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Introduction
Microorganisms, including yeasts and bacteria, have long been studied 
as alternative sources of oils and fats [1, 2]. Microorganisms synthesize 
lipids as a part of their metabolism, and as a source of energy. Some 
species have been reported to accumulate more than 20% of their dry 
cell mass in the form of lipids, and have been classified as “oleaginous” 
microorganisms [3]. Moreover, some oleaginous yeast species are 
particularly promising in this respect, as they can accumulate more 
than 70% of their dry cell weight as lipids [3]. In addition to this 
considerable capacity for lipid accumulation, oleaginous yeasts present 
various fatty acid profiles. In particular, they synthesize valuable 
polyunsaturated fatty acids, and are, therefore, a target of choice for 
potential applications as a renewable raw material for energetic and 
chemical production or as nutritional supplements. The analysis of the 
international state of the art revealed that oleaginous microorganisms 
have been studied over decades.

Yarrowia lipolytica 
Is one of the most widely studied “nonconventional” oleaginous 
yeast species [4, 5]. It has been isolated from various food-related 
environments (e.g. cheese, sausage), but also from sewage, soils 
and oil fields [6]. Its classification by the American food and drug 
administration as “Generally Recognized as Safe” (GRAS) paved the 
way for the development of various biotechnological applications, 
including (i) heterologous protein production, (ii) organic acids 
production and (iii) single-cell oil productions from agro industrial 
by-products or wastes [7-9]. Under specific growth conditions, Y. 
lipolytica accumulates large amounts of lipid, sometimes accounting 
for more than 50% of its dry cell weight [10]. One of the major 
advantages of this yeast is its ability to use hydrophobic substrates 
(e.g. alkanes, oils, fatty acids...) efficiently as a sole carbon source 
[6, 11]. Y. lipolytica cells accumulate large amounts of lipids on these 
substrates, using specialized protrusions formed on their cell surface 
to facilitate the uptake of hydrophobic compounds [12]. These 
characteristics, together with the availability of the complete genome 
sequence, render Y. lipolytica a model of choice for investigations 
of lipid accumulation in oleaginous yeast species. Various studies 
have already made use of the genome sequence to decipher aspects 
of lipid metabolism in Y. lipolytica, and some of the genes involved 
in the bioconversion, synthesis and mobilization of lipids have been 

described [13]

Rhodotorula glutinis
Is another relevant microorganism for lipid accumulation studies, as 
it is able to accumulate up to 70% lipid (w/w) of dry cell mass. The 
lipids accumulated are mainly triacylglycerol (TAG) with fatty acids 
having aliphatic tails of 16–18 carbons, saturated and unsaturated 
(up to 2 unsaturations). R. glutinis is able to metabolize xylose, 
glucose and glycerol [14-16]. However, few experiments were 
done in bioreactors with co-substrates, under perfectly controlled 
conditions to quantify and manage yeast metabolism [17]. 

Streptomyces lividans
A filamentous soil bacteria well known for its ability to produce 
antibiotics, has the natural ability to degrade plant polymers, 
including lignocellulose, as well as to accumulate large reserves 
of Triacylglycerols (over 25% of its dry weight) when grown in a 
medium with a high C/N ratio and P limitation [18, 19]. However, 
the genetic basis of these abilities remains to be established and very 
few works in the world have been published on these topics [20-22].

Lipid accumulation bioprocess
Lipid accumulation is induced by nutrient limitation or deficiency 
with a carbon excess [23, 3]. The carbon to nitrogen ratio C/N is 
a key parameter to monitor fatty acid accumulation and profile 
with an optimum value depending on the strain. For higher values, 
nutritional deficiency becomes lethal. Fatty acid composition is 
also dependent on culture temperature, as the degree of saturation 
generally decreases with decreasing temperature in order to maintain 
the cell membrane integrity [24]. Most of the processes described 
in previous publications relate to batch and fed batch cultures [25-
27]. In batch cultures, minerals and carbon substrates are initially 
mixed in the bioreactor, with a high initial C/N ratio. As nutrients are 
consumed from the start of culture, C/N ratio continually increases 
and lipid production occurs [28]. Nevertheless, in batch mode, 
by-product production led to decreasing carbon conversion yield 
into lipids. In fed batch culture, nitrogen and carbon flows are 
monitored to monitor specific growth and lipid production rates 
with minimization of by-product production to perform the highest 
performances [29]. 
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The challenges
High importance is given in the substrate choice to ensure microbial 
and process requirements, economic and environmental criteria 
as cheap and sustainable; carbohydrate substrate resources from 
industrial by-products (from starch industry or sugar refinery, 
biodiesel production industry, and food industries), lignocellulosic 
substrates, CO2 and its derivatives within a recycling by-product 
strategy are under consideration. Microorganisms have the best 
natural characteristics to convert a large range of renewable carbon 
substrates into lipids. Promising raw materials are lignocellulosic 
resources: lipids production from lignocellulose sources requires 
enzymatic hydrolysis of cellulose and hemicellulose (respectively 
by cellulases and hemicellulases) to release sugars (saccharification) 
that can subsequently be fermented by yeasts or bacteria to lipids. 
To be economically and environmentally viable on an industrial 
scale, this requires operating at high dry mass to achieve sufficiently 
high cellulose or hemicellulose levels. However, high substrate 
concentration in the form of fibrous, solid materials poses two 
principal problems that need to be investigated: (1) the increased 
concentrations of potential inhibitors hamper the performance of 
yeast and enzymes and (2) high viscosity results in more power 
consumption in the fermenter and lowered mixing and heat 
transfer efficiency [29-32]. Moreover, in order to reduce the cost 
of the conversion of lignocellulose to lipids, biomass-to-products 
conversion in one step could be of major interest: this strategy 
called an integrated or consolidated bioprocess strategy is highly 
attractive [33-36].
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