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Abstract
In this study, we analyze the physiological data during real-world driving tasks to determine whether driver’s relative 
stress is mono-fractal or multi-fractal. We use the PhysioNet database including long term ECG recordings from 15 healthy 
volunteers, taken while they were driving on a prescribed route including city streets and highways in and around Boston, 
Massachusetts. The vibration analysis such as power spectral densities (PSD) analysis has been performed to estimate the 
exponent from realizations of these pro- cesses and to find out if the signal of interest exhibits a power-law PSD. Multifractal 
dynamics of heartbeat interval signals have been assessed by multifractal spectrum analysis to explore the possibility that 
ECG recordings belong to class of multi-fractal process for which a large number of scaling exponents are re- quired to 
characterize their scaling structures. We apply Higuchi algorithm to find the fractal complexity of each cardiac rhythm for 
different time intervals. According to our analysis, we investigate that driver’s ECG signals under relative stress follows 
fractal behavior unlike control healthy signals which are multi-fractal. Our findings provide a comprehensive framework 
for detect stress and differentiate people who experience stress with normal people without stress which is crucial in finding 
the best diagnostic and controlling strat- egy in fight against many health problems due to stress, such as high blood 
pressure, heart disease, obesity and diabetes. Moreover, being able to recognize stress can help us to manage it.

Citation: Tahmineh Azizi (2022). Mathematical Modeling of Stress Using Fractal Geometry; The Power Laws and Fractal Com-
plexity of Stress. Adv NeurNeur Sci. 5(3), 140-148.

Introduction
Although the well-known definition of stress is different from its 
scientific definition, but someone can sim- ply define it as a set 
of unspecific reactions that an organism demonstrates under en-
vironmental changes to maintain homeostasis. In general, these 
responses help the organism to adapt to the new conditions [1]. We 
call the stimuli that causes stress as stressors and the provoked sit-
uation as stressful [1, 2]. A large number of studies in neuroscience 
in the 20th century has been devoted to study stress [1–6]. Accord-
ing to some of them, stress may be the result of the physical action 
such as damage to the body, biochemical reasons such as reducing 
the blood glucose level, or biological factors such as infection by 
microorganisms agents [2–4]. The hypothalamic-pituitary-adrenal 
(HPA) axis which is a neuroendocrine system and is responsible 
for regulating numerous physiological processes can also causes 
many stress-related diseases such as post-traumatic stress disorder 
(PTSD) and major depressive disorder when its action is disrupted 
due to different reasons [3–6]. Recently, many efforts and therapies 
in stress management have been developed to decrease stress and 
promote health condition. Clearly, the combination of all these ef-
forts in different fields will help in better understanding of the na-
ture of stress and better controlling stress to prevent many different 

stress related diseases.
 
A fractal has been defined as a subset of Euclidean space with a di-
mension strictly higher than its topological dimension. For the first 
time, Mandelbort in 1983 [7] introduced these irregular geometric 
objects to the world. Fractals also can be defined as physical mod-
els for different phenomena which are distributed evenly in the 
embedding space. Fractals are well-known because of their unique 
property which is self-similarity in different scales. During recent 
decades, researchers in different field of sciences have developed 
varieties of interesting studies about the unique properties of frac-
tals in our body [8–13]. Detecting the fractal pattern in electrocar-
diography or ECG signals is one of these important discoveries 
[8]. The complex heterogeneous, non-stationary and self-regulated 
processes with a wide range of characteristics in physiological sig-
nals cannot be easily recognized using the traditional techniques 
in signal analysis and require nonlinear tools to reveal their com-
plex and irregular fluctuations. Vibration analysis as one of these 
techniques in studying the irregularity of the biomedical signals 
considers that the statistical properties of signals such as mean 
and standard deviation remain constant over time [15–17]. One 
the most widely used algorithms in vibration analysis of signals 
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called power spectral density (PSD) which is useful to compare 
random vibrations of signals with different length. To compute the 
PSD, one may need to estimate the fast Fourier transform (FFT) of 
the signal and then multiplying its amplitude by its complex con-
jugate. Normalizing this output to the frequency bin width, makes 
PSD more reliable compared to FFT when we are studying the 
random signals [15–17].

Multifractal analysis which has been used frequently in signal 
analysis [11–13], helps to classify different classes of signals by 
approximating scaling exponents and defining the scale invariance 
characteristics of the given process. The approximated scaling 
exponents can be used to characterize the statistical properties of 
dif- ferent subsets of a signal. According to different studies in 
fractal geometry, we only need one global exponent to character-
ized the homogeneous structure of monofractal signals, however, 
the heterogeneous structure of multifractal signals require more 
exponents to get indexed [18].
‘
In this study, we apply different quantitative and non-linear tech-
niques to find a rigorous mathematical and the- oretical framework 
in studying the complexity of stress. Our public databases which 
is called Stress database in PhysioNet includes 15 multiparameter 

recordings from healthy volunteers, taken while they were driv-
ing on a prescribed route including city streets and highways. We 
perform vibration analysis methods such as power spectral densi-
ties (PSD) to study the power law behaviors of this database. We 
estimate the power law scaling exponents for all these recordings 
and then we apply multifractal analysis to study the multifractal 
structure and complex dynamics of these signals. Finally, Higuchi 
fractal dimension analysis of the recordings will complement this 
research.

Materials, Methods and Results
Data
In this study, we use 15 recordings (see figure (1)) of the Stress 
database which is contributed to PhysioNet by its creator, Jenni-
fer Healey. This database contains a collection of multiparameter 
recordings from healthy volunteers, taken while they were driv-
ing on a prescribed route including city streets and highways in 
and around Boston, Massachusetts. The objective of the study for 
which these data were collected was to investigate the feasibility 
of automated recognition of stress on the basis of the recorded sig-
nals, which include ECG, EMG (right trapezius), GSR (galvanic 
skin resistance) measured on the hand and foot, and respiration 
[22, 24].

Figure 1: Recordings from 15 healthy subjects in Stress PhysioNet database.

2.2 Vibration frequency analysis; Power spectral densities (PSD) and scaling exponents

In this section, we apply power spectral densities (PSD) and exponent analysis on these ECG recordings to
estimate the exponent from realizations of these processes and to find out if the signal of interest exhibits a
power-law PSD. Here, we estimate the power spectral density using an averaging estimator technique called
welch (PSD) method with overlapped segmentation.
Among different vibration frequency analysis algorithms, the fast Fourier transform (FFT) is one of the most
widely used to compute discrete Fourier transform (DFT). However, it has some disadvantages. Basically,
FFTs can only work well when there exist a finite number of dominant frequency components in the database.
To overcome this problem, we are going to apply another vibration analysis method, called power spectral
densities (PSD), which has been applied successfully to characterize random vibration in signals. To compute
the power spectral densities, we need to multiply each frequency bin of fast Fourier transform by its complex
conjugate to obtain a real spectrum and then normalize the results to frequency bin width.

2.3 Multifractal Analysis and Discrete Wavelet Transform (DWT)

In this section, we perform multi-fractal analysis to discover whether some type of power-law scaling exists
for various statistical moments at different scales of these ECG signals. Here, we estimate the multifractal
spectrum using a technique called (DWT) method.
According to recent studies about physiological signals, healthy signals reveal multifractal structure. In this
section, using multifractal analysis, we test the three ECG databases we have to explore which one of them
belongs to class of multifractal process, means that it requires larger number of scaling exponents to character-
ize the scaling structures. We start with reviewing the general idea behind multifractal analysis using several
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Vibration frequency analysis; Power spectral densities (PSD) 
and scaling exponents
In this section, we apply power spectral densities (PSD) and ex-
ponent analysis on these ECG recordings to estimate the exponent 
from realizations of these processes and to find out if the signal 
of interest exhibits a power-law PSD. Here, we estimate the pow-
er spectral density using an averaging estimator technique called 
welch (PSD) method with overlapped segmentation.

Among different vibration frequency analysis algorithms, the fast 
Fourier transform (FFT) is one of the most widely used to compute 

discrete Fourier transform (DFT). However, it has some disadvan-
tages. Basically, FFTs can only work well when there exist a finite 
number of dominant frequency components in the database. To 
overcome this problem, we are going to apply another vibration 
analysis method, called power spectral densities (PSD), which has 
been applied successfully to characterize random vibration in sig-
nals. To compute the power spectral densities, we need to multiply 
each frequency bin of fast Fourier transform by its complex con-
jugate to obtain a real spectrum and then normalize the results to 
frequency bin width.
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Multifractal Analysis and Discrete Wavelet Transform (DWT)
In this section, we perform multi-fractal analysis to discover 
whether some type of power-law scaling exists for various statis-
tical moments at different scales of these ECG signals. Here, we 
estimate the multifractal spectrum using a technique called (DWT) 
method.

According to recent studies about physiological signals, healthy 
signals reveal multifractal structure. In this section, using multi-
fractal analysis, we test the three ECG databases we have to ex-
plore which one of them belongs to class of multifractal process, 
means that it requires larger number of scaling exponents to char-
acter- ize the scaling structures. We start with reviewing the gener-
al idea behind multifractal analysis using several different studies 
[25–46].

In general, fractal dimension determines the complexity of a frac-
tal object by measuring the changes of cover- ings relative to the 
scaling factor. It also specifies the space filling capacity of a fractal 
object with respect to its scaling properties in the space. The re-
lationship between scaling and covering is often hard to be char-
acterized. The variation in the number of coverings, N(e), with 
respect to the scaling factor e, can be written as

where D is the fractal dimension. The relation (2.1) is called scal-
ing law that has been used to demonstrate the size distribution of 
many objects in nature. The box counting formula which has been 
widely applied to approximate the fractal dimension of an irregu-
lar object is defined as

However, this monofractal dimension is not able to fully charac-
terize complex scaling behaviors of many irregular objects in the 
real world. That’s why to study irregular objects like ECG signals 
one may need to apply the multifractal algorithm. The multifractal 
analysis used a spectrum of singularity exponents to provide a de-
tailed and local description of complex scaling behaviors. In order 
to quantify local densities of the fractal set, we approximate the 
mass probability using the following formula

where Ni(a) is the number of mass in the ith subset of measure a, 
N is the total mass of the set. When we scale the mass probability 
Pi(a) with measure a of a multifractal set, it also demonstrates the 
power law behavior:

where αi is the singularity exponent characterizing the local scal-
ing in the ith subset. The multifractal spectrum f (α) provides a 
statistical distribution of singularity exponents αi. In general, f (α) 
may be estimated using the Legendre transformation

where q is the moment and τ(q) is the mass exponent of the qth 
order moment. In addition, the multifractal measures may be spec-
ified by scaling of qth moments of Pi(a) as

where Dq = τ(q) is the generalized fractal dimension. For q = 0 
equation (2.3) becomes
(q − 1)
N(a) ∝ a−D0

which is similar to formula (2.1).
One of the most widely used techniques approximate multifractal 
spectrum of signals called wavelet analysis [37–42]. This method 
uses discrete wavelet analysis which is robust enough to charac-
terize the distribution of scaling exponents and provides a good 
estimation to changes of regularity of a signal. To specify the spec-
trum of singularity of the pointwise regular function f , wavelet 
analysis associates the dimension of fractal sets to Hölder expo-
nent H(t) [41]. The Hölder exponent of a fractal process f (t) can 
be defined as follows:

Definition 2.1 [42] A fractal process f (t) satisfies a Hölder condi-
tion, when there exist H(t) > 0, such that

We can find H(t) for constant f from the coarse Hölder exponents 
as

The following sets may be defined to extract the geometry of a 
signal

with varying d, these sets describe the local regularity of signal. 
We call the map
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where Dq =
τ(q)

(q − 1)
is the generalized fractal dimension. For q = 0 equation (2.3) becomes
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which is similar to formula (2.1).
One of the most widely used techniques approximate multifractal spectrum of signals called wavelet analysis
[37–42]. This method uses discrete wavelet analysis which is robust enough to characterize the distribution of
scaling exponents and provides a good estimation to changes of regularity of a signal. To specify the spectrum
of singularity of the pointwise regular function f , wavelet analysis associates the dimension of fractal sets to
Hölder exponent H(t) [41]. The Hölder exponent of a fractal process f (t) can be defined as follows:

Definition 2.1. [42] A fractal process f (t) satisfies a Hölder condition, when there exist H(t) > 0, such that

| f (t′)− f (t)| � |t′ − t|H(t) (2.6)

We can find H(t) for constant f from the coarse Hölder exponents as

hξ(t) =
1

logξ
log sup

|t′−t|<ξ

| f (t′)− f (t)| (2.7)

The following sets may be defined to extract the geometry of a signal

E[d]
h = {t : H(t) = d} (2.8)

with varying d, these sets describe the local regularity of signal. We call the map

d �→ dim(E[d]) (2.9)

which is a compact form of the singularity structure of the fractal process f , the multifractal spectrum of
f [42]. In a global setting, to describe the complexity of a signal, we may need to count the intervals over
which the fractal process f evolves with Hölder exponent H(t) and it gives an estimation of dim(E[d]). The
grain exponent which is a discrete approximation to hξ(t) can be written as the following form [42]

h(n)k := − 1
n

log2 sup{| f (s)− f (t)| : (k − 1)2−n ≤ s ≤ t ≤ (k + 2)2−n} (2.10)

Therefore, the grain multifractal spectrum has the form [43–46]

F(d) = lim
ξ→0

lim
n→∞

log Nn(d,ξ)
n log 2

(2.11)

where

Nn(d,ξ) = #{k : |h(n)k − d| < ξ} (2.12)

5
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which the fractal process f evolves with Hölder exponent H(t) and it gives an estimation of dim(E[d]). The
grain exponent which is a discrete approximation to hξ(t) can be written as the following form [42]
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which is a compact form of the singularity structure of the fractal 
process f , the multifractal spectrum of f [42]. In a global setting, 
to describe the complexity of a signal, we may need to count the 
intervals over which the fractal process f evolves with Hölder ex-
ponent H(t) and it gives an estimation of dim(E[d]). The grain ex-
ponent which is a discrete approximation to hξ (t) can be written 
as the following form [42].

Therefore, the grain multifractal spectrum has the form [43–46].

where

Time-Frequency Analysis and Continuous Wavelet Transform 
(CWT)
The continuous wavelet transform (CWT) of a dataset h(t) is given 
by (Mallat, 1998) [14, 15]

where s is scale, u is displacement, Φ is the mother wavelet used, 
and ∗ means complex conjugate. The CWT is therefore a convo-
lution of the data with scaled version of the mother wavelet. Of 
course, the time coordinate t in equation (2.13) could equally well 
be the spatial coordinate x if profile data were being analyzed.

Continuous Wavelet Transform (CWT) compute a linear time-fre-
quency representation of non-stationary signals such as ECG sig-
nals called scalogram by breaking the ECG signals into scales 
by preserving time shifts and time scales. Therefore, the wavelet 
transform makes the analysis of the ECG signal in different fre-
quency ranges easier and we can extract useful information from 
the time intervals between its consecutive waves of the physio-
logical signals [15]. To compute the scalogram of a signal which 
is function of time and frequency, at first, we split the signal into 
overlapping segments, then we need to compute the absolute value 
of the continuous wavelet transform coefficients of each segment 
and finally, plot it.

Higuchi Fractal Dimension Algorithm
In this section, a quantitative analysis commonly known as the 
Fractal Dimension (FD) using the Higuchi algorithm has been car-
ried out to illustrate the fractal complexity of input signals.

There are different methods to study the complexity of a fractal 
process. Using box counting method we can compute the dimen-
sion in two-dimensional space and also we can specify the com-
plexity of two dimensional images [47]. However, this method 
does not provide us reliable information when we analyze ECG 
databases since it fails to recognize the sudden changes in the time 
series data set [48]. A variety of algorithms such as Higuchi algo-
rithm, power spectrum analysis, and Katz algorithm have been de-
veloped to study the complexity of irregular signals such as phys-
iological signals [49–51]. Here we use one of the most common 
used algorithms to estimate the fractal dimension of three groups 
of ECG data; Higuchi Algorithm.

 
Assume we have a finite time series x1, x2, x3, . . . , xN. Then, we 
construct k new time series xk

where A = (N − m)/k. For each time interval k and the initial time 
m such that m = 1, 2, . . . , k, we compute the length of using

where R = (N − 1)/[A]k is the curve length normalization factor. To 
find the average of curve length for
each k, we calculate the mean of Lk for m = 1, 2, . . . , k and take the 
average for k = 1, . . . , kmax. Next, we
plot log(Lk ) versus log(1/k) for different time interval k. Finally, 
we find the slope of regressed line which is obtained by the least-
squares approximation as the Higuchi fractal dimension for time 
interval k = 400.
 
Discussion of results
Signals without characteristic in scale also called scale free signals 
(with fixed statistical properties like mean and variance after any 
stretching or shrinking factors) have a wide range of application 
in geophysics, finance and physiology, the importance of different 
approaches in nonlinear dynamics theory have been increased and 
motivated us to apply them in biomedical signal processing. In this 
section, we employ some of these methods including power spec-
tral densities (PSD), Higuchi fractal dimension algorithm, scaling 
exponents and multi- fractal analysis.

In figure [2], we can see the fitted least squares approximation to 
the logarithm of power spectral density of all long-term signals.

As we can see from figure [2], PSD may not be useful to classify 
the data, however, the power-law exponent.

where Dq =
τ(q)

(q − 1)
is the generalized fractal dimension. For q = 0 equation (2.3) becomes

N(a) ∝ a−D0

which is similar to formula (2.1).
One of the most widely used techniques approximate multifractal spectrum of signals called wavelet analysis
[37–42]. This method uses discrete wavelet analysis which is robust enough to characterize the distribution of
scaling exponents and provides a good estimation to changes of regularity of a signal. To specify the spectrum
of singularity of the pointwise regular function f , wavelet analysis associates the dimension of fractal sets to
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Definition 2.1. [42] A fractal process f (t) satisfies a Hölder condition, when there exist H(t) > 0, such that
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1

logξ
log sup

|t′−t|<ξ

| f (t′)− f (t)| (2.7)

The following sets may be defined to extract the geometry of a signal

E[d]
h = {t : H(t) = d} (2.8)

with varying d, these sets describe the local regularity of signal. We call the map

d �→ dim(E[d]) (2.9)

which is a compact form of the singularity structure of the fractal process f , the multifractal spectrum of
f [42]. In a global setting, to describe the complexity of a signal, we may need to count the intervals over
which the fractal process f evolves with Hölder exponent H(t) and it gives an estimation of dim(E[d]). The
grain exponent which is a discrete approximation to hξ(t) can be written as the following form [42]

h(n)k := − 1
n

log2 sup{| f (s)− f (t)| : (k − 1)2−n ≤ s ≤ t ≤ (k + 2)2−n} (2.10)

Therefore, the grain multifractal spectrum has the form [43–46]
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scaling exponents and provides a good estimation to changes of regularity of a signal. To specify the spectrum
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Hölder exponent H(t) [41]. The Hölder exponent of a fractal process f (t) can be defined as follows:

Definition 2.1. [42] A fractal process f (t) satisfies a Hölder condition, when there exist H(t) > 0, such that

| f (t′)− f (t)| � |t′ − t|H(t) (2.6)

We can find H(t) for constant f from the coarse Hölder exponents as

hξ(t) =
1

logξ
log sup

|t′−t|<ξ

| f (t′)− f (t)| (2.7)

The following sets may be defined to extract the geometry of a signal

E[d]
h = {t : H(t) = d} (2.8)

with varying d, these sets describe the local regularity of signal. We call the map

d �→ dim(E[d]) (2.9)

which is a compact form of the singularity structure of the fractal process f , the multifractal spectrum of
f [42]. In a global setting, to describe the complexity of a signal, we may need to count the intervals over
which the fractal process f evolves with Hölder exponent H(t) and it gives an estimation of dim(E[d]). The
grain exponent which is a discrete approximation to hξ(t) can be written as the following form [42]
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2.4 Time-Frequency Analysis and Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) of a dataset h(t) is given by (Mallat, 1998) [14, 15]

CWT(u, s) =
∫ ∞

−∞
h(t)

1
|s|0.5 Φ∗

(
t − u

s

)
dt (2.13)

where s is scale, u is displacement, Φ is the mother wavelet used, and ∗ means complex conjugate. The CWT
is therefore a convolution of the data with scaled version of the mother wavelet. Of course, the time coordinate
t in equation (2.13) could equally well be the spatial coordinate x if profile data were being analyzed.
Continuous Wavelet Transform (CWT) compute a linear time-frequency representation of non-stationary sig-
nals such as ECG signals called scalogram by breaking the ECG signals into scales by preserving time shifts
and time scales. Therefore, the wavelet transform makes the analysis of the ECG signal in different frequency
ranges easier and we can extract useful information from the time intervals between its consecutive waves of
the physiological signals [15]. To compute the scalogram of a signal which is function of time and frequency, at
first we split the signal into overlapping segments, then we need to compute the absolute value of the continuous
wavelet transform coefficients of each segment and finally, plot it.

2.5 Higuchi Fractal Dimension Algorithm

In this section, a quantitative analysis commonly known as the Fractal Dimension (FD) using the Higuchi
algorithm has been carried out to illustrate the fractal complexity of input signals.
There are different methods to study the complexity of a fractal process. Using box counting method we can
compute the dimension in two dimensional space and also we can specify the complexity of two dimensional
images [47]. However, this method does not provide us reliable information when we analyze ECG databases
since it fails to recognize the sudden changes in the time series data set [48]. A variety of algorithms such as
Higuchi algorithm, power spectrum analysis, and Katz algorithm have been developed to study the complexity
of irregular signals such as physiological signals [49–51]. Here we use one of the most common used algorithm
to estimate the fractal dimension of three groups of ECG data; Higuchi Algorithm.
Assume we have a finite time series x1, x2, x3, . . . , xN . Then, we construct k new time series xk

m of the form

xm, xm+k, xm+2k, . . . , x[m+A k]

where A = (N − m)/k. For each time interval k and the initial time m such that m = 1, 2, . . . ,k, we compute
the length of xk

m using

Lk
m =

∑[A]
i=1 |xm+i k − xm+(i−1)k|

k
R

where R = (N − 1)/[A]k is the curve length normalization factor. To find the average of curve length for
each k, we calculate the mean of Lk

m for m = 1, 2, . . . ,k and take the average for k = 1, . . . ,kmax. Next, we
plot log(Lk

m) versus log(1/k) for different time interval k. Finally, we find the slope of regressed line which is
obtained by the least-squares approximation as the Higuchi fractal dimension for time interval k = 400.
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3 Discussion of results

Signals without characteristic in scale also called scale free signals (with fixed statistical properties like mean
and variance after any stretching or shrinking factors) have a wide range of application in geophysics, finance
and physiology, the importance of different approaches in nonlinear dynamics theory have been increased and
motivated us to apply them in biomedical signal processing. In this section, we employ some of these methods
including power spectral densities (PSD), Higuchi fractal dimension algorithm, scaling exponents and multi-
fractal analysis.
In figure (2), we can see the fitted least squares approximation to the logarithm of power spectral density of all
long-term signals.
As we can see from figure (2), PSD may not be useful to classify the data, however, the power-law exponent

Figure 2: Fitted least squares approximation to the logarithm of power spectral density of Stress PhysioNet
database obtained by wavelet techniques.

can be a good measure of complexity for the recordings and their power-law properties.
To differentiate the time series we approximate the scaling exponents for stress database and plot them in figure
(3).
By looking at figure (3), we can easily say that all signals are monofractal since we have a narrow range of

scaling exponent.
We plot the multi-fractal spectra of this database to compare the width of the scaling exponent for each spec-
trum. From multifractal analysis results of signals in the stress database (see figure (4)), we can easily see that
we have a short range of support of exponents for all recorded signals, which indicates they have mono-fractal
structure.
Therefore, the signals with stress show a clear loss of multifractality and are homogeneous and monofractal
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Figure 2: Fitted least squares approximation to the logarithm of power spectral density of Stress PhysioNet database obtained by wave-
let techniques.

can be a good measure of complexity for the recordings and their 
power-law properties.
To differentiate the time series, we approximate the scaling expo-
nents for stress database and plot them in figure [3].

By looking at figure [3], we can easily say that all signals are 
monofractal since we have a narrow range of scaling exponent.

We plot the multi-fractal spectra of this database to compare the 
width of the scaling exponent for each spec- trum. From multi-
fractal analysis results of signals in the stress database (see figure 
(4)), we can easily see that we have a short range of support of 
exponents for all recorded signals, which indicates they have mo-
no-fractal structure.

Therefore, the signals with stress show a clear loss of multifractal-
ity and are homogeneous and monofractal

Figure 3: Scaling exponent of power spectral density of Stress PhysioNet database.

since their spectrum displays a narrow width of scaling exponent. Here, the recordings demonstrate similar
scaling features throughout the signal and they can be characterized by only a single global exponent. In sum-
mary, the multi-fractal analysis demonstrates different level of complexity and non-linear dynamics of signals
and can be used to characterize them since it provides different range of exponents useful to classify data.
Another important outcome from our multifractal analysis is recognizing obvious changes in the shape of D(h)
curves for signals which is crucial in finding the best strategies to better controlling the stress.
We have displayed the scalogram plots of all signals for in figure (5).

Here, we can see that the monofractal characteristics and nonlinear features of data are encoded in the fre-
quency domain of the vibrations.
We have estimated the fractal dimension of data and plotted their regression models for each data in figure (6).
We have determined the optimal value for kmax such that after this value, there is no change in fractal dimension
and it is kmax = 400.

Based on the results from Higuchi algorithm for time interval k = 400, stress database demonstrates higher
fractal complexity and as a result, higher fractal dimension compared to patients with heart disease. Although
Higuchi fractal dimension may be utilized as a complexity measure for analysis on recordings but it will require
much more efforts and further clinical analysis to find a specific threshold which make the fractal dimension to
be considered as a biomarker and diagnosis tool in these types studies.
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Figure 3: Scaling exponent of power spectral density of Stress PhysioNet database.
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since their spectrum displays a narrow width of scaling exponent. 
Here, the recordings demonstrate similar scaling features through-
out the signal and they can be characterized by only a single global 
exponent. In sum- mary, the multi-fractal analysis demonstrates 
different level of complexity and non-linear dynamics of signals 
and can be used to characterize them since it provides different 
range of exponents useful to classify data.

Another important outcome from our multifractal analysis is rec-
ognizing obvious changes in the shape of D(h) curves for signals 
which is crucial in finding the best strategies to better controlling 
the stress. We have displayed the scalogram plots of all signals for 
in figure [5].

Figure 5: Time-frequency representations of Stress PhysioNet database.Figure 5: Time-frequency representations of Stress PhysioNet database.

studies to develop a realistic and comprehensive model which helps to control and regulate the stress.
Despite the fact that there is still a big gap between theoretical and experimental research about stress, we hope
that our framework offers a useful model for future investigations of the mechanism operating on the stress and
the system related to that during any changes which cause stress. This approach should be considered only as
a starting point in theoretical and mathematical framework in studying this complex problem, and we hope to
develop it in interactions with empirical and experimental research.
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Figure 4: The multifractal spectrum of Stress PhysioNet database.

4 Conclusion

In this research, we have studied the fractal structure of Stress PhysioNet database. We have performed different
non linear techniques for classifying the data such as vibration analysis and wavelet analysis. To specify the
signals patterns and complexity of the stress database, we have estimated the power-law exponent and (PSD),
the fractal dimension (FD) and we carried out the multifractal analysis which are reliable and well known
methods in time series data analysis. We have plotted the logarithm of power spectral densities (PSD) against
the logarithm of frequency to estimate the exponent using the slope of linear regression of these processes.
Moreover, we have estimated the scaling exponents of the signals and we noticed that the stress signals have
narrow range of scaling law. We continued the analysis by looking at the fractal structures of data using
Higuchi method. Higuchi algorithm approximated the fractal dimensions for all recordings for the optimal
time interval k = 400. According to Higuchi algorithm, fractal dimension can be used to compare different
individuals in database. However, fractal dimension can not be used as a diagnosis tool for clinical purposes
unless further analysis and studies need to be performed in this area. Finally, we have reported on evidences
for monofractality in stress database using multifractal analysis. According to the multifractal analysis, we
recognized a narrow range of scaling exponents for all recordings which revealed the loss of multifractality in
stress database. These results suggest that the multifractal analysis and scaling exponents may be considered
as two indicators to compare the complexity of stress signals. Likewise, the multifractal analysis can be used
as a controlling and regulating mechanism of the stress and have the potential to be used as diagnostic tools
in patient examinations. Furthermore, it can be considered as a computational framework to further analysis
of physiological signals and clinical databases and fight against stress. In addition, these results of comparison
between different subjects using variety of non-linear methods indicate that it requires ongoing researches and
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Figure 4: The multifractal spectrum of Stress PhysioNet database.
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time series data analysis. We have plotted the logarithm of power 
spectral densities (PSD) against the logarithm of frequency to es-
timate the exponent using the slope of linear regression of these 
processes. Moreover, we have estimated the scaling exponents 
of the signals and we noticed that the stress signals have narrow 
range of scaling law. We continued the analysis by looking at the 
fractal structures of data using Higuchi method. Higuchi algorithm 
approximated the fractal dimensions for all recordings for the 
optimal time interval k = 400. According to Higuchi algorithm, 
fractal dimension can be used to compare different individuals in 
database. However, fractal dimension cannot be used as a diag-
nosis tool for clinical purposes unless further analysis and studies 
need to be performed in this area. Finally, we have reported on 
evidences for monofractality in stress database using multifrac-
tal analysis. According to the multifractal analysis, we recognized 
a narrow range of scaling exponents for all recordings which re-
vealed the loss of multifractality in stress database. These results 
suggest that the multifractal analysis and scaling exponents may 
be considered as two indicators to compare the complexity of 
stress signals. Likewise, the multifractal analysis can be used as 
a controlling and regulating mechanism of the stress and have the 
potential to be used as diagnostic tools in patient examinations. 
Furthermore, it can be considered as a computational framework 
to further analysis of physiological signals and clinical databases 
and fight against stress. In addition, these results of comparison 
between different subjects using variety of non-linear methods in-
dicate that it requires ongoing researches and studies to develop 

a realistic and comprehensive model which helps to control and 
regulate the stress.

Despite the fact that there is still a big gap between theoretical and 
experimental research about stress, we hope that our framework 
offers a useful model for future investigations of the mechanism 
operating on the stress and the system related to that during any 
changes which cause stress. This approach should be considered 
only as a starting point in theoretical and mathematical framework 
in studying this complex problem, and we hope to develop it in 
interactions with empirical and experimental research.
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