for an eight level system. 
 
By repeating the procedure N-times, we finally obtain an observable set  
 
ON  = * A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’}  
 
For  N-level system{| n〉 , | n+1〉, | n+ 〉 , | n+  〉 } ( n= ,…N-1). When 

BCHSH can be obtained. Specifically, we observe, 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =    
                                                                  ) β =  ,  γ =                                                   
                                                                  ) β =   ,  γ =         (9a)  
⟨1| BCHSH|1〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =           (9b)                                                              
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =                                                
                                                                  ) β = ,  γ =              (9c) 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =             (9d)  
 
This tells that the four eigenstates { | 〉,|1〉, | 〉, | 〉 } shows QC and that the QC 
can be shown by violating the noncontextuality inequality ( ) based on four 
observables with proper measurement settings as listed in Eq. (9). 
 
We have according to Suet al.    , for every four eigenstates of QHO there exists 
a set of observables O capable of revealing the QC of the four states. For 
instance, 
 O = { A,B1,C,D1}  for {| 〉, |1〉,| 〉,| 〉 } and 
 
 O’ = { A’,B’1,C’,D’1}  for {| 〉, |5〉,|6〉,|7〉 }.   
 
Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+  )-th 
eigenstate, i =  {  ,1, ,  }; and  similarly for B’1,C’,D’1. The direct sum of 
corresponding elements in O and O’ makes a new set denoted by  
                          O   = * A ⊕ A’, B ⊕ B’1, C ⊕ C’, D ⊕ D’1 } 
 
for an eight level system. 
 
By repeating the procedure N-times, we finally obtain an observable set  
 
ON  = * A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’}  
 
For  N-level system{| n〉 , | n+1〉, | n+ 〉 , | n+  〉 } ( n= ,…N-1). When 

BCHSH can be obtained. Specifically, we observe, 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =    
                                                                  ) β =  ,  γ =                                                   
                                                                  ) β =   ,  γ =         (9a)  
⟨1| BCHSH|1〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =           (9b)                                                              
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =                                                
                                                                  ) β = ,  γ =              (9c) 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =             (9d)  
 
This tells that the four eigenstates { | 〉,|1〉, | 〉, | 〉 } shows QC and that the QC 
can be shown by violating the noncontextuality inequality ( ) based on four 
observables with proper measurement settings as listed in Eq. (9). 
 
We have according to Suet al.    , for every four eigenstates of QHO there exists 
a set of observables O capable of revealing the QC of the four states. For 
instance, 
 O = { A,B1,C,D1}  for {| 〉, |1〉,| 〉,| 〉 } and 
 
 O’ = { A’,B’1,C’,D’1}  for {| 〉, |5〉,|6〉,|7〉 }.   
 
Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+  )-th 
eigenstate, i =  {  ,1, ,  }; and  similarly for B’1,C’,D’1. The direct sum of 
corresponding elements in O and O’ makes a new set denoted by  
                          O   = * A ⊕ A’, B ⊕ B’1, C ⊕ C’, D ⊕ D’1 } 
 
for an eight level system. 
 
By repeating the procedure N-times, we finally obtain an observable set  
 
ON  = * A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’}  
 
For  N-level system{| n〉 , | n+1〉, | n+ 〉 , | n+  〉 } ( n= ,…N-1). When 

BCHSH can be obtained. Specifically, we observe, 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =    
                                                                  ) β =  ,  γ =                                                   
                                                                  ) β =   ,  γ =         (9a)  
⟨1| BCHSH|1〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =           (9b)                                                              
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =                                                
                                                                  ) β = ,  γ =              (9c) 
⟨ | BCHSH| 〉 =         ,       when  1) β =  ,  γ =   
                                                                  ) β =  ,  γ =   
                                                                  ) β =  ,  γ =             (9d)  
 
This tells that the four eigenstates { | 〉,|1〉, | 〉, | 〉 } shows QC and that the QC 
can be shown by violating the noncontextuality inequality ( ) based on four 
observables with proper measurement settings as listed in Eq. (9). 
 
We have according to Suet al.    , for every four eigenstates of QHO there exists 
a set of observables O capable of revealing the QC of the four states. For 
instance, 
 O = { A,B1,C,D1}  for {| 〉, |1〉,| 〉,| 〉 } and 
 
 O’ = { A’,B’1,C’,D’1}  for {| 〉, |5〉,|6〉,|7〉 }.   
 
Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+  )-th 
eigenstate, i =  {  ,1, ,  }; and  similarly for B’1,C’,D’1. The direct sum of 
corresponding elements in O and O’ makes a new set denoted by  
                          O   = * A ⊕ A’, B ⊕ B’1, C ⊕ C’, D ⊕ D’1 } 
 
for an eight level system. 
 
By repeating the procedure N-times, we finally obtain an observable set  
 
ON  = * A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’}  
 
For  N-level system{| n〉 , | n+1〉, | n+ 〉 , | n+  〉 } ( n= ,…N-1). When 

This tells that the four eigenstates { |0〉,|1〉, |2〉, |3〉 } shows QC and that the QC can be shown by violating the noncontextuality 
inequality (2) based on four observables with proper measurement settings as listed in Eq. (9).

We have according to Su et al. [2012], for every four eigenstates of QHO there exists a set of observables O capable of revealing 
the QC of the four states. For instance,

Here A’ is constructed by replacing the i-th eigenstate in A with the ( i+4 )-th eigenstate, i = { 0,1,2,3 }; and similarly for B’1,C’,D’1. 
The direct sum of corresponding elements in O and O’ makes a new set denoted by

for an eight level system.
By repeating the procedure N-times, we finally obtain an observable set 
ON = { A ⊕ A’ ⊕… ⊕ A’’, B ⊕ B’1 ⊕ …⊕ B’’, C ⊕ C’ ⊕…⊕C’’, D ⊕ D’1⊕…⊕ D’’} 
For 4N-level system{|4n〉 , |4n+1〉, |4n+2〉 , |4n+ 3〉 } ( n=0,…N-1). When
N ⟶∞, the whole spectrum of QHO can be approximated by this 4N-level system. Thus the four observables for QHO can finally 
be written in a neat
form as

N ⟶∞, the whole spectrum of QHO can be approximated by this  N-level 
system. Thus the four observables for QHO can finally be written in a neat 
form as 
 
A∞ =∑ (| n〉 ⟨  + 1|  +  | n + 1〉 ⟨  |  +  | n +  〉 ⟨  +  |  +  | n + 

   
 〉 ⟨  +  | ) 
 
    =∑ (| n〉 ⟨  +  |  +  | n + 1〉 ⟨  +  |  + | n +  〉 ⟨  + 1|   +  

    
|4n+ 〉 ⟨  | ) 
 
C∞ =∑ (| n〉 ⟨  +  |     | n + 1〉 ⟨  +  |  | n +  〉 ⟨  + 1|  +  | n + 

   
 〉 ⟨  |  ) 
 
   = ∑ ( | n〉 ⟨  + 1|  +  | n + 1〉 ⟨  |    | n +  〉 ⟨  +  |    | n + 

   
 〉 ⟨  +   |) .                                                              
   (1 ). 
                  
  Since X∞ ( X = A,B1,C,D1; X  = 1 ) are dichotomic  observables, the classical 
upper bound of inequality ( ) holds. Maximum violationof equation ( ) can be 
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3. QC of Coherent and Squeezed States
It is known that the coherent states can be obtained by applying the unitary displacement operator Ɗ (α) on the vacuum state,
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It is found that coherent state |α〉 always bears QC giving no importance of α.
A squeezed state is defined as,

with                                 ,         where ξ is the squeezed parameter. 

Four observables are taken in this way,

can reveal the QC of the squeezed state, i.e.

regardless of ξ .Therefore QC exists also in the squeezed state 
also.

4. Summary
We have constructed four observables and have explored the 
contextual property of one-dimensional QHO. It is also shown 
that the eigen states of QHO bear QC. The coherent state and the 

squeezed state have also been investigated here. 

The coherent state is considered because of its dynamical 
behavior, which is analogus to classical oscillators. It behaves 
classically in the case of large α, the coherent state is a quantum 
mechanical phenomenon. We construct suitable observables 
for both states and show that they also reveal contextuality of 
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quantum phenomena.
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