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Abstract

Background: High throughput proteomic studies are extremely important in investigating reprogramming of gene
expression in plants grown under environmental stress. Though there are plenty of evidences of salt inducible proteins
characterized through different proteomic investigations in rice, but scant attentions are paid in identifying salt-re-
sponsive proteomes in rice that are involved in redox regulation necessary for combating oxidative stress induced
by salinity, and hence is the objective of the present investigation.

Results: Imposition of post-imbibitional salinity stress (PISS) to the experimental rice cultivars differing in sensi-
tivity towards salinity (Oryza sativa L., Cultivars Patnai and IR29) in general revealed strong correlation between
the parameters of oxidative damages (lipid peroxidation, protein oxidation) and redox status (endogenous level of
total ROS, H202, and total radical scavenging properties). Cultivar Patnai with better redox-regulatory attributes
at metabolic interface under PISS, exhibited better germination phenotypes (T50 value of germination). The level
free quantitative shotgun proteomic analysis through LC-MS/MS identified a number of salinity-responsive proteins,
whose abundance changes significantly in response to PISS, particularly for the redox competent and tolerant germ-
plasm Patnai. The greater abundance of expressed proteins is associated with the biological, cellular and molecular
processes for the tolerant germplasm Patnai grown under PISS in contrast to its counterpart IR29. Comparative
GO analysis of separated proteins revealed an abundance of expressed proteins involved in the regulation of redox
homeostasis, like ascorbate-glutathione cycle, hydrogen peroxide metabolic process, hydrogen peroxide —responsive
proteins, cellular redox homeostasis, hydrogen peroxide signalling proteins efc.

Conclusion: Comparative proteomic investigation through LC-MS/MS identified a number of salinity-responsive pro-
teins whose abundance changes significantly under PISS, particularly for the tolerant rice cultivar Patnai, confirming
the role of redox-regulatory proteins in redox—regulation at metabolic interface necessary for salinity tolerance.

Keywords: Comparative Proteomics, Salinity Stress, LC- MS/MS, Redox Regulatory Proteins, Gene Ontology

Background

Salinity stress is one of the most important adverse environmen-
tal constraints that has significant negative impact on plant per-
formance, limiting the distribution and productivity of crops and
thus reducing yield potential [1- 3]. Plants subjected to salinity
stress face significant osmotic stress, ionic stress, nutrient deficien-
cy and oxidative threat [4, 5] and evolved diverse strategies like

exclusion and compartmentalization of toxic ions, accumulation
of compatible cell cytosolutes and osmolytes, reprogramming of
energy and photosynthetic metabolism, hormonal functioning and
restoration of redox homeostasis to withstand this environmental
constraint that possess a severe threat to plant survival. Rice is the
third highest globally produced crop with worldwide production
of more than 700 million tonnes from 120 countries, major being
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China, Africa and India with approximately 158 million hectares
dedicated to its production [6]. It accounts for the fairly significant
portion of staple diet in Asian countries, particularly rural areas.
Salinity also possesses a threat to rice, reduces its yield and pro-
duction [7-12].

Proteomics emerged as an important technology in the field of
experimental plant science, helping us to unfold the mechanistic
aspect of stress responses of plants. In fact, in the post-genomic
era techniques associated with proteomic studies have been ex-
plored widely in studying altered protein profiles associated with
environmental stress. Several recent works suggest the significant
roles played by salt inducible proteomes in the complex events of
salt response and tolerance of the crop. [13-15]. Literature survey
revealed characterization of more than 2100 salinity induced pro-
teins in 34 species in unicells including the cereals crop like rice.
[16-19]. The proteomic data gathered so far helped us to unfold
the diverse strategies that plants adopt for reprogramming their
physiology necessary for combating salt stress.

Moreover, for the identification of salt-responsive genes, pro-
teomic studies seem to be the most dependable and reproducible
molecular tool to unfold the functionality of salt-responsive genes
having a putative role in salt tolerance. With the increasing inten-
sity of salinity due to the inundation of coastal areas associated
with potential climate change, we need to have molecular breeding
not only for the cultivation of rice in those marginal salt-affected
areas but also to enhance the productivity of rice. The significant-
ly greater number of genes associated with salinity response and
their variable expression patterns associated with severity, further
magnify the challenge of rice production in the salt-affected areas.
These necessitates characterization of salt-responsive inducible
genes based on the most reliable molecular tool, that is compara-
tive proteomics. In the present study, we have explored compara-
tive proteomic investigation with two indica rice cultivars differ-
ing in sensitivity towards NaCl salinity (Oryza sativa L., Cultivars
Patnai, IR29) for characterizing the salt-induced redox proteomes
necessary for salinity tolerance.

Methods

Seeds of each rice cultivars (Oryza sativa L., Cultivar IR29 & Pat-
nai) were washed with distilled water and surface sterilized with
0.2% HgCl, solution for five minutes. The sterilized seeds were
washed thrice in distilled water and imbibed in sterile distilled wa-
ter in darkat 25°+2 °C, for 24h. Thereafter, imbibed seeds were
plated and post-imbibitional salinity (NaCl) stress (PISS) of mag-
nitude 250mM was imposed, for 24 hours at 25 °C with 14-hpho-
toperiod (270 pm m's™!) and 65+2% relative humidity (RH) in
stability chamber cum seed germinator (LAB-X, India). After the
imposition of PISS, germinating seeds were allowed to grow for
next 72 h in environmental chamber (LAB-X, India) maintained
at temperature 25°C + 2°C, RH 65+2% and 14-hour photoperiod
with 270 um m-1 s-1 illumination. These 72-h old PISS of 250mM
NaCl -raised germinating seedlings of both the cultivars were used

for proteomics study for identifying redox regulated proteins that
confers salinity tolerance.

Extraction and Estimation of Thiobarbituric Acid Reac-
tive substances (TBARS)

The membrane lipid peroxidations of tissues were estimated in
terms of malondialdehyde accumulation. To estimate MDA con-
tent, the TBA (thiobarbituric acid) test was performed using the
procedure of Heath and Packer [20].

Extraction and Estimation of Free Carbonyl Content
Oxidative damage to protein was estimated as the content of car-
bonyl groups following the procedures of Jiang and Zhang and
Bhattacharjee [21-22].

Estimation of “Total ROS” generation

For the estimation of total ROS, an in vivo assay was performed
spectroflurometrically following the process of Simontacchi et al
[23].

Estimation of Radical Scavenging Property [DPPH (2,
2/-diphenyl-1-pycryl hydrazyl)|

For determination of DPPH+ free radical scavenging activity, the
process of Mensor et alwas followed [24].

Estimation of H,O, Generation
Hydrogen peroxide was extracted and estimated following the pro-
cedure of MacNevin and Uron [25].

Determination of T, value of Germination

T, Value of germination is done according to the following formula
T,,= the time in hour to reach 50% germination (Rubio-Casal et
al.and Bhattacharjee [26, 27]

Protein Extraction and Protein Assay

For the extraction of protein, the process of Hamzelou et al. was
followed. Seedlings were ground to a fine powder in liquid N2
using a mortar and pestle and the protein was extracted from 50mg
of leaf powder using the trichloroacetic acid- acetone method [28].
Seedling powder was suspended in 1.5 ml of 10% trichloroacetic
acid in acetone, 2% B-mercaptoethanol, vortexed for 30min at 4°C
and incubated at -20°C for 45min. After centrifugation of the ex-
tract, the pellet was collected and washed three times with 100%
ice-cold acetone, followed by centrifugation after each washing
step at 16000rpm for 30min. The protein pellet was lyophilized in
a vacuum centrifuge and resuspended in 3% SDS in 50mM Tris-
HCI (PH- 8.8). Samples were then methanol-chloroform precip-
itated. The protein pellet was suspended in 8M urea in 100mM
Tris-HCI (PH-8.8).

Digestion of Purified Protein in Solution and Peptide Ex-
traction
Protein pellet was suspended in 8M Urea in 100mM Tris HCI (PH-

J Gene Engg Bio Res, 2022

www.opastonline.com

Volume 4 | Issue 2 | 184



8.7) and the concentration was determined using Bradford dye
binding method [29]. 100ug of protein sample was taken for di-
gestion. The sample was diluted with 50mM NH,HCO; and treat-
ed with 100mM DTT at 37°C for 1h followed by alkylation with
20mM iodo acetamide at room temperature in dark for 45min. Fi-
nally, the sample was digested with trypsin at 37°C overnight with
protein enzyme ratio 100:1. The resulting sample was vacuumed
dried and dissolved in 20ul of 0.1% formic acids in water. After
centrifugation at 10,000g (at 4°C) the supernatant was collected
into separated tube. The samples desalted using a stage-tip. The
samples were then eluted from stage-tip using 200 ul of 80% ace-
tonitrile. Desalted proteins were dried in vacuum centrifuged and
redissolved in 0.1% formic acid (Mobile phase A). 10ul injection
volume was used on BEH C18 UPLC column in waters UPLC
(Model UPLC- Aquity system, 50mm x 4.6 mm ,5 pm) for the
separation of peptides. 100 % acetonitrile is used as mobile phase
B. The total run time was 60 min with flow rate of 0.3 ml/min. The
column oven temperature was maintained at 40 °C and sampler
cooler temperature was kept at 4 °C. Waters acuity (Waters Co.
USA) interfaced to a Water Q-Tof-LCMS (waters Co., USA) was
used for mass spectrometric investigation. Electro spray ionization
(ESI-MS) analysis was performed in both positive ion mode and
full scan mass spectra was acquired over a mass range of m/z 50-
2000. With detection of ions at a resolution of 70000 HCD frag-
mented ions. Tandem mass spectrometry was done in DDA mode
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(Data Dependent acquisition) with ESI-MS of top 10most abun-
dance precursor ions at HCD normalised collision energy of 35%.

Statistical Analysis

Each biochemical experiment was carried out twice at different
times and had three replicates for each treatment. Results calculat-
ed as mean of three replicates + standard error. Statistical analysis
for the data significance and the t-test was done using Microsoft
Excel 2010.

Results

Oxidative Stress Biomarkers as Sensitive Quality Parameters for
the Assessment of Redox Status of PISS Raised Seedlings of Ex-
perimental Rice Cultivars

Figures 1 and 2 show relationship between PISS induced oxidative
lipid peroxidation product (TBARS) & protein oxidation product
(free carbonyl content) with redox status (ROS and H,0, accumu-
lation), total antioxidant capacity and growth parameters in exper-
imental rice cultivars. The overall results exhibited a positive cor-
relation between the accumulation of lipid peroxidation products
with redox status of germinating seedling, where the accumulation
of pro-oxidant seems to be directly associated with elevation of
lipid peroxidation and protein oxidation.
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Figure 1: Relationship between PISS induced oxidative lipid peroxidation product TBARS and redox status [ROS (A), total antioxidant
capacity (B) and H,0, accumulation (C)] and growth parameter [t50 value (D)] in experimental rice cultivars (Oryza sativa L., Cultivars
Patnai & IR29). Results are mean of three replicates + standard error. *Significant from control at 0.05 level (t-test). **Significant from

control at 0.01 level (t-test).
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Figure 2: Relationship between PISS induced protein oxidation product free carbonyl content and redox status [ROS (A), total anti-
oxidant capacity (B) and H,0O, accumulation (C)] and growth parameter [t,, value (D)] in experimental rice cultivars (Oryza sativa L.,
Cultivars Patnai & IR29). Results are mean of three replicates + standard error. *Significant from control at 0.05 level (t-test). **Signif-

icant from control at 0.01 level (t-test).

Comparative proteomics involving LC-MS/MS (la-
bel-free quantitative shotgun procedure) for characteri-
zation of proteomic responses in PISS-raised seedlings of
experimental rice cultivars

To characterize further the salinity-induced proteomic responses
of two experimental cultivars of rice differing in sensitivity to-
wards salinity stress, label-free quantitative shotgun proteomic
analysis was done. Water imbibed seeds of both the experimental
rice cultivars were grown under the same magnitude of PISS salin-
ity stress (250mM NaCl, EC-18.10 ds m™") for 24h and the soluble

protein extracted were subjected to label-free quantitative shotgun
proteomic analysis. The analysis enabled high confidence identifi-
cation of several non-redundant proteins across both the genotypes
(Oryza sativa L., cultivars IR29 and Patnai) grown under NaCl sa-
linity stress (Supplementary Table 1 and 2).The range of molecular
weight of characterized proteins was found to be greater for identi-
fied rice proteins. The isoelectric points range from 3.5 to 12.5 for
most of the rice proteins (Supplementary Tables 1 and 2 identified
rice protein in two experimental rice cultivars). For the said iden-
tification, all quantitative data of peptides characterized from the
soluble fractions (Fig. 3 and 4) were explored to identify proteins.
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Figure 3: HPLC based chromatogram of separated protein (B) and mass spectra(A) of PISS-raised seedlings of salt sensitive rice cul-
tivar Oryza sativa L., Cultivar IR29.
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Figure 4: HPLC based chromatogram of separated protein(B) and mass spectra (A) of PISS-raised seedlings of salt-tolerant rice cultivar
Oryza sativa L., Cultivar Patnai.

The MS-MS spectra obtained (Fig. 5 and 6) for both the rice cul-  imbibitional salinity stress. Overall, the present effort identified
tivar were matched to the known peptide sequences for identifi- 1338 & 842 peptide bands in both the experimental rice cultivars
cation of the peptides of both the rice cultivars grown under post (Supplementary Tables 1 and 2).
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Figure 5: MS/MS spectra of separated protein of PISS raised seedlings of salt-sensitive rice cultivar (Oryza sativa L., Cultivar IR29).

Figure 6: MS/MS spectra of separated protein of PISS-raised seedlings of salt tolerant rice cultivar (Oryza sativa L., Cultivar Patnai).
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The Functional Analysis of the Identified Proteins

The identified sequences of proteins were blasted by BLAST P in
NCBI database and identified proteins of both the experimental
rice cultivars were classified into different functional groups based
on gene ontology (GO) prediction. It is being divided broadly into
biological, cellular, and molecular categories of protein. The bi-
ological category of protein includes mainly cellular processes,
metabolic process and biological regulation, response to stimulus,
localization, developmental process, reproductive process. Where-
as the cellular processes mainly include proteins associated with
membrane, cytoplasm, DNA-directed RNA polymerase, nuclear,

celular process
metabolic process
locaizabion

ey
response 10 stmuis -

developmental process ._-.
mulbcelular organismal .::
Teproductive process .:'.
response 10 other organism In
chemotans I:
growth I.

innate immune response |;

(A)

t|

and signal recognition particles. In the molecular category, the pro-
tein associated with catalytic activity, binding, transporter activity,
phosphorelay sensor kinase activity, DNA binding transcription,
molecular transducer, translation factor and peroxidase activity
is induced. When we compared, the functional groups of proteins
under the category of biological proteins based on GO prediction
(Figs.7A, B) between the salinity tolerant rice cultivars Patnai and
susceptible rice cultivars IR29, significant differences in the abun-
dance of proteins involved in cellular process, metabolic process,
and biological regulation has been noticed (Fig. 7A, B).
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Figure 7: GO of biological protein separated from PISS-raised seedlings of two experimental rice cultivars Oryza sativa L., Cultivar

IR29 (A) and Patnai (B) separated on the basis of LC-MS/MS.

The salt-resistant cultivars Patnai showed 344, 323 and 67 ex-
pressed identified proteins as against 266, 164 and 63 numbers for
the salinity susceptible cultivar IR29 confirming the severe loss
of metabolic homeostasis and cellular processes for the salinity
susceptible cultivar Patnai as compared to the salinity tolerant
one. Similarly, the proteins associated with the reproductive and
other biological processes are also found to be significantly high-
er for the cultivar Patnai than that of IR29. When we compared,
the functional groups of proteins under the category of proteins
with molecular function, we found significant differences between
the salt-resistant cultivar Patnai and salt-sensitive cultivar IR29.
In the molecular category of proteins, we have characterized,
the protein associated with catalytic activity, binding, transporter

activity, phosphorelay sensor kinase activity, DNA binding tran-
scription factor, molecular transducer activity translation factor
activity, enzyme regulator activity, etc. A comparison of protein
abundance associated with catalytic and binding activity revealed
significantly higher abundance of the same for the cultivar Patnai
as compared to IR29 (Fig. 8A, B). Similarly, other subcategories
of proteins like molecular transducer activity, DNA binding tran-
scriptional proteins are found to be absolutely confined to the sa-
linity resistant cultivar Patnai. Though there are no differences in
the expression of phosphorelay sensor kinase protein abundance
the level of molecular transducer protein is found to be significant-
ly higher for the cultivar Patnai.
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Figure 8: GO of molecular proteins separated from PISS-raised seedlings of two experimental rice cultivars Oryza sativa L., Cultivar

IR29 (A) and Patnai (B)separated on the basis of LC MS/MS

When we compared the expression of antioxidant protein per-
oxidase it showed a significant difference with Patnai showing
7 proteins exhibiting peroxidase activity vis-a-vis only one pro-
tein having peroxidase activity for the cultivar IR29. The data of
cellular protein assessed (Figs. 9A, B) in terms of abundance of
membrane, cytoplasm, and nucleus associated proteins revealed
an otherwise picture, showing a greater abundance of the mem-
brane, cytoplasm and nucleus associated proteins for the salt sus-

Signal recognition partice 1
Host cytoplasm 1

(A)

ceptible cultivar IR29, as compare to salt-resistant cultivar Patnai.
The signal recognition protein which has been identified in the salt
tolerant cultivar Patnai was found to be absolutely lacking in salt
susceptibleIR29 and the data associated with the cell wall, chlo-
roplast, endoplasmic reticulum, golgi bodies apparatus associated
protein seems to have no significant difference between the two
cultivars.

o
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Figure 9: Go of cellular protein separated from PISS-raised seedlings of two experimental rice cultivar Oryza sativa L., Cultivar IR29

(A) and Patnai (B)on the basis of LC MS/MS.
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Discussion

The label-free quantitative shotgun proteomic analysis of the solu-
ble proteins of PISS-raised seedlings of both the experimental rice
cultivars provides a detailed proteomic profile. The two contrast-
ing rice genotypes differing in sensitivity towards salinity have
been chosen for making an insight into the qualitative changes
in protein profile associated with salinity stress during early post
imbibitional phase of germination. In fact, the germplasm diversi-
ty associated with salinity tolerance was expected to be reflected
in the variation of proteome label when each experimental germ-
plasm was exposed to PISS. The altered physiological phenotypes
under PISS during early germination which largely include a redox
metabolic shift and altered hormonal homeostasis (ABA and GA)
as a result of salinity largely determine the contrasting germination
ability of both the experimental germplasms. The salinity-resistant
cultivar Patnai fine-tune redox homeostasis through tandem action
of enzymatic and non-enzymatic antioxidative defense, whereas
the sensitive cultivar IR29 is largely incapable of maintaining re-
dox homeostasis, exhibiting oxidative deterioration. Overall, the
redox and energy homeostasis as well as maintenance of the hor-
monal status found to be associated with survival and germinabili-
ty. And this might be expected to be acquired significantly, at least
partially through the altered abundance of major key proteins.

The present experimental design involving LC-MS/MS enabled us
to identify a group of stress proteins in both the germplasms under
salinity (regardless of their sensitivity towards NaCl salinity). The
experiment also helped us to identify proteins induced under PISS
for the salt-tolerant cultivar vis-a-vis the salt-sensitive one. More-
over, the present proteomic strategy also enabled us to identify a
number of salinity-responsive proteins whose abundance changes
significantly in response to PISS, particularly for the tolerant ger-
mplasm. The greater abundance of expressed protein associated
with the biological, cellular and molecular process for the tolerant
germplasm Patnai in response to PISS in contrast to a significant-
ly repressed abundance of the same categories of proteins for the
sensitive cultivar IR29 is the prime outcome of proteomic investi-
gation. And most of these proteins seems to have a vital role in the
regulation of hormonal status as well as metabolic homeostasis,
particularly the redox tuning necessary for the progression of ger-
mination [30 - 32].

Comparative GO analysis of separated proteins revealed an
abundance of several redox proteins identified in PISS-raised
seedlings of the salt-resistant cultivar Patnai (Supplementary Ta-
ble 2). These are Protein GO:0033355 (ascorbate-glutathione
cycle), GO: 0051776 (detection of redox state), GO:0042743
(hydrogen peroxide metabolic process), GO:0042744 (hydro-
gen peroxide catabolic process), GO:0042542 (response to hy-
drogen peroxide), GO:0070301 (cellular response to hydrogen
peroxide), GO:0072593 (reactive oxygen species metabolic pro-
cess), GO:0006560(proline metabolic process),GO:0004735(pyr-
roline-5-carboxylate reductase activity),GO:0004657  (pro-
line dehydrogenase activity),GO:0051776(detection of redox

state),GO:0051775 (response to redox state), and GO:1903409
(reactive oxygen species biosynthetic process). The abundance of
these proteins under PISS has been previously suggested to play a
significant role in redox homeostasis and integrity of cellular and
mitochondrial membrane under stress conditions [28, 33]. The
expression of the proteins associated with ascorbate-glutathione
cycle protein, hydrogen peroxide metabolic process, hydrogen
peroxide responsive protein, cellular redox homeostasis, detection
of redox states and proline metabolism are largely considered with
ROS processing and detoxification as well as regulation of proline
biosynthesis necessary for amelioration for salinity stress [30, 34,
35]. Through most of these proteins are expressed in the sensitive
cultivar IR29 under PISS but when compared between the two ex-
perimental rice cultivars a general increase in abundance of the
redox proteins have been noticed for the cultivar Patnai, confirm-
ing the data of redox metabolic investigation and the role of redox
regulation under PISS during early germination (Supplementary
Table 1 and 2). Out of the several redox proteins detected, the pro-
tein GO: 0033355 (associated with Ascorbate-Glutathione cycle)
which takes an active role in fine-tuning the endogenous H202
concentration, formed during early germination under PISS seems
to be a significant finding necessary for survival under salinity for
both the experimental germplasms.

So, the GO data in general exhibited that the stress-inducible pro-
tein especially those associated with redox regulation and manage-
ment of oxidative stress increases in response to salinity. In fact,
salinity triggers a cascade of cellular processes that eventually
caused reprogramming of metabolism in favour of the conserva-
tion of metabolic energy [36]. The germinating tissue exposed to
a high concentration of salinity caused a redox shift towards the
accumulation of pro-oxidant. And if not mitigated the enhanced
ROS titer causes oxidative deterioration of biomolecules includ-
ing proteins [37, 38]. Therefore, the germinating tissue regulates
this hostile condition by up-regulating the synthesis of proteins
that play a significant role in scavenging ROS and systematically
degrading oxidized protein. Several ROS scavengers were found
to be enhanced in abundance in both genotypes and these include
glutathione dehydrogenase (GO: 0045174), glutathione reductase
(GO: 0004362), peroxiredoxin (GO: 001920), peroxidase (GO:
0004601), thioredoxin (GO: 0004791) and SOD (GO: 0004784).
So, elaborate antioxidative defense mechanisms along with sev-
eral redox homeostatic proteins are expressed under PISS for re-
dox regulation and progression of germination [30, 39]. The pro-
teins are mostly involved in SOD, ascorbate-glutathione/catalase
and glutaredoxin pathways as proposed from the finding of our
redox metabolic investigation. The most significant outcome of
this comparative proteomic investigation involving LC-MS/MS
is the characterization of the proteins associated with the ascor-
bate-glutathione cycle and integrated H,O, signaling pathway
(GO: 0071588, GO: 007165, GO: 0023051). Ascorbate-glutathi-
one pathway being the most important significant ROS processing
system in the germinating tissue responsible for regulating the en-
dogenous titer of ROS can be strongly vouched from the present
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experiment [40, 41]. All the important enzymes of ascorbate-glu-
tathione/catalase/peroxiredoxin pathway like ascorbate peroxi-
dase [42 - 44].Glutathione reductase glutathione dehydrogenase
[35, 45]. Peroxiredoxin and thioredoxin are also found in similar
proteomic studies in plants exposed to salinity [46]. Several pre-
vious workers through their proteomic investigation also charac-
terized the salinity-induced expression of ascorbate peroxidase,
DHAR, GRase, thioredoxin in rice [42, 47 and 48]. Similarly, the
induction of the catalase pathway as a redox regulatory mecha-
nism in rice is also characterized by the proteomic investigation
[18, 44]. Thioredoxin and glutaredoxin pathway which is found to
be a central pathway of antioxidative defense mechanism is also
identified in Zea maize and in other plants [43]. The role of per-
oxidase has also been identified by several workers under salinity
through proteomic investigation in rice [49-52]. Through several
other proteins have been found to be expressed under salinity in
the salt-tolerant cultivar Patnai vis-a-vis the salt-sensitive cultivar
IR29, the most significant one associated with redox regulation
seems to be signaling protein involved in H202 signaling, (GO:
0071588), receptor signal protein (GO: 0140626) and signal rec-
ognition protein (GO: 0023051). Since signal transduction under
salinity is a very important avenue of research, several workers
identified different salt-responsive pathways involving SOS, ABA,
Ca2+, and ethylene, JA with the help of different proteomic ap-
proaches [9, 53, and 54]. our present investigation also confirms
the active participation of different signaling pathways as several
proteins associated with growth regulator function protein have
been found to be expressed in the cultivar Patnai (Signaling pro-
tein GO: 0023052, GO: 0046883).

Conclusion

So, proteomic label-free quantitative shotgun proteomic study
(LC-MS/MS) helped us to characterize the low abundant pro-
teomes (cellular, metabolic and molecular) and identified noble
redox-regulatory proteins that are expressed under salt stress par-
ticularly in the salt-tolerant germplasm Patnai under PISS which
is largely involved with signalling and metabolic reprogramming
necessary for conferring salinity tolerance.
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