
Journal of Robotics and Automation Research

 Volume 3 | Issue 2 | 200

Machine Learning in Production: From Experimented ML Model to System
Research Article

Pritom Bhowmik

*Corresponding author

J Robot Auto Res, 2022 www.opastonline.com

Abstract
Production ML pipeline refers to a complete end-to-end workflow of a machine learning product ready for deployment. In recent
years, companies have vastly invested in Machine Learning research; developers are developing new tools and technologies
to make ML more flexible. Now, we can experience AI in most devices around us, from home appliances to cars. When we want
to develop an AI-powered product, it is vital to understand the crucial workflows of the ML. Academic research to develop an
ML model and a production ML pipeline are entirely different scenarios. From business problems, data collection to deploying
the model is an acutely iterative process. Most of the time, Data scientists and Machine Learning Engineers need to deal with
issues like data shift, concept shift, model decay, etc.

Sometimes, there are need to change the complete ML architecture or how the features are engineered in the dataset. It will
become tedious if someone is working in such an environment and lacks an understanding of the entire workflow of the ML
pipeline. Though every ML project is different, a data scientist/ ML engineer/ data engineer must understand the end-to-end
workflow of the ML pipeline for the product they are developing. The challenge starts with a business problem. We may face
different domain problem statements that need to be solved with Machine Learning. How the data will be collected is also a big
concern. Data pre-processing, data validation, data monitoring, feature engineering, Model Selection, hyperparameter tuning,
model optimization, model performance analysis, performance evaluation, detecting bias, model deployment, post-deployment
analysis & monitoring are the crucial processes to make your model production-ready.

The main contribution of this research paper is to present a complete picture of the end-to-end workflows of a production-ready
ML pipeline. The process can apply to any production ML project though some workflow or steps may differ due to the domain
or use-case's demand. A proper ML pipeline architecture should be easily maintainable, scalable, and reusable. Because as the
machine learning project grows, it becomes more and more complex. So, performing regular updates and scaling will become
easy for data scientists & ML engineers if the pipeline is well designed and automated.

Index Terms: Machine Learning Pipeline, Neural Architecture Search, Principal Component Analysis, Model optimization,
Dimensionality Reduction, Directed Acyclic Graph, Data Orchestrators, Model Decay

Submitted: 22 Jun 2022; Accepted: 30 Jun 2022; Published:14 Jul 2022

Citation: Pritom Bhowmik.(2022). Machine Learning in Production: From Experimented ML Model to System. J Robot Auto Res, 3(2),
200-208.

Pritom Bhowmik B. Tech. (Computer Science & Engineering) In-
stitute of Engineering & Management, Kolkata, India.

B. Tech. (Computer Science & Engineering) Institute of Engineering
& Management, Kolkata, India

ISSN: 2831 - 6789
ISSN: 2831-6789

Introduction
The production ML model is about developing a service or a prod-
uct using Machine Learning development and modern software
development. A machine learning pipeline project starts with data
ingestion and ends with an output from the trained model. Most of
the academic ML research used prepared data, collected, cleaned
& labeled with the supervision of experts. However, data is the
most laborious and most time-consuming part of an ML project in
real-world machine learning use cases. 2 Moreover, the model's
performance in production depends mostly on how data is col-

lected and labeled, how the dataset is feature engineered and val-
idated, model optimizations, etc. In an ML research environment,
static datasets are used to develop models, where datasets remain
the same during the whole duration of the development.

Nevertheless, in a real-world ML project, data is collected contin-
uously from several systems and fed to the ML model, where data
is dynamic and regularly shifting. That is why it takes frequent as-
sessments and iterative training to perform well in the production
environment. It starts with data collection, accurate labeling (su-

 Volume 3 | Issue 2 | 201J Robot Auto Res, 2022 www.opastonline.com

pervised learning), minimizing dimensionality, feature engineer-
ing, handling rare conditions to maintain fairness, deployment for
serving, and post-deployment model maintenance.

Each of the stages of this life cycle is critical for the success of the
ML product. Working in a production ML project brings many new
challenges. Model development is only around 5% of the entire
development process, and that is why production machine learning
is very different from academic research settings. So, building the
model is hard but moving it into a production setting is harder.
Maintaining the data quality and model's performance are the new
sets of challenges data scientists and engineers face. Selecting the
right tools is also a significant challenge. Google, IBM, Databrick,
and AWS offer state-of-the-art toolsets to simplify those tasks.
However, there are still enormous challenges to implementing the
right tools and technology.

Figure 1: ML Workflow

In this paper, the research focuses on the complete workflows of
a production machine learning pipeline to develop a data science
product. A real-world ML project starts with business understand-
ing, where the data science team works with domain experts to
understand the problem statement. This process can take months
sometimes but asking the right question is the key to the project's
success. After that, the team starts working with data. In many cas-
es, 60-70% time of the whole project needs to be invested in col-
lecting, cleaning, and feature engineering the dataset. A dynamic
dataset needs to build a data pipeline for the data lifecycle to ingest
data correctly to the model. Then the ML model needs to be select-
ed using Neural Architecture Search (NAS) process.

The next step is optimizing the model's performance to get the
ML model's best accuracy. These processes are highly iterative
and take proper development planning to implement. It is essential
to analyze the model and data for data shift, concept shift, and
fairness during these periods. Because data continuously collected
from different sources can be changed at any time, and a feature
can be added or removed. Then the model needs to be compressed
or pruned to deploy for a particular platform (mobile/IoT/Web
application). Post-deployment analysis needs to be performed
continuously during the model's lifetime. Moreover, the whole
process must work automatically like a pipeline to make it more
scalable and maintainable.

Business Understanding & Identify Data Sources
Business understanding is at the top of any data science lifecycle.
The data science team needs to work with customers and stake-
holders to understand the business problem initially. Furthermore,
formulate questions that define the business goal to be solved.
Then the team works on identifying relevant data that help answer
the questions. The type of questions defines what machine learning
techniques need to be implemented. A Microsoft article defines
these questions like this:
• How many/ how much? – Regression Model
• Which category? – Classification Model
• Which cluster/group? – Clustering Model
• Which option should be taken? – Recommendation Model
• Is this anomaly? – Anomaly Detection Model

Formulating the business problem statement into questions is the
first crucial task of a data science project, and domain research
may sometimes be needed. After answering these questions, the
next step is identifying the data sources. Data need to measure
the target and features relevant to the questions. Dataset can be
collected from different sources depending on the project domain.
Data can be collected from an online survey, social media, gov-
ernment records, mechanical systems, websites, e-commerce, etc.
Then it needs to be ingested into the analytical visualization tools
to understand if the data quality is adequate to answer the ques-
tions.

Production ML Pipelines & ML Orchestration
ML pipelines are software architecture to automate, monitor, and
maintain ML workflow, including data validation, data process-
ing, model training, analysis, and deployment. Production ML
pipelines combine ML & software development and a formalized,
scalable, maintainable process with running sequences of tasks. A
production ML majorly works on dynamic data where new data
are available frequently, sometimes near real-time. A data scientist
team needs to automate these time-consuming steps by implement-
ing a machine learning pipeline so that they can focus on devel-
oping more accurate models. ML pipeline workflows are different
from each other, depending on the architecture but in general, they
are almost always directed acyclic graphs (DAGs).

According to Apache Airflow, “A DAG is the core concept of Air-
flow, collecting Tasks together, organized with dependencies and
relationships to say how they should run." It is only concerned
with how to execute the process. In a pipeline, there are a lot of
variables that need to account for, which makes data pipeline idem-
potency a challenging task. Data quality problems, interruptions
in connectivity, late-arriving data, etc., can cause errors. So, data
orchestrators produce DAGs (that simply rerun the DAG on the
error) which will load the data despite any of these errors occur-
ring. ML Orchestration helps implement and manage ML pipelines
from beginning to end. Production ML pipelines comprise compo-
nents (each component with the defined task) and work together
to enrich the product for the end-users. Data featurization, model
training, evaluation & deployment, and monitoring are the crucial

 Volume 3 | Issue 2 | 202J Robot Auto Res, 2022 www.opastonline.com

ordered steps, and each step depends on its predecessor. To per-
form well in production, each step/component must coordinate re-
liably and regularly. Furthermore, pipeline orchestration performs
the responsibility for scheduling the various part in an ML pipeline
with the help of automation. Airflow, Kubeflow, and Argo are the
leading solution for pipeline orchestration frameworks.

Validate & Monitor Production ML Data
Understanding the esoteric statistics of data, evaluating training
datasets, and detecting anomalies to fix are crucial steps for data
validation. Data Drift and Skew are the common issues ML engi-
neers face regularly. Model's performance decay over time occurs
due to training and serving data issues. Moreover, data drift and
concept drift are the two reasons for that problem. Data can change
over time due to many unexpected events. For example, during
the 2020

Figure 2: Validate Training & Serving Dataset

COVID-19 lockdown, many people started using their credit cards
for online shopping so frequently that the ML model got drifted
data. Moreover, that resulted in wrong credit card fraud warning

to the customers. Concept drift happens more naturally with time.
The data mapping can change with time in real-world dynamic
data, and the model also needs to change. Schema skew can occur
in data when training and serving data do not confirm the same
schema (we can get a string where we are expecting an integer).
So, Skew detection needs continuous evaluation of the data com-
ing to the server from different sources once we train our ML mod-
el. That makes continuous validation and monitoring extremely
essential. To avoid distribution skew, the numerical & categorical
features of the evaluation data should be nearly the same range as
the training data. Below is the visual representation of both train-
ing and evaluation dataset statistics generated by TFDV.

Preprocessing & Feature Engineering at Scale
Applied machine learning often requires strict engineering of the
features & pre-processing of the dataset like data cleansing, fea-
ture tuning, data transformations, dimensionality reduction, etc.
It is crucial to improve the performance of the machine learning
model. In a data science project, 80% of time & resources are
spent on data preparation. The technique of feature engineering
is highly dependent on the particular algorithm. In a real-world
production environment, feature engineering on several terabytes
of data needs to be feature engineered automated. So, it is ideal to
start with a subset of the dataset, performing all the experiments,
solving issues, and then scale up to the terabytes where the model
will work on the complete dataset.

The real challenges we have to deal with are being consistent with
the coding approach for training and serving paths, working out
on deployment environment during developments, and detecting
training-evaluating skews in an early stage. Numerical range and
grouping are the categories for feature engineering. Depending
on the algorithm, we must understand the scaling, normalizing,
standardizing, and grouping used. Scaling converts values to a
standard prescribed range, e.g., rescaling an image pixel from the
[0, 255] range to the [-1, 1] range so that the convolutional neu-
ral network (CNN) performs training and evaluation tasks faster.
It is important because at any typical production level computer
vision model needs several terabytes of image data, and scaling
the dataset will improve the average performance of the model.
Furthermore, it helps the model learn each feature's correct weight.

Figure 3: Normalization and Standardization

 Volume 3 | Issue 2 | 203J Robot Auto Res, 2022 www.opastonline.com

Standardization is another way of scaling using standard devia-
tion by looking at the data distribution where the data values are
centered around the mean. It is good to try standardization and
normalization in real-world use cases and compare the results. In
some scenarios, we do not want to input raw data into our mod-
el; instead, we apply some encoding techniques in a category by
grouping that into a Bin/Bucket. For example, we do not want a
color name as input if we have a color category in our dataset
containing values.

The One Hot Encoding technique creates several additional fea-
tures based on the categorical features' unique values (string/in-
teger). Each unique value in the particular category is added as
a feature. This method is effective in neural network classifica-
tion models. Dimensionality reduction techniques like Principal
component analysis (PCA), Kernel PCA, t-SNE, LDA, Backward
Elimination, Forward Selection, etc., are used to reduce the num-
ber of dimensions of the dataset. In the production machine learn-
ing use case, it is crucial to perform a dimensionality reduction
technique to eliminate the unnecessary components/features so
that the overall performance of the algorithm increase, decreasing
the training time, computational resources, and overfitting.

Neural Architecture Search (NAS) & Hyperparameter
Tuning
In an experimental machine learning model architecture, we run
trial & error on the model by manually tuning the parameters like
neuron’s number, learning rate, dropout pattern, holdout pattern,
hidden layers, etc., to reach a point where we get the most accurate
model. And it takes much work for a small experimented model.
We need to automate this process in production machine learning
to make the model development process efficient. The Keras tuner
is one of the solutions which runs the model multiple times, col-
lecting metrics of different parameters each time and optimizing
them into the best one.

Model selection is also a tedious task if we do it entirely manually.
Model selection is the process of understanding which architec-
ture of the model and which topology of the neural network works
best in a particular dataset. Neural Architecture Search (NAS) is
the process of automating architecture engineering to find the best
architecture for the dataset. NAS is categorized into three dimen-
sions: Search space, search strategy, and performance estimation.

• Search Space: In the AutoML context, a search space defines a
collection of machine learning pipelines from which it searches
for a suitable ML solution to the given problem statement. It in-
corporates prior knowledge about predefined architecture and its
properties. Though it simplifies the search, it introduces human

bias, which may prevent finding novel architecture solutions.

• Search Strategy: Search strategy is how the NAS decides which
options in the search space to try. Grid search, Random search,
Bayesian optimization, Evolutionary algorithm, and Reinforce-
ment learning are the different search strategies that can explore
the space of neural architectures.

• Performance Estimation Strategy: The performance estima-
tion strategy is a metric on the search space. It returns a number
that corresponds to the performance estimation of the architecture.

Neural Architecture Search (NAS) depends on measuring the ac-
curacy of the different architectures in their trials. In NAS, the
search strategy needs to estimate the performance & accuracy of
generated architectures to generate better performance & accurate
architectures. Lower Fidelity Estimation, Learning Curve Extrap-
olation, and Weight Inheritance are the different strategies.

Model Optimization: Dimensionality Reduction
To put the model into production and maintenance during its ser-
vice time requires a cost. And that heavily depends on which com-
puting system the model will run. So, it is essential to work on
model resource management in the early phase of the production
ML pipeline. Though a dataset contains unnecessary features, a
neural network can perform automation feature selection and give
expected outcomes. But it will not be an efficient, well-designed
model that can be deployed for production. Because there will re-
main many unwanted features (though the model ignores them),
that will take up space and computing resources as the model
performs. Sometimes it is plausible that this can cause unwant-
ed noise in the data and degrade the overall model's performance.
Each feature contains information that may or may not help a mod-
el predict well. As we add more features, we need to increase the
number of training examples. We can use manual techniques and
also algorithmic dimensionality reduction techniques for dimen-
sionality reduction.

In a predictive model, features must contain information that helps
the model predict correctly. We can remove unwanted features
directly from the raw data. Sometimes, new informative features
from unwanted data need to be created by aggregating, decompos-
ing, or combining. It is an iterative process that needs continuous
data selection and model evaluation. For example, in the NYC taxi
fare prediction model, we build a baseline model using dropoff_
latitude, dropoff_longitude, passenger_count, pickup_latitude, and
pickup_longitude as input features to predict the fare of a partic-
ular ride.

 Volume 3 | Issue 2 | 204J Robot Auto Res, 2022 www.opastonline.com

Figure 4: Model's Performance with Baseline Features

So, the baseline model performed poorly. Because the dataset con-
tains a feature about the latitude and longitude of both pickup and
dropout points, it cannot determine their distance. Furthermore,
taxi fare mainly depends on the traveling distance. We add new
features to calculate the distance between each pickup and dropout
point. These processes are vastly iterative and need domain under-
standing to implement.Algorithmic Dimensionality Reduction is
an intuitive approach to reducing dimensionality. Moreover, Prin-
cipal Component Analysis (PCA) is a widely used unsupervised
algorithm that creates linear combinations of the original features
and learns the principal components of the data. PCA aims to find
a lower-dimensional surface to project the data and minimize the
squared projection error.

The first principal component is the projection direction, which
maximizes the variance of the projected data. The second principal
component is the orthogonal projection direction to the first prin-
cipal component; it maximizes the remaining variance of the pro-
jected data. Both principal component-1 & principal component-2
comprise a new orthogonal basis for feature space whose axis
follows the highest variances of the original data. PCA applies to
numerical datasets. For the image dataset, we can use Single val-
ue Decomposition (SVD) and Non-Negative Matrix Factorization
(NMF) for text data. PCA works on eigen-decomposition, which
can be done only by square metrics.

Figure 5: Model's Performance with Feature Engineered

Nevertheless, sometimes, we have sparse matrices, and to decom-
pose this kind of metrics, we have techniques like Single value De-
composition (SVD). To reduce dimensionality, SVD decomposes
the original data into constituents, which is used to reduce redun-
dant features from the dataset. Non-Negative Matrix Factorization
(NMF) represents data as combinations of commonly occurring
visual patterns. It requires the dataset's features to be zero, more
significant than zero, or non-negative.

Model Optimization: Quantization & Pruning
In a production ML project, model optimization is the phase where
we have to work on model performance optimization and resource
management. We expect a real-world case study's highest perfor-
mance at the minimum cost. The model may be deployed in any
embedded, IoT, or mobile applications. It is crucial to identify
possible users and the platform. We deploy the machine learning
model in the cloud in any typical situation, where a server runs

 Volume 3 | Issue 2 | 205J Robot Auto Res, 2022 www.opastonline.com

inference and returns the result. However, in some use-case, it is
required to perform the ML model locally as part of the device's
core functionality. The model needs to be embedded directly into
devices that are not connected to the server to serve the model's
output.

Most of the time, IoT and mobile devices' computing capabilities
and storages are very limited. Quantization and Pruning are the
techniques used to reduce the compute resources required to serve
the ML model. Quantization is a technique that transforms a model
into an equivalent model, using lower precision parameters and
computation power. Quantization of neural networks is crucial be-
cause regular neural networks have millions of connections and
take a considerable amount of space and computational resources.
So, the quantization model can compute faster, take less space,
and run with lower computation power. When quantizing a neural
network, the weight parameters and activation nodes computations
need to be quantized. This process compresses a small range of
floating-point values into a fixed number of information buckets.

It reduces the requirement to store a range of the same data type
and save bits by saving the range within a smaller range. It is a
trade-off process because it may change model accuracy. Quan-
tization can be performed during training or after the model has
been trained. TensorFlow-Lite quantizes the baseline model in the
example to make it deployable in a mobile device. The model's
accuracy decreases from 96% to 93%, and the model size shrinks
from 99144 bytes to 24112 bytes. Pruning is another method to
reduce the unnecessary nodes and layers in the neural network
to reduce the storage and computational cost. The main focus of
Pruning is to reduce the number of parameters and operations that
have less contribution to the prediction of the neural network. This
process makes the training

Figure 6: Model Quantization

Figure 7: Pruning

faster and uses less storage and computational power. In a limited
hardware situation, this is very crucial. This process may cause a
decrease in the model accuracy and become a trade-off situation
between complexity and performance. The prune_low_magni-
tude() is a TensorFlow Model Optimization packages method that
uses wrappers in a Keras model and prunes it during the training.

Distributed Training & High-Performance Modeling
The model training phase may be simple and fast in research and
prototype development. However, training a real-world model for
production is a tediously time-consuming task. Furthermore, dy-
namic datasets are continuously updated and increase with time.
The model is also becoming more and more complex. The number
of epochs in the model also increases as a result. Because the mod-
el development is highly iterative, spending a tremendous amount
of time in training is not sufficient. Distributed training allows to
speed up the training of a vast and complicated model. Data par-
allelism and model parallelism are the two types of performing
distributed training. In data parallelism, the data is divided into
many partitions and given to many workers. Each worker operates
on a partition and a copy of the model.

Then the model updates are synchronized across the workers. Syn-
chronous training and Asynchronous training are the two ways to
perform distributed training using data parallelism. In synchro-
nized training, each node (worker) trains on its current mini-batch
of the dataset. This method divides the model into partitions and
assigns different accelerators like GPUs and TPUs. However, in
this process, only one accelerator is active during the computa-
tion, making it inefficient because accelerators are essential for
high such high-performance modeling, but they are also expen-
sive. To overcome this issue, GPipe can be used. Gpipe partitions
a model across different accelerators and splits a mini-batch of the
training set into smaller micro-batches. In this way, accelerators
can operate parallel by pipelining the execution process across the
mini-batches.

 Volume 3 | Issue 2 | 206J Robot Auto Res, 2022 www.opastonline.com

Figure 8: Distributed Training

Figure 9: Distributed Training

Model’s Performance Analysis & Identifying Bias
Model debugging and model robustness are essential to under-
standing adversarial attacks on CNN and sensitivity analysis. In
production ML, there needs to be a deeper model's performance
analysis after the development of the model. Model analysis on
individual subsets of the entire dataset is crucial to improve the
model's performance after deployment. This process allows fur-
ther model improvement because the model's performance can
decay due to data changes or concept shifts. Black Box evaluation
and model introspection are the two ways to analyze the model's
performance. In black-box evaluation, the internal structure of the
model is not examined but quantifying the model's performance
through different metrics and losses. Model introspection methods
are used to understand the model's internal structure and improve
efficiency and performance by adjusting and iterating the model's
architecture. TensorFlow's visualization tool TensorBoard is of-
ten used by data scientists and engineers to perform such tasks. A
scalable framework like TensorFlow Model 9. Analysis (TFMA)
is often used to deeply analyze the model's performance. It can be
integrated with the TFX pipeline so that, before deploying a newly
trained or updated version of the model, engineers can perform

deep analysis. This can also examine the model’s performance
against different subsets of the dataset.

Production-Grade Model Serving
Model serving means hosting a machine learning model on-prem-
ises or on the cloud and making the model's functionality available
via API. We need a production infrastructure and process to put an
ML model into production and use it as a service or product. The
process is very similar to a production software deployment and
DevOps principle; best practices apply to production MLOps. It
requires pre-planning from the beginning of the project, or it can
lead to serious issues when deploying. So, the data team and engi-
neers should invest proper time and resources in the deployment
process from the early stage of Model Development.

Model serving means making the trained model available for the
end-user by accessing the server or application. It can be deployed
on the local storage of a mobile or IoT device as an offline ap-
plication or an API-based online application/service. So, Batch
and online are two types of models serving. A production-grade
API has traffic management, access points, pre-processing and
post-processing requests, and monitoring model draft functions.
There are several ML serving tools like TensorFlow Serving, Am-
azon SageMaker, Amazon's ML API, IBM Watson, Google Predic-
tion API, etc., for deploying machine learning models in a secure
environment with scale.

Figure 10: Model Serving

Continuous Performance Evaluation & Monitoring
In an ML pipeline's workflows, model training is performed ei-
ther offline (batch/static learning), where the model is trained on
previously collected data, or online learning, where regularly new
data is collected as a data stream. When a model is trained on stat-
ic data deployed in production, it remains constant until it is re-
trained. As the model encounter real-world data, it becomes stale,
which means model decay. The model trained on steam data can
also face such model decay because of data/feature change or con-
cept shifts. Such a phenomenon needs to be monitored regularly
after deployment to maintain the model's performance in produc-
tion. The below graph represents data change during the national
lockdown (Covid-19, 2020) because a significant amount of online
shopping was increased within a few days. The MIT Technology
Review published an article that showed how our sudden online

 Volume 3 | Issue 2 | 207J Robot Auto Res, 2022 www.opastonline.com

activities change during the pandemic were messed with Artificial
Intelligence models. Production ML models can respond to some
changes, but if the changes are too much different from the data
the model was trained on, the model will treat the input data as
anomalies.

Figure 11: Model Performance Decay

The credit card fraud detection model is the perfect example;
during the 2020 lockdown, the number of online shopping in-
creased sharply. In the meantime, the use of credit cards also in-
creased. That sudden change of data made the AI model behave
strangely, and the system started sending fraud alerts to many cred-
it card users with valid transactions. Sometimes, the change may
not be that significant but still cause model decay. Because of that,
continuous model performance evaluation and data monitoring af-
ter the ML model’s deployment in production are crucial.

Monitoring the machine learning model refers to how the data
team tracks and understands the model's production performance.
Inadequate model monitoring causes incorrect predictions/classi-
fication that can affect the business poorly. Data Skews, Model
Staleness, and Negative Feedback Loops are the issues an ML
model can encounter, and the monitoring system should be able
to detect them. Data skew when the training data is not represen-
tative of the stream/live data. This can happen if the training data
features do not match the features of the live data. Model staleness
may occur if we choose the wrong training data set for the model's
training. A car manufacturing company's sales prediction model
should be trained with regular sales data. If we used the data from
the recession when car sales were abnormally low, then the model
does not serve well during the healthy economic time. Negative
Feedback Loops arise when a model is automatically trained on
collected data. But if the data is corrupted or wrongly formatted,
the overall model will perform very poorly.

Conclusion
Machine Learning Model deployment and MLOps pipeline im-
plementation can be challenging. But understanding the business
problem statement to effectively put an ML in production does not
have to be hard if all stages of the development are appropriately
planned and executed. Each process of development is highly iter-
ative and time-consuming. But still, in the real world, developing

an ML production pipeline that delivers actual business value is
extremely challenging. Around 20-25% of the pipeline can deliv-
er business value. Building a successful production ML pipeline
needs a diverse set of skills, experience, domain knowledge, and
teamwork. Commonly, the first ML pipeline does not meet the
business objectives. But as it is an iterative process, proper plans
and experimentation will always help meet the expected results.
Misalignment between actual business needs and machine learn-
ing objectives, testing & validation issues, and non-generalized
model training is the top reason machine learning models fail in
production. But several tactics can help to make an ML project a
success.

• Dependency on Cloud: ML development is a highly iterative pro-
cess; it needs efficient communication and teamwork. If the team
works locally instead of in the cloud, it will slow the whole devel-
opment process. And it will be harder to implement automation as
well. That's why most ML open-source tools are developed for the
cloud so that testing, training, validation, and model development
become automated and easy to control.

• Leverage a DevOps Approach: A MLOps approach is similar to
the DevOps approach. So, ML teams can follow in DevOps ap-
proach by implementing the continuous integration (CI) and con-
tinuous delivery (CD) model. The ML team can update, change
and iterate any part of the development process.

• Investment in monitoring and observability: Healthy data is nec-
essary for a Machine learning model. Without proper clean data
and working pipelines, models can perform well. Data changes
can occur in the real-world ML scenario and can cause model de-
cay. So, continuous monitoring is the key to a successful produc-
tion machine learning model.

Machine Learning models do not work like magic, but it is pow-
erful enough to change any industry. So, with proper strategy, pro-
cesses, planning, and technology, a production machine learning
model can deliver competitive advantage and fuel growth across
every industry.

Funding Acknowledgements
This research did not receive any specific grants from any funding
agencies or organizations or company in the public, commercial or
not-for-profit sectors.

Statements and Declarations
I wish to draw the attention of the Editor to the following facts
which may be considered as potential conflicts of interest and to
significant financial contributions to this work. I wish to confirm
that there are no known conflicts of interest associated with this
publication and there has been no significant financial support for
this work that could have influenced its outcome.

I confirm that the manuscript has been read and approved by me
(only authors) and that there are no other persons who satisfied the
criteria for authorship but are not listed.

 Volume 3 | Issue 2 | 208J Robot Auto Res, 2022 www.opastonline.com

Copyright: ©2022: Pritom Bhowmik. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

I also confirm that I have given due consideration to the protection
of intellectual property associated with this work and that there are
no impediments to publication, including the timing of publica-
tion, with respect to intellectual property. In so doing we confirm
that I have followed the regulations of our institutions concerning
intellectual property.

I confirm that I have provided a current, correct email address
which is accessible by the me.

Competing Interests Statement
There is no potential competing interest to report

References
1. https://www.jeremyjordan.me/evaluating-a-machine-learn-

ing-model/
2. https://www.analyticsvidhya.com/blog/2021/05/ma-

chine-learning-model-evaluation/
3. https://madewithml.com/courses/mlops/pipelines/
4. Derakhshan, B., Mahdiraji, A. R., Rabl, T., & Markl, V.

(2019). Continuous Deployment of Machine Learning Pipe-
lines. In EDBT (pp. 397-408).

5. Xin, D., Miao, H., Parameswaran, A., & Polyzotis, N. (2021).
Production machine learning pipelines: Empirical analysis
and optimization opportunities. In Proceedings of the 2021
International Conference on Management of Data (pp. 2639-
2652).

6. Sarajlić, A., Malod-Dognin, N., Yaveroğlu, Ö. N., & Pržulj,
N. (2016). Graphlet-based characterization of directed net-
works. Scientific reports, 6(1), 1-14.

7. Liu, X., Chen, Y. Z. J., Lui, J. C., & Avrachenkov, K. (2020).
Learning to count: A deep learning framework for graphlet
count estimation. Network Science, 9(S1), S23-S60.

8. https://www.mathworks.com/help/deeplearning/quantization.
html?searchHighlight=C&s_tid=doc_srchtitle

9. Software Engineering for Machine Learning: A Case Study
(2019) Amershi et al. (Microsoft)

10. A Machine Learning Pipeline to Optimally Utilize Limited
Samples in Predictive Modeling

11. TensorFlow-Serving: Flexible, High-Performance ML Serv-
ing

12. Jin, W. (2020). Research on machine learning and its algo-
rithms and development. In Journal of Physics: Conference
Series (Vol. 1544, No. 1, p. 012003). IOP Publishing.

13. J. Schoenberg. Metric spaces and completely monotone func-
tions. The Annals of Mathematics, 39(4):811, 1938

14. https://www.mathworks.com/help/deeplearning/ug/quantiza-
tion-of-deep-neural-networks.html

15. https://www.mathworks.com/help/deeplearning/ug/quantiza-
tion-workflow-prerequisites.html

16. https://www.mathworks.com/help/gpucoder/ug/code-genera-
tion-for-quantized-deep-learning-networks.html

https://www.semanticscholar.org/paper/Metric-spaces-and-completely-monotone-functions-Schoenberg/026c5719b82bda94d69022b2fac307ec0aa2e850
https://www.researchgate.net/publication/341875705_Research_on_Machine_Learning_and_Its_Algorithms_and_Development
https://www.researchgate.net/publication/321902626_TensorFlow-Serving_Flexible_High-Performance_ML_Serving
https://www.semanticscholar.org/paper/A-Machine-Learning-Pipeline-to-Optimally-Utilize-in-Samad-Witherow/8ee7bbe1d922305ce247c77eb2ca2ee1e6f3b62c
https://www.researchgate.net/publication/335361817_Software_Engineering_for_Machine_Learning_A_Case_Study
https://www.researchgate.net/publication/344317039_Learning_to_count_A_deep_learning_framework_for_graphlet_count_estimation
https://pubmed.ncbi.nlm.nih.gov/27734973/
https://www.researchgate.net/publication/350512654_Production_Machine_Learning_Pipelines_Empirical_Analysis_and_Optimization_Opportunities
https://www.researchgate.net/publication/332414216_Continuous_Deployment_of_Machine_Learning_Pipelines

