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Abstract 
Newton’s model of viscosity in liquids employs a fixed plate and a parallel moving plate separated by a gap. The moving 
plate takes a conceptual liquid layer along with it and the stationary plate holds a similar liquid layer in place. This 
creates shear between the layers, and the differences in speeds between layers was assumed to be an arithmetic pro-
gression to zero. Experimental results and logic indicate: no zero velocity in such a system, relative speeds are actually 
in geometric progression, and that therefore Newton’s model is incorrect.

Dimensional analyses of a rotating cylinder and a moving plate in viscous liquids both give the dimensions of viscosity 
as M/(L2.T), whereas the currently accepted unit of viscosity, the poise, has dimensions M/(L.T). Therefore, the poise 
has been incorrectly assigned to viscosity, and existing formulas lack predictive power.

Introduction
When I started developing an improved type of rotary viscom-
eter, I did not know it would lead me to investigate Isaac New-
ton’s work on the subject of viscosity. Rotary viscometers gen-
erally rotate a disc or cylinders immersed in the viscous medium 
being studied, and compare the torque (twisting force) with that 
obtained using viscous oil standardised by capillary viscometry. 
Current models produce results that are quite dependent on the 
exact geometry of each instrument. Since I wanted “clean” vis-
cosimetric and rheological results that were independent of the 
geometry of the viscometer, I designed a variant on the general 
pattern. The work led me to construct and prove an alternative 
model to Newton’s, and to establish and prove a different rela-
tionship between the torque in a cylindrical viscometer and its 
radius.

Background
To produce results, my design needed the mathematics behind 
it that would be used to convert torque and the dimensions and 
speed of the instrument into the preferred unit of viscosity, the 
centipoise or milli-Pascal-second. It was apparent that the torque 
must be directly proportional to the area of the cylinder (which 
is effectively topless and bottomless in my design), the speed of 
rotation, the radius of the cylinder (or a function thereof) and the 
viscosity of the liquid. Viscosity should be calculable from those 
measurements, yet no online search revealed a formula. Also, 
a very thorough scan of the literature indicated that the size of 
the container was believed to determine the shear pattern set up 
by a rotating cylinder in a viscous liquid, and therefore control 
torque. It became obvious that container perimeter effects could 
not contribute anything of importance to the torque on the cyl-

inder, since the shear force at the perimeter was so small as to 
be negligible if the container was large enough. These consider-
ations bring into doubt the models used to develop the equations 
of viscosity.

To resolve these, I carried out a Dimensional Analysis of my sys-
tem, which simulates a topless and bottomless cylinder rotating 
in a viscous liquid and being driven by a contact-less drive shaft 
(see Figure 1). Dimensional Analysis is a method to verify a for-
mula, and describes a system in dimensions of Length (L), Mass 
(M) and Time (T). Constants that apply as factors to a formula 
are dimensionless, essentially having a value of 1. Dimensions 
carry through a calculation and can be multiplied, divided and 
raised to powers, but different dimensions cannot be added or 
subtracted.

Published dimensions for dynamic viscosity, η or µ, include 
those derived from the Poiseuille equation (and as published on 
the Wiki Books page), and are M/LT. Wikipedia gives force×-
time/area,  (Pascal-seconds) which produces mass×accelera-
tiontime/area,which = M(L÷T2)×T⁄L2  and also gives M/LT.

This is consistent with the units of dynamic viscosity (mPa.s or 
centipoise) as measured by rotating disc or cylinder viscometers 
such as the Brookfield, which are calibrated by standard oil that 
is measured by capillary viscometry as kinematic viscosity (cen-
tistokes) and converted into dynamic via the density. The fol-
lowing analysis, based on my design, obtains a different result.
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Dimensional Analysis (Mass, Length, Time) of Viscosity for 
Rotating Cylinder
Viscometry Based on ab Initio Properties
Consider an ideal cylinder with no top or bottom circular ends, 
with only its outside surface being immersed in a viscous liquid 
having a linear shear/stress relationship (known commonly as 

“Newtonian flow”), and being rotated about its axis by a remote-
ly attached drive shaft, as in the diagram below. The container 
(not drawn to scale) is so large that the liquid’s velocity against 
the walls is negligibly small, and thus contribution to torque 
from the container is negligible.

 
 

This is consistent with the units of dynamic viscosity (mPa.s or centipoise) as measured by rotating 

disc or cylinder viscometers such as the Brookfield, which are calibrated by standard oil that is 

measured by capillary viscometry as kinematic viscosity (centistokes) and converted into dynamic 

via the density. The following analysis, based on my design, obtains a different result. 
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Consider an ideal cylinder with no top or bottom circular ends, with only its outside surface being 

immersed in a viscous liquid having a linear shear/stress relationship (known commonly as 

“Newtonian flow”), and being rotated about its axis by a remotely attached drive shaft, as in the 

diagram below. The container (not drawn to scale) is so large that the liquid’s velocity against the 

walls is negligibly small, and thus contribution to torque from the container is negligible. 

 

 Torque, W, is experienced by the drive motor to overcome the 
viscosity of the fluid. The energy the drive motor imparts to the 
system is absorbed by the internal friction of the liquid and con-
verted to heat.

W ∝ area A. (Twice the area, for example, will generate twice 
the torque, for constant cylinder radius.) Also, W ∝ viscosity V 
(conventionally, η or µ.)
Also, W ∝ revolutions per second, R. Twice the rotational speed, 
for example, will generate twice the torque, since the rate of 
shear is doubled. This occurs only with liquids with so-called 
“Newtonian flow”, where the applied force is proportional to 
the rate of shear. Pastes, slurries, dispersions and many polymer 
solutions do not conform to Newtonian flow.

In considering how the radius of the cylinder affects the torque, 
we keep all other parameters the same, especially the area, and 
just vary the radius. So, if we double the radius, we must halve 
the height of the cylinder and double the circumference. Hence, 
the length of liquid moved against the circumference in the same 
time interval also doubles, and hence we double the resistance 
due to the liquid and double the torque. (See the following para-
graph “Why the length of liquid the cylinder surface traverses 
matters” for a full argument supporting this concept.) Also, if we 
double the radius, we double the length parameter of the torque 
(torque is length times force) and hence double the torque a sec-
ond time, each doubling having a different source.

Therefore W ∝ square of the radius of the cylinder, Z2 (see ex-
perimental proof of this below).

The constants of proportionality can be combined into one, J. 
(In deriving a unit for viscosity, J becomes 1 and the S.I. Units 
of Mass (kg), Length (metre) and Time (seconds) are substituted 
into Equation 1 below to obtain the viscosity.)

The dimensions of each of W, J, A, Z and R can now be com-
bined to obtain the dimensions for V.

∴ W = J.A.V.R.Z2 , therefore  ……. Equation 1

Torque, W, is defined as force F × length L, the same as for 
leverage.
∴ W = F.L but since force F = mass × acceleration, W = mass × 
acceleration × length.
The dimensions of acceleration are      

∴ the dimensions of torque, W, are  

J is a constant and therefore dimensionless.

A is area and its dimensions are L2.

R is rotation speed which is revolutions per second and its di-
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This is significantly different from the currently accepted result M/(L.T), so it required a second 

analysis. 

 

“Unwrapping” a Cylinder into a Plane 

As a check on this derivation, consider as a thought experiment “unwrapping” the cylinder into a 

solid rectangle of sides 2π.Z by l, thus maintaining the area A, which must remain single-surfaced in 

this imaginary model to maintain the area in contact with the liquid. Further consider making the 

rectangle infinitesimally thin and attaching two infinitesimally thin wires to two adjacent corners, 

then dragging the rectangle parallel to its plane through the viscous liquid in a very large container. 

Further consider the force necessary to do this, against the viscous drag of the liquid, which is, due to 

energy loss, not transmitted fully to the edge of the container but remains fairly local to the rectangle. 

It will not matter to this force whether the rectangle is dragged by its long side or its short, since it is 

only area that contacts the liquid. 

 

Let F = force 

Let x = velocity of rectangle. All other parameters are as previous example. 
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mension is T-1  or 1/T.
Z is a length with dimensions L. ∴Z2  has dimensions L2.
Dimensions can be multiplied together to give the overall value.

∴ dimensions for viscosity  

This is significantly different from the currently accepted result 
M/(L.T), so it required a second analysis.

“Unwrapping” a Cylinder into a Plane
As a check on this derivation, consider as a thought experiment 
“unwrapping” the cylinder into a solid rectangle of sides 2π.Z 
by l, thus maintaining the area A, which must remain single-sur-
faced in this imaginary model to maintain the area in contact 
with the liquid. Further consider making the rectangle infinites-
imally thin and attaching two infinitesimally thin wires to two 
adjacent corners, then dragging the rectangle parallel to its plane 
through the viscous liquid in a very large container. Further con-
sider the force necessary to do this, against the viscous drag of 
the liquid, which is, due to energy loss, not transmitted fully to 
the edge of the container but remains fairly local to the rectangle. 
It will not matter to this force whether the rectangle is dragged 
by its long side or its short, since it is only area that contacts the 
liquid.

Let F = force
Let x = velocity of rectangle. All other parameters are as previ-
ous example.
 

The dimensions of F (= mass × acceleration) are

The dimensions of x (= length ÷ time) are 

                                                                                   which is 
the same as obtained for the cylinder. This verifies the analysis, 
and suggests the current dimensions for viscosity of M/(L.T) as 
incorrect. It requires experimental proof, which follows.

Possible Objections to the Unwrapped Cylinder Model
An academic in the subject claims that edge effects are dominant 
in such a model, which I refute. Consider then, changing the 
shape of the unwrapped plane into a circular disc. This is the 
shape with the minimum edge while keeping the area the same. 
While, it may be argued, there may still be edge (circumferential) 
effects, we should be able to remove these mathematically by 
measuring them experimentally and then increasing the size of 
the disc. As the radius of the circle increases, the circumference 
maintains a linear relationship with the radius; that is 2π.r. But 
the area increases according to π.r2, so circumferential effects 
will reduce as the circle radius increases, and we can entirely 
eliminate their contribution to measured force via a mathemat-
ical treatment (which is outside the scope of this article) or by 
simply increasing the area sufficiently. This will leave the shear 

rate as proportional to the area of the rectangle or disc, removing 
any edge contribution.

Why the Length of Liquid the Cylinder Surface Traverses Mat-
ters?
Going back to the unwrapped cylinder in the form of a rectan-
gle, it will have a length of 2π.r and a height of h, the height 
of the cylinder, and move through the liquid in the direction of 
the length. As it derives from a rotating cylinder, it must move 
through its length in the time the cylinder took to rotate once, a 
distance of 2π.r . If we now keep the rectangular area the same 
by halving (say) its height and doubling that length, while still 
moving in the direction of that length over the same time period 
to correspond with constant rotational period, the rectangle must 
move twice as fast. This is why there are two contributions to 
torque from the radius, and therefore proportionality to radius 
squared.

Experimental Proof of the Relationship Between Torque and 
Radius (or diameter) of Cylinder
Pure cylindrical data cannot be obtained from current cylinder 
viscometers because the circular top and bottom of those cylin-
ders produces torque in a viscous liquid. In a liquid of “Newto-
nian” viscosity, this torque contributes to the overall torque in a 
predictable and acceptable way, because the different shear rates 
at the centre and perimeter of these circular areas produce torque 
that is entirely proportional to the viscosity, and just add in to the 
overall torque that is calibrated into viscosity when the liquid’s 
viscosity is measured by tube viscometry. It is only when mea-
suring liquids with non-Newtonian flow that the different shear 
rates near the centre of the circles and at the perimeter contribute 
in an unpredictable way to the overall torque. This is because the 
torque is not linear with respect to shear rate for non-Newtonian 
liquids. Either “shear thinning” takes place when such a liquid 
(for example, a polymer solution) is sheared faster than before 
with a rotating spindle, or “dilatency” occurs, the latter being a 
thickening with faster shear such as experienced by cornstarch 
dispersions. Since I wanted to use purely cylindrical torque data 
to actually show that a liquid was non-Newtonian, and to derive 
a torque/shear rate equation from that data, I needed to remove 
the effect of the circles.

To achieve this requires a simple partial immersion of the cyl-
inder in the liquid, so that some of the cylinder is above the liq-
uid. If the torque readings are taken at the same rotation speed 
and with different lengths of the cylinder immersed, and if those 
lengths can be accurately measured, the constant torque contri-
bution of the circular bottom end can be eliminated graphically. 
I carried this out experimentally using cylindrical wooden dow-
elling rods mounted on the bottom of a disk spindle and attached 
to a dial viscometer. With the bottom of the dowelling cylinder 
resting on the surface of a viscous liquid, and with a pointer 
attached to the viscometer, the height of the cylinder above the 
bench surface can be read off from a vertical rule held alongside. 
When the viscometer is lowered, the cylinder enters the liquid 
and the surface of the liquid rises due to displacement. Thus, the 
actual immersed length of the cylinder can be easily calculated 
from the diameter of the cylinder and internal diameter of the 
vessel, according to the formula:

 
 

The dimensions of acceleration are 2T
L

. 

∴ the dimensions of torque, W, are 2

2

2

....
T

LM
T

LLM
  

J is a constant and therefore dimensionless. 

A is area and its dimensions are 2L . 

R is rotation speed which is revolutions per second and its dimension is 1T  or 1/T. 

Z is a length with dimensions L. ∴Z2  has dimensions L2. 

Dimensions can be multiplied together to give the overall value. 

∴ dimensions for viscosity 
TL

M
TL

TLMLTL
T

LM
ZRA

WV
..

...
.. 224

2
212

2

2

2    

 

This is significantly different from the currently accepted result M/(L.T), so it required a second 
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This verifies the analysis, and suggests the current dimensions for viscosity of M/(L.T) as incorrect. 

It requires experimental proof, which follows. 
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                                         where P2 = immersed length of cylinder, 
P1 = distance of base of cylinder below liquid surface, d = diam-
eter of cylinder, D = internal diameter of vessel:- Equation 2
A non-crystallising aqueous solution of glycerol, sucrose and 
dextrose of viscosity 357.5 centipoise at 17.50C was prepared 
and verified for Newtonian flow. Five wooden cylinders, ap-
propriately weighted to prevent floating, were attached in turn 

to a disk probe of the dial viscometer NDJ-1. These were low-
ered into the solution and rotated at 12 revolutions per minute 
(rpm) while the percentage torque was read off from the dial. 
With thought for the limitations of accuracy of the equipment, 
multiple readings were taken at different immersion depths and 
a straight line plotted of % torque against immersion depth, gen-
erating a tolerable set of data in each case.
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below liquid surface, d = diameter of cylinder, D = internal diameter of vessel:- Equation 2 

A non-crystallising aqueous solution of glycerol, sucrose and dextrose of viscosity 357.5 centipoise 

at 17.5C was prepared and verified for Newtonian flow. Five wooden cylinders, appropriately 

weighted to prevent floating, were attached in turn to a disk probe of the dial viscometer NDJ-1. 

These were lowered into the solution and rotated at 12 revolutions per minute (rpm) while the 

percentage torque was read off from the dial. With thought for the limitations of accuracy of the 

equipment, multiple readings were taken at different immersion depths and a straight line plotted of 

% torque against immersion depth, generating a tolerable set of data in each case. 

Table 1
Side 
scale

1.8325 cm probe 1.627 cm probe 1.4225 cm probe 1.215 cm probe 1.026 cm probe

Start 
height 
18.6 cm

Immer-
sion, 
cm *

% 
torque

Immer-
sion, cm

% 
torque

Immer-
sion, cm

% 
torque

Immer-
sion, cm

% 
torque

Immer-
sion, cm

% 
torque

18 0.619 11.5 0.615 8.5 0.611 5 0.608 3.9 0.606 2.5
17.5 1.135 16.5 1.128 12.2 1.121 7.75 1.115 6 1.111 4
17 1.651 21.5 1.640 16.1 1.631 10.5 1.622 8 1.616 5.3
16.5 2.167 26.4 2.153 19.9 2.140 13.5 2.129 10.2 2.121 6.6
16 2.683 31 2.665 23.5 2.650 16.5 2.636 12.5 2.626 8
15.5 3.199 36 3.178 27.5 3.159 19.9 3.143 14.7 3.131 9.4
15 3.715 41 3.690 31.4 3.669 23.3 3.650 16.5 3.635 10.5
14.5 4.231 46.5 4.203 34.9 4.178 26.5 4.157 19 4.140 12
14 4.747 50.9 4.715 38.5 4.688 29.3 4.664 21 4.645 12.8
13.5 5.263 55.5 5.228 42 5.197 31.9 5.171 23 5.150 14.8
13 5.779 60.1 5.741 45.6 5.707 34.3 5.678 24.6 5.655 16.1
12.5 - - 6.253 49 6.216 36.5 6.184 26.3 6.160 17.4

* see Equation 2
The slope of each line is measured in % torque per cm immer-
sion, and these data were plotted against probe diameter in each 

case, plus an extra point for zero torque at zero diameter. The 
following graph was obtained:

Plot of % torque against diameter of cylinder, cm

y = 7.2209x + 4.2946

y = 5.8167x + 1.3883
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Figure 2

The slope of each line is in % torque per centimetre of immersion, and these were plotted against probe diameter to produce the 
following curve:
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Plot of % torque against diameter of cylinder

y = 3.7834x2 - 0.918x + 0.0113
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Figure 3
While there is a small term in x, this is most probably partly due 
to the cylinders being off-centre and partly to the curve match-
ing, and will be easy to remedy if properly machined cylindrical 
probes were substituted when the experiment is duplicated in an-

other laboratory: a cost which I found necessary to avoid. Never-
theless, most of the contribution to torque is from the square of 
the diameter. The relationship can be visualised better by plot-
ting torque against the square of the diameter directly:

y = 2.827x - 0.098
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Figure 4
2nd verification using industry-standard spindles (Ametek 
Brookfield)
In a similar treatment, the expected torque results for three in-
dustry-standard spindles can be plotted to show the relationship 
of diameter to torque. Brookfield publish data for their spindles 
in the publication “More Solutions to Sticky Problems”, avail-
able online.

Table 2
Take the case of spindle #61 LV, which has a quoted factor of 
×72 at 1 rpm. A 100% torque reading is obtained with a 7200cP 
liquid. Its length is 65.10 mm. If a version of the #66 LV CYL 
spindle with a new length of 65.10 mm is immersed in this liq-
uid, it will produce a lower torque. The appropriate factor for 
the lengthened #66 LV CYL spindle will be 330×53.95÷65.10 
because the new version is longer than the original. The new 
version’s factor is thus 273.48, and the torque reading will be 
7200÷273.48, which is 26.33% on the dial.
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Brookfield spindle description Brookfield factor (to be divided by 
revolutions per minute)

Actual immersion length of 
spindle, mm

Diameter, mm 
(converted from 
inches in publica-
tion)

#61 LV 72 65.10 18.842
#66 LV CYL 330 53.950 10.254
#64 LV 6000 31.1404 3.175
#65 LV 12 × 103 13.6144 3.175
#7 RV/H 3750 50.368 3.175

Similarly, the #7 RV/H spindle with a quoted factor of 3750 and length of 50.368 mm will obtain a factor of 2901.38 for a 65.10 
mm device and produce a dial reading of 7200÷2901.38 = 2.4816%. When these data, with the (0,0) point included are plotted in 
Excel the following graph is obtained:

Brookfield spindles at 1 rpm in 7200 cP liquid

y = 0.3151x2 - 0.6644x + 0.5158
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Since the x2 values are much higher than in the previous ex-
ample, the contribution of the x2 term is much higher than the 
x term, where the latter may arise from the shaft and circular 
bases and tops of the cylinders. Nevertheless, there is a clear fit 
between the squares of the diameters and the torque.

Newton’s Model for Viscosity
I decided to look again at Newton’s original model, to which 
there are many published references:

In this model, the top surface moves to the right, carrying the 
viscous liquid with it. The velocity of the liquid was assumed by 

Newton to decrease to zero at the bottom surface via a series of 
conceptual “steps” in an arithmetic progression, and all current 
calculations of viscosity are based on this model; most impor-
tantly, the physical dimensions.

A position of zero velocity is exactly what is described in many 
diagrams of liquid flows (see “No Slip Condition in Wikipedia).

Newton’s model looks suspiciously like the model for an elas-
tic solid, stretching to the right and remaining anchored to the 
lower surface. In an elastic solid, there are lines of atoms joining 
the top and bottom surfaces, and they stay present even after 
movement. This is not true for an element of liquid, where there 
are no lines of atoms linking the layers. Also, according to my 
understanding, there is no point of zero movement but there is 
just the transmission of less and less movement the further away 
from the moving surface and into the bulk of the liquid one gets.

Looking at Newton’s model another way, one can understand 
that in reality, it requires a rectangular box with transparent 
sides:
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Figure 7
The box contains a viscous liquid, designated by the thin lines. If the top surface of the box is pushed to the right, the following 
shape is obtained:

Figure 8

With this container, all of the liquid is pushed to the right, and 
flows that way. But for the liquid to move, movement of the 
sides of the box is required in order to push the liquid. In New-
ton’s model, there are no sides to his box, and therefore the liq-
uid cannot move the way he intended, in this linear fashion, even 
as a very small “element” of a larger system. The liquid can only 
move when the top of the box transmits some motion to the layer 
of liquid underneath, then that layer transmits movement to the 
layer beneath it, and so on.

A proposed New Model
What must be the case around a rotating cylinder in a “New-
tonian” liquid is that a series of conceptual concentric, infini-
tesimally thin rotating cylinders of liquid are present, with the 
rotational speed of each being in a geometric series as we get 
further away from the driving cylinder. (See example below.)

Figure 9

In this thought experiment, each notional cylinder must impart 
exactly the same relative motion at a ratio of 0.5 to its neighbour, 
or whatever fraction pertains to the substance in question. Clear-
ly, a thin liquid will experience a fraction approaching unity, and 
the velocity of the cylinders will gradually diminish the further 
away from the driving cylinder one gets. In this case, the liquid 
will move due to its own kinetic energy, resulting from its mass 
and velocity. (It should be noted that when measuring low vis-
cosity liquids, a much larger container is needed to avoid drag of 
the liquid against the container’s inner wall, because much less 
energy is being absorbed and velocity will be higher at the wall, 
resulting in extra torque at the spindle.)

A liquid with high viscosity will experience a low fraction, so 
that the velocities drop quickly and kinetic energy is reduced. A 
material with a non-Newtonian flow behaviour will set up con-
ceptual concentric cylinders where the velocity of each cylinder 
will not decrease according to a geometric series but by some 
other function that can go to zero.

Published work on Rotating Cylinders
G.I. Taylor F.R.S studied liquid flow between cylinders and 
published in Philosophical Transactions of the Royal Society of 
London, Series A, Vol.223 Isue 605-615 VIII in 1922 in an article 
entitled “Stability of a Viscous Liquid contained between Two 
Rotating Cylinders”, but this study was concerned with the onset 
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of instability of flow. The same subject was later worked on by 
Katherine J. Asztalos and Jorge Pulpeiro Gonzalez in a piece en-
titled “Stability Analysis of Taylor-Couette flow, May 5th 2017, 
but there was no experimental work described, just mathemati-
cal analysis. My geometric series model required testing in the 
following experiment:

Experiment to Find the Velocities of Concentric Circles in A 
Viscous Liquid Driven by A Rotating Cylinder
The following apparatus was constructed:

The dimensions of the apparatus are as follows:
Cylindrical tank height = 10.9 cm internal. PMMA (clear acryl-
ic).
Internal diameter of tank = 10.4 cm.
Float = 4.8 cm, made of wood and weighted at bottom, to float 
vertically.
Cylindrical probe diameter = 1.86cm.
Viscometer is a Chinese-made NDJ-1, capable of 6, 12, 30 and 
60 rpm, and was checked for accuracy of speed.

Composition of Viscous, Non-Crystallising, Liquid
Glycerol  360g
Sucrose  210g
Dextrose  290g
Water   181.75g
Total in container 1041.75g. The composition is heated to clarity 
with stirring, cooled, and water loss replaced. Viscosity = 439cP 
at 15.7ºC. It is still somewhat hygroscopic.

Method
The objective of the method is to measure the velocities of a 
stirred liquid across the space between the driving cylinder and 
the wall of the vessel. A float is placed in various measured posi-
tions relative to the centre, and its time for one revolution mea-
sured. The viscometer probe is lowered into the liquid so that 
the top of the probe is just below the surface of the liquid. This 
can be verified by viewing a straight, vertical object by reflec-

tion from the surface, where any meniscus can be easily seen. 
The objective is that no strong meniscus further out than about 
1cm is obtained when the probe is in position. Floats will rise 
into an elevated surface, according to the so-called “Cheerios 
Effect” as described by Dominic Vella and L. Mahadevan, arX-
iv:cond-mat/0411688v3, 25/6/2007. Since that surface is sloping 
in a meniscus, any floating object will also move towards the 
object generating the meniscus.

The cylindrical probe was centred in the cylindrical vessel by 
checking the distance of the probe from the vessel wall using 
dividers, and moving the viscometer until all distances equal. 
A pointer was attached radially to the top of the vessel, and the 
time for one revolution recorded for each position of the float.

In the current set-up, the viscometer is run at 6 revolutions per 
minute (rpm). The float is initially placed as near as possible to 
the centre and the distance measured. The motor is run, with 
the viscometer disc locked and the spring ineffective, and the 
distance of the float from the probe is measured with dividers 
after one complete revolution, to an accuracy of 0.5mm. This act 
is carried out after moving the float outwards for each position. 
The distance from the centre = distance from viscometer probe 
+ ½ diameter of probe. The effect of centripetal force on the float 
as it was moved around in a circle was found to be negligible. 
The following results were obtained:
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Table 3

Distance 
from cen-
tre, cm

Time (t), 
seconds

Rpm 
(=60/t)

Distance 
from cen-
tre, cm

Time (t), 
seconds

Rpm 
(=60/t)

Distance 
from cen-
tre, cm

Time (t), 
seconds

Rpm 
(=60/t)

1.38 24.91 2.4087 2.38 79.16 0.7580 3.48 221.76 0.2706
1.53 32.83 1.8276 2.58 102.15 0.5874 3.58 282.28 0.2126
1.83 41.78 1.4361 2.78 123.95 0.4841 3.93 456.05 0.1316
2.03 54.85 1.0939 2.93 137.51 0.4363
2.18 70.32 0.8532 3.08 152.29 0.3940

When plotted in Excel, the following graph was obtained:

Rpm versus distance from centre, 1 revolution only
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Figure 11

The points follow an exponential curve quite closely, and it cor-
responds to a geometric series of value decay over distance, with 
a common constant of decay per unit distance.

This can be seen in a better presentation using a logarithmic 
scale for rpm, when it can be compared to a decay curve with a 
factor of approximately 0.35 per centimetre of distance:

Rpm versus distance from centre, 1 revolution only

y = 9.7598e-1.0692x
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Figure 12
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Rpm versus distance from centre, 1 revolution only
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Figure 13

It is interesting to note that when these lines are extended back-
wards to 0.93 = the radius of the driving cylinder, (by using the 
Excel equations), the calculated rpm is only 3.611: rather low-
er than the rotation speed of 6 rpm for the cylinder. This does 
indicate slip between the cylinder, a highly polished stainless 
steel with a high surface energy, and the liquid, which also has 
a high surface tension. It will be interesting to test mineral oils 
and viscous liquids such as polyisobutylenes, which will have 
lower surface tension and should wet out a metal surface more 
energetically. These further improvements are outside the scope 
of this thesis.

Also, when extending the lines to reach the wall of the vessel, 
5.20cm from the centre, the radial velocity = 0.03757 rpm, which 
calculates to 0.2046 mm/sec at the wall. This is lower than the 
observed drainage time of the syrup from the PMMA wall under 
the small force of gravity.

Conclusion
The currently accepted model for movement of liquid next to a 
surface states that the decay in movement with distance takes 
place along an arithmetic series, according to the doctrine set 
up by Newton and his model (discussed previously). It has been 
shown elsewhere in ordinary viscometry using liquids flowing 
under their own weight, that it is difficult to demonstrate any 
slip. Therefore, there was established a “No Slip principle” (see 
Wikipedia entry). Therefore, the velocity of the liquid has been 
assumed to be the same as that of the driving surface and zero 
at the stationary surface, the wall of the vessel. The work here 
described disproves the currently held views on both slip and the 
decay of flow with distance.

Notes on the Concentric Cylinder Model
The conceptual concentric cylinder model is simplified here. For 
a fully immersed cylinder, the set of concentric cylinders will 
also be immersed and there will be static liquid above and below 
them, impinging on their freedom to rotate. These static layers 
will, of course, begin to rotate in their turn, will consume energy 

and contribute to torque. (A delay in a stable viscometer reading 
is often seen at the start of a test, which corresponds with the 
concentric cylinders of liquid and the top and bottom circles of 
liquid reaching equilibrium velocity.)

These energetic effects are downstream from the driving force, 
so do not affect the model, all downstream energy being ab-
sorbed by the liquid. My current model does rely on fairly vis-
cous liquids, where all effects take place within the timescales 
of the experiment. Low viscosity liquids (e.g. water) can sustain 
rapid movements and vortices containing kinetic energy, which 
more viscous liquids cannot sustain.

Poiseuille’s own derivation relating to liquid passing through a 
capillary tube also suffers from an assumption of arithmetic se-
ries in the laminar flows between the centre of the tube and the 
wall. Here, the force driving the fluid down is pressure from the 
column of liquid. The current belief is that there is zero liquid ve-
locity at the tube wall, in accordance with the “no slip” principle 
(see “No slip” in Wikipedia). Anyone who has ever carried out a 
titration in a burette knows that there is no appreciable delay in 
the liquid at the tube wall descending, although there may well 
be a layer of liquid a few molecules thick remaining attached to 
the wall. A velocity approaching zero at the wall suggests a drain 
time approaching infinity. Therefore, the velocity cannot be zero 
at the tube wall and the effect of meniscus pressure must be con-
sidered. (I speculate that the velocity of liquid at the tube wall is 
a function of its viscosity, the surface energy of the wall material 
and the surface tension of the liquid.) It would be preferable, for 
capillary studies of viscosity, to derive a formula based on the 
assumption that the shear rates also follow a geometric series, 
rather than the arithmetic series that has been used to create the 
original formula, to obtain the correct dimensions. Then, results 
from capillary viscometry can be used for calibration in rotating 
cylinder viscometry by a mathematical treatment only. To study 
this properly, the surface tension of the liquid and the surface 
energy of the capillary tube (normally specially cleaned glass) 
must be incorporated into the equations.
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Conclusions
1. Study of a rotating cylinder in a viscous liquid has shown 

that container size cannot be an issue or be part of the for-
mula for calculation of torque in large volumes of liquid, 
(although close-fitting concentric cylinders with small 
quantities of liquid have been useful in the study of liquid 
flow).

2. No formula previously existed for calculating the force re-
quired to move a thin rectangle through a viscous liquid at a 
known speed and parallel to its plane. Thus, the model phys-
icists have relied on since the beginning lacks the predictive 
ability that should be available, given known parameters.

3. A mathematical study of the pattern of shear forces based 
on geometric progressions is needed for rotational viscome-

try. This must incorporate values for the surface energies of 
the liquids and solids involved, since the materials used to 
make viscometer probes and containers are likely to affect 
the results.

4. The currently accepted dimensions of viscosity are in error. 
Liquids used as standards in the industry can be re-mea-
sured using the pure cylinder viscometry here.

5. A new unit for viscosity should be created, and given a 
name. My suggestion is skel, being derived from vi(sk)osity 
and Bel, the unit of sound intensity. A national competition 
to name the unit would generate interest.

6. Work is needed to reproduce the experiments herein under 
more controlled conditions than I could provide.
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