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Abstract
Immunotherapy is a newly emerging approach to cancer treatment that seeks to stimulate a body’s immune defenses, especially 
T cells, to combat and potentially eliminate tumors. This paper reflects some research outcome tumor growth model solved 
by using Finite Difference Method. Using accumulated data we take a look at possible models for the growth of cancer cells, 
incorporating the positive effect of the immune system. Relevant tumor–immune interactions depend on stochasticity, since the 
dynamics involve a small and decreasing number of cells, and spatiotemporal heterogeneity, since the dynamics occur in a 
localized tumor environment. Mathematical modelling is been very powerful tool to developed the tumor cell interaction and 
plays vital role in treatment is well. We have used the finite difference method which is a numerical method very important 
technique for solving a wide variety of differential equations which discretize the model equation.
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1. Introduction
Recent progress in cancer immunology and advances in 
immunotherapy suggest that the immune system plays a 
fundamental role in combatting tumors, and hence can be used 
as a vehicle to prevent or cure cancer. Although theoretical and 
experimental studies of tumor-immune dynamics date back to 
the early 1890s, fundamental questions concerning complex 
interactions between the immune system and the growing tumor 

remain. For example, contemporary research programs are driven 
by questions concerning how components of the immune system 
synergize to limit cancer development, how tumors escape immune 
recognition and control, and why some immunotherapies inhibit 
growth of certain tumors while stimulating the growth of others. 
Indeed, the multidimensional nature of these complex interactions 
requires cross disciplinary approaches to capture more realistic 
dynamics of the essential biology.  

Figure1: Tumor-Immune Dynamic 
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A variety of mathematical models have applied a range of modeling 
approaches to study tumor– immune interactions. Tumor–immune 
models have been formulated using ordinary differential equations 
(ODE), delay differential equations (DDE), partial differential 
equations (PDE), impulsive differential equations, and fractional 
differential equations. Other papers develop agent based models 
(ABM), cellular automata (CA), and hybrid formulations. 

One such approach combines cancer immunology with mathematics 
to model the interactions. In particular, mathematical modeling 
has been used to understand immune surveillance of developing 
tumors, the role of the immune system’s response in maintaining 
tumor dormancy, and the potential impact of enhancing anti-
tumor immune responses through cancer vaccination. Other novel 
uses of mathematical modeling involve optimizing preventative 
vaccination strategies against tumor cells and studying the 
feasibility of virotherapy, which involves infecting patients with 
viruses engineered to favor the infection of tumor cells, rendering 
the cancer a target of the patient’s immune response. Understanding 
these intricate interactions between cancer and the immune system 
offers scientists and clinicians powerful insights into stimulating 
and modulating immune responses to prevent or treat cancer and 
advance the development of cancer immune therapies. 

This volume brings together a range of topics on mathematical 
models of tumor-immune system dynamics by applied 
mathematicians and scientists. The mathematical methods we used 
to study the dynamics of the tumor-immune system in this paper is 
Finite Difference method. 

Numerical methods for approximating solutions to the model are 
constructed which incorporate the underlying Poisson geometry 
of the continuous system. These methods preserve the periodicity 
of solutions, and the error in the first integrals remains bounded. 
Simulations are used to show that these methods produce more 
accurate results than standard numerical methods. 

1.1. Model Formulation  
The model equations that we have generated are commonly used 
to describe the dynamics of the interaction between two groups. 
Rosenzweig and McArthur would later extend the model to include 
three groups interaction [9]. 

To make the model more realistic, we modify it so that the tumor 
cell demonstrates logistic growth rather than exponential growth. 
We also add in terms that allow both populations to disperse from 
their initial location. Through numerical analysis via Matlab, we 
simulate the outcome of such modifications. The model is a pair 
of differential equations that describe a simple case of Tumor cell-
immune cell (or parasite-host) dynamics.  

The assumptions of the model in its most basic form are as follows:  
1. The tumor cell always finds enough food to sustain itself and 
grow exponentially when the immune cell is absent.  
2. The supply of the immune cell population depends entirely on 

the size of the tumor cell population. 
3. The immune cell have an unlimited killing capacity.  
4. The rate of change of the cell populations are proportional to 
their respective sizes.  
5. No external changes that favor one of the populations occur. 
Genetic adaptation is inconsequential.  

Given the above-mentioned assumptions, the set of differential 
equations representing the model is given by  

Where C(t) is the number of prey at time t, C(t) is the immune cell 
at time t ,α is the natural growth rate of tumor cell in the absence of 
immune cell, β is the rate of tumor cell loss due to tumor-immune 
interaction, γ is the growth of immune cell due to tumor-immune 
interaction, and μ is the rate of predator loss due to natural death 
or immigration. α,β,γ and μ are positive constants. The system has 
two equilibrium points, (C,U) (0,0) (extinction) and (C,U) = ( μ / 
γ, β / α)  (coexistence) [7]. 

The basic model is unrealistic for a few reasons. First, it can be 
shown that coexistence equilibrium point is not stable. Instead, 
the tumor and immune cell populations cycle repeatedly without 
ever settling, and while this cyclic behavior has been observed in 
nature, it is not common. One key improvement on the models 
is the incorporation of a diffusion effect. Takeuchi analyzed the 
diffusion effect on the stability of this systems, and Hastings 
derived conditions for global stability of the systems with diffusion 
[5,10]. Next, it does not consider any competition among tumor 
or immune cell, and thus, prey population may grow infinitely 
without any resource limits. Exponential growth of a population 
cannot continue indefinitely.  

The goal of this paper is to come up with a more realistic version 
of the tumor-immune interaction model and to provide a tool 
that allows researchers to explore dynamics of spatiotemporal 
dynamics of tumor-immune models with diffusion. We consider 
a modified system with logistic growth of the tumor cell. We also 
allow both immune cell and tumor cell to disperse by diffusion. 
Then, solutions of the model will be estimated using a finite 
forward difference scheme under varying initial population 
distributions and dispersion rates. 

The modified model is 
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 Where k > 0 is the tumor carrying capacity and D1 &D2are the diffusion constants. We non- 

dimensionalize the system by using,  

  
Considering only the one-dimensional problem, and dropping the asterisks for notational 

simplicity:  

 
0 , t  0 

It is easy to check that (c,u ) = (b,1-b) is a non-trivial solution to the model. Also, note as  

 ,0 1. If we assume that the net flux at the boundaries is zero, then the zero flux k 

boundary conditions are imposhed,  
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Where k > 0 is the tumor carrying capacity and D1 &D2are the 
diffusion constants. We non- dimensionalize the system by using, 

Considering only the one-dimensional problem, and dropping the 
asterisks for notational simplicity:
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1.2. Numerical Methods used for Analysis  
To approximate the solutions of the system, we use a finite-
difference method. The domain of the model is partitioned in 
time using a mesh t0, t1, t2,........tN and in space using a mesh x0, x1, 
x2,........xJ . We use a uniform partition for both, so the difference 
between two consecutive time points will be Δt and between two 

consecutive space points will be Δx . The point 
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2. Result 
Using Matlab (see Appendix for code), we have tested the model 
under varying parameter values and initial conditions. We assume 
both populations have a normal distribution on the interval [1]. In 
Figure 1, the Tumor cell population has a large population most 
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population most concentrated at x=0.7 . Thus, c0(x) = 0.8exp 
(-50(x-0.2)2) and u0(x) = 0.3exp(-50(x-0.7)2). The graphs show the 
initial distribution along with the distribution at t=300, t=1000, t 
=1000 time steps. Other parameter values are a = 0.1, b =1 and D 
= 0.5. 
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Figure 2: Numerical approximations of the model equation with a larger population of Tumor-

cells and a smaller population of Immune-cells [2]. Figure 2a shows the distribution of the 

population of the Tumor-cells at various time steps, and Figure 2b shows the distribution of 

population of the Immune-cells at various time steps.  
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For 2� j�Nx  - 2 . For the mesh points next to the boundary, we use 𝑐𝑐�� � 𝑐𝑐��, 𝑐𝑐����� =  𝑐𝑐����� , 

𝑢𝑢��= 𝑢𝑢��, 𝑣𝑣����� =𝑣𝑣����� . 

 

2. Result  
Using Matlab (see Appendix for code), we have tested the model under varying parameter values 

and initial conditions. We assume both populations have a normal distribution on the interval [1]. 

In Figure 1, the Tumor cell population has a large population most concentrated at x = 0.2 and that 

the Immune cell have a smaller population most concentrated at x=0.7 . Thus, c0(x) = 0.8exp (-

50(x-0.2)2) and u0(x) = 0.3exp(-50(x-0.7)2). The graphs show the initial distribution along with the 

distribution at t=300, t=1000, t =1000 time steps. Other parameter values are a = 0.1, b =1 and D 

= 0.5.  
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Figure 2: Numerical approximations of the model equation with a larger population of Tumor-

cells and a smaller population of Immune-cells [2]. Figure 2a shows the distribution of the 

population of the Tumor-cells at various time steps, and Figure 2b shows the distribution of 

population of the Immune-cells at various time steps.  

  

Next, we assumed a lower population of tumor cell and a higher concentration of Immune cell for 

increase the speed of treatment. I also shifted the concentration of Immune cell toward the center 

  

Figure 2: Numerical approximations of the model equation with a larger population of Tumor-cells and a smaller population of Immune-
cells [2]. Figure 2a shows the distribution of the population of the Tumor-cells at various time steps, and Figure 2b shows the distribution 
of population of the Immune-cells at various time steps. 

Next, we assumed a lower population of tumor cell and a higher concentration of Immune cell for increase the speed of treatment. I also 
shifted the concentration of Immune cell toward the center of the interval, so that c0(x) = 0.3exp(-50(x-0.2)2) and u0(x) = exp(-50(x-0.5)2) 
(See Figure 2). Other parameter values are a =0.7, b=0.3 and D = 0.5. 

of the interval, so that c0(x) = 0.3exp(-50(x-0.2)2) and u0(x) = exp(-50(x-0.5)2) (See Figure 2). 

Other parameter values are a =0.7, b=0.3 and D = 0.5.  
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Figure 3: Numerical approximations of the model equation with a reduced population of Tumor-

cells and a higher population of Immune -cells [2]. Figure 3a shows the distribution of the 

population of the Tumor-cells at various time steps, and Figure 3b shows the distribution of 

population of the Immune-cells at various time steps.  

  

The results shown here are consistent with varying values of a , b , and D. The presence of a 

dispersal term in the model has a stabilizing effect, and this result has been proven in several 

variations of the model equations [10]. Increasing D causes the populations to achieve a uniform 

distribution more quickly. After the populations are (nearly) uniform, the two populations will then 

begin to converge to the stable solution, which considered as a equilibrium point of two cells.  

 

3. Conclusion   
Mathematical models of tumor–immune interactions provide an analytical framework in which to 

address specific questions regarding tumor–immune dynamics and tumor treatment options. The 

beginning of a tumor’s life cycle can be modeled rather accurately with many different types of 

growth functions. We have mentioned that the number of tumor cells not only grows, but cells can 

also be killed by effector cells. We accounted for immune cells in our model. Once we attained a 

suitable model, we used finite difference analysis to determine the number of effector cells our 

Figure 3: Numerical approximations of the model equation with a reduced population of Tumor-cells and a higher population of 
Immune -cells [2]. Figure 3a shows the distribution of the population of the Tumor-cells at various time steps, and Figure 3b shows the 
distribution of population of the Immune-cells at various time steps. 
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The results shown here are consistent with varying values of a 
, b , and D. The presence of a dispersal term in the model has 
a stabilizing effect, and this result has been proven in several 
variations of the model equations [10]. Increasing D causes the 
populations to achieve a uniform distribution more quickly. After 
the populations are (nearly) uniform, the two populations will then 
begin to converge to the stable solution, which considered as a 
equilibrium point of two cells. 

3. Conclusion  
Mathematical models of tumor–immune interactions provide 
an analytical framework in which to address specific questions 
regarding tumor–immune dynamics and tumor treatment options. 
The beginning of a tumor’s life cycle can be modeled rather 
accurately with many different types of growth functions. We 
have mentioned that the number of tumor cells not only grows, 
but cells can also be killed by effector cells. We accounted for 
immune cells in our model. Once we attained a suitable model, we 
used finite difference analysis to determine the number of effector 
cells our body would need to produce in order to make sure that 
that tumor cells would always go into remission. Though the non-
trivial solution to the system is potentially unrealistic, it can be 
easily modified to more closely mimic what happens in nature. 
Specifically, one such modification is the addition of a diffusion 
term which causes the solution to be stable. The model itself can 
be numerically solved using finite difference methods. The Matlab 
code provided in the appendix can be easily modified to reflect 
other changes in the model as it suits the user. 

By seeing where our two cells intersect, we can find equilibrium 
points. These are points in which our immune-cells growth and 
tumor growth are in steady states [3]. We care about these points 
because we hope that we can stop tumor growth from occurring. 
It is important to have our effector cells in a steady state because 
sometimes the number of tumor cells is dependent on the number of 
effector cells. To make sure we have no cancer growth, we cannot 
have any effector cell growth or decay either. This results can be 
play an important role in modeling tumor-immune dynamics.  
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Appendix 
Matlab code used to numerically solve the Lotka-Volterra model with diffusion by using a forward finite difference scheme 
 
% Forward Method
clear;
L = 1; %total length of spatial interval
T = 1; %total length of time interval
% Parameters needed to solve the equation within the explicit method  maxk = 10000; % Number of time steps  dt = T/maxk;
nx = 50; % Number of space steps  dx = L/nx;  a = .7;  b = .3;  nu=dt/(dx*dx);
k=50; %parameter in population normal distributions
D =.5; % diffusion constant
% Initial distributions  for j = 1:nx+1  x(j) =(j-1)*dx;
%u(j,1) =.8; %sin(pi*x(j)); %other initial distributions  u(j,1)=0.8*exp(-k.*((x(j)-0.2)).^2);
%v(j,1) =.4;
%v(j,1)=.25+.5.*sin(pi*x(j));  v(j,1)=0.3*exp(-k.*((x(j)-0.7)).^2);  end
% Implementation of the forward method  for n=1:maxk % Time Loop  j = 1; %left-hand boundary
u(j,n+1) = D*nu.*(u(j,n)+u(j+1,n)-2.*u(j,n))+ dt*(u(j,n)).*(1-u(j,n)v(j,n))+u(j,n);
v(j,n+1) = nu.*(v(j,n)+v(j+1,n)-2.*v(j,n)) + dt*a.*(v(j,n)).*(u(j,n)-b) + v(j,n);
for j=2:nx; % Space Loop
u(j,n+1) = D*nu.*(u(j-1,n)+u(j+1,n)-2.*u(j,n))+ dt*(u(j,n)).*(1-u(j,n)v(j,n))+u(j,n);
v(j,n+1) = nu.*(v(j-1,n)+v(j+1,n)-2.*v(j,n)) + dt*a.*(v(j,n)).*(u(j,n)-b) + v(j,n);  end
%right-hand boundary  j = nx+1;
u(j,n+1) = D*nu.*(u(j-1,n)+u(j,n)-2.*u(j,n))+ dt*(u(j,n)).*(1-u(j,n)v(j,n))+u(j,n);
v(j,n+1) = nu.*(v(j-1,n)+v(j,n)-2.*v(j,n)) + dt*a.*(v(j,n)).*(u(j,n)-b) + v(j,n);  end
% Graphical representation of the temperature at different selected times  figure(1)
plot(x,u(:,1),'-',x,u(:,300),'--',x,u(:,1000),':',x,u(:,10000),'-.')  axis([0 1 0 1]) %specifies limits of axes (0, 1) x (0, 1)  title('Prey distributions 
at various time steps')  xlabel('X')  ylabel('u')  figure(2)
plot(x,v(:,1),'-',x,v(:,300),'--',x,v(:,1000),':',x,v(:,10000),'-.')  axis([0 1 0 1])
title('Predator distribution at various time steps')  xlabel('X')  ylabel('v')
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