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Abstract
In addition to a fundamental scientific interest, there has been a significant technological need to build and understand 
small-scale devices in order to maintain the current rate of progress in increasing computer performance. In this paper, 
we have discussed the modifications that must be made to the concepts of conductance and capacitance, if they are to be 
applicable to mesoscopic and molecular scale conductors. We have also reviewed the linear response capacitance theory 
of Bu ̈ttiker, which can be used to determine the capacitance of a mesoscopic capacitor in a realistic geometry. In order 
to study capacitance and current at finite bias accurately in a molecular system, we must go beyond the linear response 
theory. The computational difficulties of determining the charge distribution in non-equilibrium can be resolved by the 
use of Green’s functions which we have reviewed. The system Hamiltonian can in turn be determined accurately by the 
methods of Density Functional Theory, which we have also outlined. 
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1. Introduction
The last two decades saw major progress in experimental control 
and theoretical understanding of mesoscopic and molecular 
scale electronic devices. This effort is driven by fundamental 
science interest, due to various new and fascinating quantum 
phenomena encountered in these systems. There is also the 
expectation and desire to use advances made towards developing 
useful applications within the emerging area of nanotechnology, 
especially in the field of nanoscale electronic computation [1, 
2, 3]. In that field there is considerable technological urgency 
to develop a new device paradigm in order that the current rate 
of increasing computing performance is maintained [4, 5]. The 
device technology based on classical and semi-classical physics 
will be inadequate within a decade if chip components shrink, 
as projected, to size 20 nm and below. In such a nanoscale, 
an approach based on quantum physics will be increasingly 
indispensable.

From the fundamental physics point of view, it has long been 
of great interest to understand at what length scale and in 
what manner macroscopic transport laws would start to break 
down due to quantum effects. Experimental answers to these 
questions had to wait until sufficient progress has been achieved 
in fabrication and measurement of small conductors. The 
experimental effort to study these effects can be roughly divided 
into investigations of two families of devices, mesoscopic and 

molecular (or nanoscale). Historically, the first to appear were 
mesoscopic devices, first studied in the early 1980's. These 
systems are intermediate between macro and micro scale (hence 
mesoscopic) and typically range between 100 nm and 1 pm in 
size. They consist of many atoms, yet are prepared in such a way 
that some subset of their electrons maintains quantum coherence 
over distances of hundreds of nanometers, giving rise to 
quantum transport behavior. The outstanding system here is the 
two-dimensional electron gas (2DEG), a carefully manufactured 
system in which a small subset of total electrons is trapped in a 
layer at a heterojunction between two semiconducting materials. 
The electrons in this layer can move over very long distances 
(over 1μm) without undergoing significant scattering, leading 
to quantum transport behavior. Metal gates can be applied to 
the 2DEG in order to "etch" various device structures within it. 
The study of mesoscopic devices is now highly advanced, and a 
remarkable degree of control over the behavior of electrons in the 
mesoscopic system is possible [6, 7]. In the past decade molecular 
scale (or nanoscale) devices have been achieved, in which key 
components may shrink down all the way to one molecule, so 
that the device size is between 1 nm and 100 nm. In molecular 
scale, manufacture and control of devices have been harder, as it 
is difficult to manipulate individual molecules. Nevertheless, the 
advances have been remarkable, with many fascinating materials 
such as nanotubes emerging to be used in working devices. 
Electrical transport studies of carbon nanotubes have yielded 
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data supporting the possibility of nanotubes functioning as field-
effect transistors [8, 9], intramolecular metal-semiconductor 
diodes [10, 11], and intermolecular-crossed nanotube-nanotube 
diodes [12, 13]. Nanotubes could be ideal building blocks for 
nanoelectronics, because they can function both as devices and 
as wires that access them.

The basic charge transport properties are described by 
conductance and capacitance. The first measures DC current, 
the second is necessary for determining current in the AC 
regime. The Landauer-Bu ̈ttiker formalism [14, 15] is the 
basic tool for understanding quantum DC conductance (G = 
I /V) in phase-coherent systems with weak electron-electron 
interaction. In this formalism, the device is attached to leads 
which are connected adiabatically to macroscopic reservoirs. 
The conductance is given simply by the probability that an 
electron will be transmitted from one lead to another across the 
device. This probability can be obtained, once the Hamiltonian 
of the system is determined, by solving the Schrodinger equation 
for the open device configuration and obtaining the scattering 

wavefunctions. For a low bias voltage, the equilibrium solution 
is sufficient to obtain the conductance. In classical systems, 
capacitance is defined as C = Q /V describes accumulation of 
charge Q in response to a change in the electrostatic potential 
V in the conductor. In mesoscopic and nanoscale systems, this 
concept of capacitance is generally not valid, as the conductor 
is generally not at equipotential and hence V is not well defined. 
A new concept, the electrochemical capacitance, has to be used 
[16], where C = eQ/Δμ is defined in terms of the electrochemical 
potential variation Δμ in the macroscopic reservoirs. While for 
a classical system C is determined only by conductor geometry, 
the electrochemical capacitance must be found from electron 
dynamics, by determining the charge rearrangement in the 
device self-consistently when electrochemical potential Δμ 
in the reservoirs is varied. A linear response scattering theory 
developed by Bu ̈ttiker [17, 18, 19] provides the method to 
calculate electrochemical C to first order using the equilibrium 
density of states in the device. More generally, some of the most 
useful transport features are contained in the current-voltage and 
nonequilibrium charge-voltage characteristics:
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Mesoscopic 2DEG conductors can often be adequately described 
by an effective mass Schrodinger equation. In order to solve this 
equation in 2D for an open system geometry, various methods 
have been developed [20]. These methods form an essential tool 
set for studying mesoscopic conductors. We have developed in 
this work a method for solving the scattering equation based 
on a development of the time-dependent scattering technique 
[21, 22]. In this technique a wavepacket, arriving via one of the 
leads, is propagated through and out of the system, and the time 
Fourier transform of the packet wavefunction is then used to 
obtain the stationary state solutions. An explicit second order 
differencing scheme is used to evolve the wavefunction on a 
real space grid [24]. Our method offers many advantages as it 
treats the boundary conditions efficiently, can handle any lead 

geometry, and is able to incorporate a uniform magnetic field in 
the system. Experiments have already shown that the concept 
of electrochemical capacitance of mesoscopic conductors is 
important [24, 25, 26], and that capacitance can display non-
classical variations as a function of the applied magnetic field 
[27]. Hence it is important to develop theoretical methods which 
can model capacitance for these realistic situations. In this work, 
we will study a mesoscopic capacitor consisting of a multiprobe 
2DEG conductor plate capacitively coupled to a classical metal 
plate. 

In order to obtain quantum capacitance for atomic scale devices 
at a finite bias, the charge variation in response to a small bias 
can be calculated directly. To do this we have used the formalism 
of non-equilibrium Green's functions, which we review briefly. 
We also review the principles of Density Functional Theory, 
which was essential to modeling molecular scale devices.

2. Landauer-BU ̈ttiker Formalism
In a bulk metallic conductor, the resistance between two 
contacts is related to bulk conductivity and the dimensions of 
the conductor, through Ohm’s law given by 
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Where σ is the conductivity of the bulk material, L is the 
length, and A is the cross-sectional area of the conductor. As 
demonstrated by many experiments in the past two decades, as 
conductor size is decreased, the resistance may no longer follow 
Ohm’s law. The most striking demonstration of this was the 
observation of the quantization of conductance by Bagraev, et 
al. [28] (where conductance G=1/R). It was observed that as the 

width of the conductor is varied, the conductance did not change 
linearly in L but instead varied in steps of 2 e2⁄h.

A conductor is usually expected to show non-ohmic behavior 
if its dimensions are not much larger than certain characteristic 
lengths. These lengths are:
•  λF. de Broglie wave length at the Fermi energy, of Fermi 
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wavelength, as only states near Fermi level carry current. If 
λF is comparable to device size, quantum interference inside 
device becomes important. 

• Lm. Mean free path, it is the average distance an electron 
travels before its initial momentum is destroyed. This 
occurs through collisions with impurities, phonons and 
other electrons. In general, any deviation from perfect 
crystallinity of the atomic lattice leads to scattering which 
destroys initial electron momentum. 

• Lø. Phase-relaxation length, it is the average distance an 
electron travels before its initial phase is destroyed. The loss 
of phase information is caused by inelastic collisions with 
scatterers such as phonons, other electrons, or impurities 
with internal degrees of freedom. Rigid scatterers such as 
crystal imperfections do not contribute to loss of phase.

The conductor is in the “ballistic” regime if its size L ≪ Lm 

and L ≪ Lø. In this case, on average electron flows through the 
conductor without experiencing collisions of any kind. Even if 
some imperfection is introduced in the ideal conductor to create 
a scattering region, the conductor can be considered ballistic. 
This is true when scattering is due to time-independent changes 
in potential, and not due to inelastic or dephasing effects. In 
the ballistic regime, where electrons only interact with static 
potential and maintains phase coherence, the one-electron Schro 
̈dinger equation with some effective potential is often adequate-
to adequate transport. 

We now proceed to discuss how conductance and current are 
obtained within the Landauer-Bu ̈ttiker formalism. Fist, we take 
the case of a perfect ideal conductor connected to two reservoirs, 
as shown in Figure 1 (a). The large reservoirs are assumed to be 
at equilibrium and hence have a well-defined electrochemical 
potential (or equivalently Fermi energy in this case).

 
Figure 1: Conductor configurations in the ballistic regime. 

We assume that the ideal conductor is made up of repeated 1D crystalline unit cell Length   . 
We also assume that electrons are described by one-electron effective potential with no magnetic 

field. Thus the boundaries of the conductor are defined by the wall of potential well in which the 

electrons are confined. The ideal conductors are assumed to fan out smoothly (adiabatically) 

joining to the large reservoir in such a way that an electron exiting the ideal conductor has no 

probability of scattering back at the junction. Hence electrochemical potential in the reservoirs 

determines the population of states of the ideal conductor from the reservoirs and hence their 

energy distribution is governed by that of the reservoirs. The ideal conductor is assumed to be 

ballistic, and all inelastic scattering is assumed to take place inside the reservoirs. 

The propagating wave functions of such an ideal conductor are Bloch states defined, for each 

real k in the Brillouin zone, in the standard form 
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Figure 1: Conductor configurations in the ballistic regime.

We assume that the ideal conductor is made up of repeated 
1D crystalline unit cell Length〖 L〖_c. We also assume that 
electrons are described by one-electron effective potential with 
no magnetic field. Thus the boundaries of the conductor are 
defined by the wall of potential well in which the electrons are 
confined. The ideal conductors are assumed to fan out smoothly 
(adiabatically) joining to the large reservoir in such a way that 
an electron exiting the ideal conductor has no probability of 
scattering back at the junction. Hence electrochemical potential 

in the reservoirs determines the population of states of the ideal 
conductor from the reservoirs and hence their energy distribution 
is governed by that of the reservoirs. The ideal conductor is 
assumed to be ballistic, and all inelastic scattering is assumed to 
take place inside the reservoirs.

The propagating wave functions of such an ideal conductor are 
Bloch states defined, for each real k in the Brillouin zone, in the 
standard form

With energy of each state denoted as En (k), z is the propagation 
direction along the conductor, and u the periodic function 
satisfying ukn (x,y,z) = ukn (x,y,z+Lc). The propagation direction 
of each state is given by the sign of its group velocity ukn = dEn 
(k)/dk, with positive v indicating propagation in the +z direction. 
The number of states (or modes) propagating in the +z and –z 
direction is equal. Thus we can define the function M(E), which 
gives the number of modes present at energy E propagating in 
the +z(or –z) direction.

Now the occupation of +z propagating modes is described by 
f + (E), and those in –z direction as f - (E) where for adiabatic 
contacts the distribution functions f + and f - will just be the 
distribution functions of right and left reservoirs respectively. A 
uniform 1D electron gas with n electrons per unit length moving 
with a velocity v carries a current of env. As the electron density 
of a single k-state is (1/Lc), we write the current I + carried by +v 
states as
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where the function M(E) is the number of propagating modes at energy E. Now, if we work at zero temperature, and we impose a 
bias voltage which gives different electrochemical potentials μ1 and μ2 for two reservoirs, we can combine I+ and I- to obtain

where we have assumed the number of modes M to be a constant in the energy range μ1<E<μ2. We thus obtain conductance

Because M is an integer, G is “quantized”.

Equivalently, the resistance is given by

We note that, even though the conductor is ideal and there is 
no electron scattering inside it, there is considerable finite 
resistance. This resistance is the contact resistance as it arises 
from the interface between the ideal quantum conductor with 
only a few modes and a contact which has infinitely many 
transverses modes. Another justification for this interpretation is 
the fact that for the ideal conductor the voltage drop must occur 
at the contacts.

We now consider what happens when the ideal conductor 
is modified by the presence of a finite region S that contains 
deviations from the ideal potential profile, as shown in Figure 1 

(b). Electrons moving through the conductor can now undergo 
scattering at the imperfections in S. The scattering is assumed 
to be caused by some time independent deviation of the crystal 
potential landscape, and not by inelastic or dephasing collisions. 
Thus an electron entering the conductor via mode i will have 
some probability Ti of passing through the conductor, and 
probability Ri = 1-Ti of scattering and reflecting back. Here we 
assumed that there is no magnetic field in the system and hence 
these probabilities are the same for electrons entering from 
either contact. In this case we can use an argument similar to 
those used for deriving Eq.9 and obtain
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where T is the average probability that an electron injected  at one end of the conductor will 

transmit to the other end. This relation is known as the Landauer formula [29]. 

The Landauer formula can be extended to cases where the scattering region is connected to more 

than two ideal conductors. In this case it is easier to think of the scattering region S as connected 

via a number of ideal leads to external reservoirs. Now an electron entering the system through 

mode   of lead   will scatter and exit the system through contact    The product of the number of 

modes of lead   and the mode average of the probability of exiting through lead α, is defined as 
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where T is the average probability that an electron injected at 
one end of the conductor will transmit to the other end. This 
relation is known as the Landauer formula [29].

The Landauer formula can be extended to cases where the 
scattering region is connected to more than two ideal conductors. 
In this case it is easier to think of the scattering region S as 
connected via a number of ideal leads to external reservoirs. 

Now an electron entering the system through mode i of lead β 
will scatter and exit the system through contact α. The product 
of the number of modes of lead β and the mode average of the 
probability of exiting through lead α, is defined as Tα←β.

Through a generalization of the two lead situation, the current 
in terminal α is
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The modification for the multiprobe case was due to B ̈ttiker [30], and formula (13) is known as 

Landauer- B ̈ttiker formula [31]. 

One can obtain the transmission probabilities     from the scattering wave functions obtained by 

solving the Schr ̈dinger equation for the open system. A scattering wave function can be 

constructed so that in the leads it is a superposition of one incoming mode in the incoming lead 

and all outgoing modes in all leads. Choosing unit amplitude and zero phase in the incoming 

mode   in lead α as       . This defines the complex scattering matrix     with dimensions given 

by the number of modes in lead α and β. The matrices can be combined into a global scattering 

matrix S which can then be used to relate the incoming and the outgoing amplitudes and phases. 

The conductances are obtained from the scattering matrix through: 
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So far in this discussion we have focused on a situation where the scattering region S is 

connected to narrow leads with a finite number of modes (Figure 1(a,b)). However, the ideas 

discussed here can be easily extended to the limit where the leads become large and states there 

become continuous in energy (Figure 1(c)). This geometry is applicable to the very important 

case of a molecule or a nanowire connecting two bulk surfaces, as is the case in many 

experiments. Here the sum over modes is expanded to run over all incoming states of semi-

infinite surface. 

The conductance defined so far only governs the current for a small applied bias (linear regime). 

For a two probe device, a straightforward generalization of the current expression for finite bias 

and temperature is given by [32] 
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One can obtain the transmission probabilities Tαβ from the 
scattering wave functions obtained by solving the Schro ̈dinger 
equation for the open system. A scattering wave function can 
be constructed so that in the leads it is a superposition of one 
incoming mode in the incoming lead and all outgoing modes in 
all leads. Choosing unit amplitude and zero phase in the incoming 

mode j in lead α as sαi,βj. This defines the complex scattering 
matrix sαβ with dimensions given by the number of modes in lead 
α and β. The matrices can be combined into a global scattering 
matrix S which can then be used to relate the incoming and the 
outgoing amplitudes and phases. The conductances are obtained 
from the scattering matrix through:
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So far in this discussion we have focused on a situation where 
the scattering region S is connected to narrow leads with a finite 
number of modes (Figure 1(a,b)). However, the ideas discussed 
here can be easily extended to the limit where the leads become 
large and states there become continuous in energy (Figure 
1(c)). This geometry is applicable to the very important case 
of a molecule or a nanowire connecting two bulk surfaces, as 

is the case in many experiments. Here the sum over modes is 
expanded to run over all incoming states of semi-infinite surface.

The conductance defined so far only governs the current for a 
small applied bias (linear regime). For a two probe device, a 
straightforward generalization of the current expression for 
finite bias and temperature is given by [32]
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where T(E) is the total transmission probability through all modes. Here the Fermi distribution 

functions are given as 
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where       ⁄  and    and    are the electrochemical potentials in the left and right lead. For 

zero temperature, the Fermi function becomes a step function, and the integration range of 

Eq.(15) reduces to the window between the lead electrochemical potentials. We have to keep in 

mind that for a finite bias the transmission T(E) is a function of the bias. 

 

Classical and Quantum Capacitance 

We have just discussed how the concept of resistance changes once we go to small scale. A 

similar reformulation must be performed for the concept of capacitance. Classically, capacitance 

is a concept which applies to a system of conductors. Following a standard argument of classical 

electrostats, a metallic conductor can have no electric field in its interior, and hence the 

electrostatic potential within it is constant and the entire volume of a given i-th conductor is at 

equipotential   . Any free charge on the conductor arranges itself into an infinitesimally thin 

sheet on the surface of the conductor, in such a way that the equipotential condition within the 

conductor interior is satisfied. For small      the total charge    on a given conductor is then 

linearly related to the potential of all conductors of the system, 
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where     are the capacitance coefficients. While the above definition holds for isolated 

conductors, a typical system has the conductors connected to the outside world, which imposes 

   onto the conductors. Then the capacitance coefficients     describe how much charge enters 

the conductors in response to a variation of applied bias. Classically, capacitance is purely a 

geometric quantity, i.e. it depends only on the shape and spatial arrangements of the conductors 

(and dielectrics). Determining capacitance coefficients     requires solving the Poisson equation 
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where T(E) is the total transmission probability through all modes. Here the Fermi distribution functions are given as

where β = 1 ⁄ kB T) and μL and μR are the electrochemical potentials 
in the left and right lead. For zero temperature, the Fermi 
function becomes a step function, and the integration range of 
Eq.(15) reduces to the window between the lead electrochemical 
potentials. We have to keep in mind that for a finite bias the 
transmission T(E) is a function of the bias.

3. Classical and Quantum Capacitance
We have just discussed how the concept of resistance changes 
once we go to small scale. A similar reformulation must 
be performed for the concept of capacitance. Classically, 

capacitance is a concept which applies to a system of conductors. 
Following a standard argument of classical electrostats, a metallic 
conductor can have no electric field in its interior, and hence the 
electrostatic potential within it is constant and the entire volume 
of a given i-th conductor is at equipotential Vi. Any free charge on 
the conductor arranges itself into an infinitesimally thin sheet on 
the surface of the conductor, in such a way that the equipotential 
condition within the conductor interior is satisfied. For small Vi, 
the total charge Qi on a given conductor is then linearly related 
to the potential of all conductors of the system,

where Cij are the capacitance coefficients. While the above 
definition holds for isolated conductors, a typical system has 
the conductors connected to the outside world, which imposes 
Vi onto the conductors. Then the capacitance coefficients Cij 
describe how much charge enters the conductors in response to 
a variation of applied bias. Classically, capacitance is purely a 
geometric quantity, i.e. it depends only on the shape and spatial 
arrangements of the conductors (and dielectrics). Determining 
capacitance coefficients Cij requires solving the Poisson equation 
with appropriate boundary conditions on conductor surfaces, 
which can be quite involved but for which software packages 
exist. 

The key assumption of the classical theory requires well defined 
conductors, with zero electric field inside. This cannot be true on 
the small scale as the electric field cannot be discontinuous in 
space. The electric field penetrates into the conductor to a depth 

which is on the order of the screening length of the material. The 
screening length can also be thought of as the length over which 
the electric field of a point test charge introduced into the system 
would be cancelled out by the rearrangement of free electrons 
[33]. The screening length depends on electron dynamics and is 
material dependent. 

In bulk metals the screening length is small, of the order of 1Ὰ, 
therefore the notion of classical capacitance is valid as long 
as conductor dimensions are greater than that length scale. 
Similarly, many microscopic systems are still well described 
by a classical capacitance [34]. However, in a number of 
conductors of lower dimensionality, such as nanotubes and two-
dimensional electron gases, the screening length can frequently 
be comparable to system dimensions [16]. In such systems, it 
no longer makes sense to use the concept of conductor potential 
Vi, as the system is not at equipotential. Hence a new definition 
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of capacitance at this length scale is required. The concept 
of capacitance has to be modified to that of electrochemical 
capacitance, where the conductor is connected to an electron 

reservoir with an electrochemical potential μ. Then we can look 
at change in accumulated charge dQ in response to the variation 
∆μ relative to some reference potential. 
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Furthermore, in contrast to the classical case, there is no reason 
for the charge accumulation to be linear in voltage at finite bias, 
and hence in order to make sense the capacitance coefficients 
have to be considered functions of applied bias, as in Eq.(2). As 
there is no longer an equipotential surface, geometric techniques 
are no longer applicable. Instead, one has to actually calculate 
the change in electron dynamics in response to change of 
external electrochemical potential. From these, one can calculate 
the change in the amount of charge present in a conductor, and 
hence the amount of charge that has entered the system from 
the reservoir. The needs to consider electron dynamics make 
quantum capacitance intimately related to quantum transport. 

The fall description of electron dynamics in small scale 
structures is obviously a great challenge. Therefore, in order 
to make progress in our study of capacitance, we must make 
approximations, and restrict our studies to systems which are 
reasonably described by the approximations. Below we proceed 
to outline what can be considered as the next step beyond 
classical capacitance: the scattering theory of linear quantum, 
capacitance of Bu ̈ttiker [19]. 

4. Scattering Theory for Quantum Capacitance
We have described the study of transport through the scattering 
approach, where one uses scattering wave functions and 
scattering matrices. We continue to apply the scattering approach 
to electrochemical capacitance, following the approach of Bu 
̈ttiker [19]. We assume our system to consist of a number of 
conductors which are quantum coherent, and each is connected 
to a reservoir with an electrochemical potential. The electrons 
in the conductors are described by some one-electron effective 
potential, and they interact via Coulomb interaction treated via 
one loop RPA approximation [19]. 

In linear response, we consider how the system responds to 
an infinitesimal change in the electrochemical potential of the 
reservoir (which is brought about by applying a bias voltage). 
The initial electrostatic potential U([μα],r)is a complicated 
function of position r as well as the electrochemical potentials 
μα. A small variation in the electrochemical potential brings 
the system to a new equilibrium state, with potential given by 
U([μα+ dμα ],r). When dμα→0, we expand the difference
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The characteristic potential uα (r) has some simple properties. 
First, deep inside reservoir α, a change in dμ must induce a 
change in electrostatic potential edU = dμα, because a reservoir 
is a large metal where perfect screening is assumed. Therefore 
we conclude that for r inside reservoir α, uα = edU ⁄ (dμα = 1.) 
Second, since the change of dμα, does not affect other reservoirs, 

we conclude that uα = 0 if r is in reservoir β. Finally, if all μ’s 
are changed by the same constant change we have only moved 
the energy scale of our system, and this cannot give rise to any 
change in the electric field (hence dU is constant). This means ∑α 
uα=1 from Eq(19). To summarize, we have
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Here the density dn(r,α)/dE is the injectivity, which describes 
the partial density of states associated with carriers arriving at 

point r from reservoir α after a variation dμα. It can be obtained 
straightforwardly from the scattering wave functions [19].

Where the sum is over all ψ’s describing electrons entering the 
system from reservoir α, v is the group velocity, and h the Planck 

constant. The sum of injectives from all reservoirs gives the total 
local density of states:

Second, in response to the injected charge, there is the induced 
charge density, generated by the charge in the electrostatic 

potential inside the device. The induced charge density can be 
described via the Lindhard function [35].
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Here the density   (   )   ⁄ is the emissivity, which described the partial density of states 

associated with carriers ejected into reservoir α from point r upon variation of the potential at 

point r. The sum of the emissivities for all α gives the total local density of states. In zero 

magnetic field, the emissivity is equal to the injectivity, and in nonzero magnetic field B they are 

connected by a useful relation [36, 37] 
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To give an example, we consider the case of a parallel plate capacitor. As usual, we ignore the 

edge effects, and cast the Poisson equation in 1D. First, we consider the case illustrated in Figure 
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To give an example, we consider the case of a parallel plate capacitor. As usual, we ignore the 

edge effects, and cast the Poisson equation in 1D. First, we consider the case illustrated in Figure 

The analytical expression for the Lindhard function is difficult to 
obtain, therefore Bu ̈ttiker uses the Thomas-Fermi approximation 

[19]. In this approximation, the induced density is locally related 
to the potential.

Here the density dn(α,r) ⁄ dE is the emissivity, which described 
the partial density of states associated with carriers ejected into 
reservoir α from point r upon variation of the potential at point r. 
The sum of the emissivities for all α gives the total local density 

of states. In zero magnetic field, the emissivity is equal to the 
injectivity, and in nonzero magnetic field B they are connected 
by a useful relation [36, 37]

In Thomas-Fermi approximation, the Lindhard function becomes local:

The characteristic potential is then obtained self-consistency by solving the Poisson equation

This equation is easily obtained from the Poissoin equation for 
the electrostatic potential U®. Once the characteristic potential 
is known, the sum of injected and induced charge integrated 
over the volume of the conductor can be determined. This 

gives the accumulation of charge dQα on conductor α due to the 
electrochemical potential change in reservoir β, from which we 
obtain the capacitance matrix coefficients

To give an example, we consider the case of a parallel plate 
capacitor. As usual, we ignore the edge effects, and cast the 
Poisson equation in 1D. First, we consider the case illustrated in 

Figure 2(a) where two conductors are separated by distance d, 
conductor 1 extends for x < 0, and conductor 2 for x > d. As the 
conductors are separated and carries at any point can arrive and 
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leave from only one reservoir, the injectivity is equal to the total 
density of states, and the injectivity is equal to the emissivity. 
The injectivities dn(r,1)/dE and dn(r,2)/dE are taken to have 
uniform value dn/dE inside their conductors and zero outside, 
where for simplicity the same density dn/dE in conductors 1 and 

2 is assumed. The total density of states is equal to dn/dE inside 
the conductors and is zero for 0 < x < d. Here the screening length 
is defined as λ-2  = (4πe2  dn)/dE. The 1D Poisson equation of 31 
is solved for these assumptions and we obtain the capacitance 
matrix elements C11= C22= -C21= -C21= C, with

2(a) where two conductors are separated by distance d, conductor 1 extends for      and 

conductor 2 for    . As the conductors are separated and carries at any point can arrive and 

leave from only one reservoir, the injectivity is equal to the total density of states, and the 

injectivity is equal to the emissivity. The injectivities   (   )     and   (   )    are taken to 

have uniform value       inside their conductors and zero outside, where for simplicity the 

same density       in conductors 1 and 2 is assumed. The total density of states is equal to 

      inside the conductors and is zero for        Here the screening length is defined as 

     (       )     The 1D Poisson equation of 31 is solved for these assumptions and we 

obtain the capacitance matrix elements                      with  

 
   

  (    ) 
(33) 

We see that for large     the capacitance is classical, but when d becomes comparable to λ 

there is a quantum correction. This correction to capacitance has been observed experimentally 

[16, 38]. The capacitance saturates to a constant value   (   ) as separation     and does 

not diverge as in the classical case. The reason for this is clear from looking at the potential  ( ) 
and the charge distribution   ( ) (Figure 2). When d becomes comparable to screening length, 

the classical assumption that all charge is located in an infinitesimally thin sheet on the surface 

and that all potential drops outside the conductors does not describe the situation correctly. The 

charge and potential drop over the distance on the order of the screening length λ, leading to a 

reduction of capacitance relative to classical value.  

In real quantum systems the wavefunctions will start to overlap as conductors approach each 

other, leading to electron transport and a breakdown of the simple capacitance model. There is an 

exception to his however, in the case where the wavefunctions in the two conductors have 

different symmetry properties, so that the integrated overlap between them is zero and no DC 

transport is possible.  
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densities associated with the two conductors do overlap in some region of space, they can still be 

viewed as if they were spatially separated conductors. 

2(a) where two conductors are separated by distance d, conductor 1 extends for      and 

conductor 2 for    . As the conductors are separated and carries at any point can arrive and 

leave from only one reservoir, the injectivity is equal to the total density of states, and the 

injectivity is equal to the emissivity. The injectivities   (   )     and   (   )    are taken to 

have uniform value       inside their conductors and zero outside, where for simplicity the 

same density       in conductors 1 and 2 is assumed. The total density of states is equal to 

      inside the conductors and is zero for        Here the screening length is defined as 

     (       )     The 1D Poisson equation of 31 is solved for these assumptions and we 

obtain the capacitance matrix elements                      with  

 
   

  (    ) 
(33) 

We see that for large     the capacitance is classical, but when d becomes comparable to λ 

there is a quantum correction. This correction to capacitance has been observed experimentally 

[16, 38]. The capacitance saturates to a constant value   (   ) as separation     and does 

not diverge as in the classical case. The reason for this is clear from looking at the potential  ( ) 
and the charge distribution   ( ) (Figure 2). When d becomes comparable to screening length, 

the classical assumption that all charge is located in an infinitesimally thin sheet on the surface 

and that all potential drops outside the conductors does not describe the situation correctly. The 

charge and potential drop over the distance on the order of the screening length λ, leading to a 

reduction of capacitance relative to classical value.  

In real quantum systems the wavefunctions will start to overlap as conductors approach each 

other, leading to electron transport and a breakdown of the simple capacitance model. There is an 

exception to his however, in the case where the wavefunctions in the two conductors have 

different symmetry properties, so that the integrated overlap between them is zero and no DC 

transport is possible.  

We now consider the case where wavefunctions of the two capacitor plates have a finite overlap, 

but no DC transport takes place. The absence of DC transport implies that even though the 

densities associated with the two conductors do overlap in some region of space, they can still be 

viewed as if they were spatially separated conductors. 

We see that for large d ≫ λ the capacitance is classical, but when 
d becomes comparable to λ there is a quantum correction. This 
correction to capacitance has been observed experimentally [16, 
38]. The capacitance saturates to a constant value A/(8πλ) as 
separation d → 0 and does not diverge as in the classical case. 
The reason for this is clear from looking at the potential u(x) 
and the charge distribution dρ(x) (Figure 2). When d becomes 
comparable to screening length, the classical assumption that all 
charge is located in an infinitesimally thin sheet on the surface 
and that all potential drops outside the conductors does not 
describe the situation correctly. The charge and potential drop 
over the distance on the order of the screening length λ, leading 
to a reduction of capacitance relative to classical value.

In real quantum systems the wavefunctions will start to overlap 
as conductors approach each other, leading to electron transport 
and a breakdown of the simple capacitance model. There is an 
exception to his however, in the case where the wavefunctions in 
the two conductors have different symmetry properties, so that 
the integrated overlap between them is zero and no DC transport 
is possible. 

We now consider the case where wavefunctions of the two 
capacitor plates have a finite overlap, but no DC transport takes 
place. The absence of DC transport implies that even though the 
densities associated with the two conductors do overlap in some 
region of space, they can still be viewed as if they were spatially 
separated conductors.

 

Figure 2: The injectivities     ( )  characteristic potential u(x), and accumulated charge  ( ) are 
shown in (a) and (b) for finite separation d=1 and inter-penetration d=4 respectively. Charge 
arriving from the left reservoir is black and from the right red. The capacitance as a function of 
separation (positive) and inter-penetration (negative) d is shown in (c). 
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Hence the injectivity and the emissivity for each conductor are 
the same, i.e. dn(α,r)/dE=dn(r,α)/dE. One can usefully think of 
this configuration as one conductor penetrating into the other, as 
illustrated in Figure 2(b). We assume that the two wavefunctions, 

and hence the injectiveities, overlap over some distance d. Thus 
dn(r,1)/dE=dn/dE extends for x<0, and dn(r,2)/dE=dn/dE for x>-
d, with the overlap occurring for -d<x<0, where again uniform 
densities of states are assumed. The total density of states in the 
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screening term will be dn/dE everywhere except in the overlap 
region, where it will be a combination of injectivities from both 
reservoirs; thus in the overlap it will have the value 2×dn/dE, 
where dn/dE here indicates the single conductor density of states. 
As there is no DC transport, any electron which arrives at a 
point r from a given reservoir must exit the system into the same 

reservoir. With these assumptions, half of the induced charge in 
the overlap region will be emitted into each reservoir. We can 
solve the Poisson equation again with the terms just described, 
with details provided in appendix A. we obtain the characteristic 
potentials and the charge distribution, and we integrate over 
charges associated with reservoir 1 and 2. This gives

these assumptions, half of the induced charge in the overlap region will be emitted into each 

reservoir. We can solve the Poisson equation again with the terms just described, with details 

provided in appendix A. we obtain the characteristic potentials and the charge distribution, and 

we integrate over charges associated with reservoir 1 and 2. This gives 
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We see that there is a term linear in d which causes a steep linear increase in capacitance for 

increasing insertion depth. The capacitance C as a function of distance d, obtained from 

equations (33) and (34), is shown in Figure 2 (c).  We can see that C increases slowly as the 

separation distance decreases to zero, and then increases linearly with the insertion distance, 

which is considered here as negative separation distance. It is clear from the plot that, in this 

simple model, the overlapping of electron densities in the two conductors causes a large increase 

in the value of the capacitance. The plot of charge densities for the inter-penetration case shows 

that the positive and negative charges are partially located in the same region of space, lowering 

the electrostatic energy, and therefore more charge can be stored for a given applied bias.  

 

AC formulation of Capacitance 

Now we discuss what happens to the notion of quantum capacitance when the possibility of 
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this case it is useful to consider the AC picture, where variations of electrochemical potentials 

are time-dependent. Now, the main quantity of interest is the admittance, which relates the time-

dependent current to the time-dependent voltage. The capacitance as well as conductance will 

make contributions to admittance. 

First, we reconsider the case of isolated conductors under AC bias. In the presence of slowly 

oscillating potentials        (    ), our system of conductors is driven through a sequence of 

equilibrium states given by  (   ( )   ). The quasi-stationary potential distribution away from 
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We see that there is a term linear in d which causes a steep 
linear increase in capacitance for increasing insertion depth. 
The capacitance C as a function of distance d, obtained from 
equations (33) and (34), is shown in Figure 2 (c). We can see 
that C increases slowly as the separation distance decreases to 
zero, and then increases linearly with the insertion distance, 
which is considered here as negative separation distance. It is 
clear from the plot that, in this simple model, the overlapping of 
electron densities in the two conductors causes a large increase 
in the value of the capacitance. The plot of charge densities for 
the inter-penetration case shows that the positive and negative 
charges are partially located in the same region of space, 
lowering the electrostatic energy, and therefore more charge can 
be stored for a given applied bias. 

5. AC formulation of Capacitance
Now we discuss what happens to the notion of quantum 
capacitance when the possibility of transport between conductors 
is allowed, meaning that carriers can flow between reservoirs. In 
this case it is useful to consider the AC picture, where variations 
of electrochemical potentials are time-dependent. Now, the 
main quantity of interest is the admittance, which relates the 
time-dependent current to the time-dependent voltage. The 
capacitance as well as conductance will make contributions to 
admittance.

First, we reconsider the case of isolated conductors under AC 
bias. In the presence of slowly oscillating potentials dμα exp(-
iwt), our system of conductors is driven through a sequence of 
equilibrium states given by U([μα (t)],r). The quasi-stationary 
potential distribution away from the reference state is 
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From the relation     ∑    (     )  one obtains leading-order terms of the current and 

admittance [19] 
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Next, if we expand the discussion to allow carrier propagation from reservoir α to reservoir β, the 

admittance must also contain a DC component. To first order in    we will have [19] 
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where     is the emittance and    ( ) the DC conductance. The first order capacitative 

properties of the system can now be described by the emittance matrix {   }. 
The emittance is given, within Thomas-Fermi approximation, by [19] 
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This expression is obtained through an argument similar to that used to obtain     in Eq.(32). 

The difference is that instead of using injectivity, one has to use a modified density of states to 

allow for the possibility of carriers moving between α and β. To define the new partial density, 

we consider a small oscillation in electrochemical potential    that injects into the system a 

charge density  (  (   )   )     A fraction of the carriers which reach point r will eventually 

reach contact α. The density of these carriers is the partial density of states(  (     )   ). 
Clearly, in the case of no transport between α and β, this density is zero, and we have          
Thus some entries of the emittance matrix can be thought as capacitance coefficients [39].  

Using a Green’s functions argument, it can be shown [40] that the density of states in the above 

expression can be related to the scattering matrix through.  
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From the relation dQα = ∑β Cαβ (dμβ/e) one obtains leading-order terms of the current and admittance [19]

Next, if we expand the discussion to allow carrier propagation from reservoir α to reservoir β, the admittance must also contain a 
DC component. To first order in w, we will have [19]

where Eαβ is the emittance and gαβ (0) the DC conductance. The 
first order capacitative properties of the system can now be 
described by the emittance matrix {Eαβ}.

The emittance is given, within Thomas-Fermi approximation, by 
[19]

This expression is obtained through an argument similar to that 
used to obtain Cαβ in Eq.(32). The difference is that instead of 
using injectivity, one has to use a modified density of states to 
allow for the possibility of carriers moving between α and β. To 
define the new partial density, we consider a small oscillation in 
electrochemical potential μβ that injects into the system a charge 
density e(dn(r,β)/dE) dμβ. A fraction of the carriers which reach 
point r will eventually reach contact α. The density of these 

carriers is the partial density of states(dn(α,r,β)/dE). Clearly, in 
the case of no transport between α and β, this density is zero, and 
we have Eαβ= Cαβ. Thus some entries of the emittance matrix can 
be thought as capacitance coefficients [39]. 

Using a Green’s functions argument, it can be shown [40] that 
the density of states in the above expression can be related to the 
scattering matrix through. 
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These quantities are rather difficult to calculate due to the presence of the functional derivative. 

They have been calculated only for some simple systems where analytical or efficient 

computational means could be employed [38]. However we have here demonstrated that certain 

elements of the emittance matrix can be reduced to capacitance coefficients, and some of these 

can be determined from injectivities only. This discussion illustrates that calculating capacitance 

properties of a system with zero conductance is much easier computationally than studying a 

general system where DC conductance is non zero. 

 

Capacitance under finite bias 

Various efforts have been made to go beyond linear response in scattering approach. Some of the 

approaches involved calculating higher order coefficients in the expansion of capacitance in 

voltage [41] or frequency [42]. However, the general finite bias dependence of capacitance can 

only be calculated through determining the full charge density self-consistency. This can be 

accomplished within scattering theory, by determining the scattering the scattering wave 
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This can be thought of as a density obtained by adding contributions of electron waves entering 
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The G < can be used to determine the density as

This can be thought of as a density obtained by adding 
contributions of electron waves entering the device contacts.

8. Density Functional Theory
To study transport properties of molecular devices, we need a 
method which can model the microscopic degrees of freedom 

accurately and efficiently. Here we briefly outline the principles 
of Density Functional Theory (DFT) which lies at the heart 
of the modern electronic theory. The basis for DFT is the fact 
that the non-degenerate ground state energy for a system of N 
interacting electrons, EN, is a unique functional of the single-
particle density ρ(r):

Since all properties are determined by the ground-state density, 
any system can be studied by minimizing a unique, universal 
total energy functional E[ρ]. Thus the motivating result of DFT 
is that the complicated problem of obtaining the ground state 
for an interacting system of electrons is reduced to minimizing 

the functional E[ρ]. The central problem of DFT is to determine 
the form of this functional. Unfortunately, the exact form is not 
known, but one can construct approximations to it which give 
excellent results. The standard method for doing this begins by 
formally writing
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results in this work is based on the parameterization suggested by Falletta et al. [47]. 
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where the kinetic energy contribution is T[ρ], and the next two 
terms represent mean-field interaction energy and the energy 
due to the external potential Vext, respectively. All non-classical 
corrections and many-body effects not included in the first three 
terms are described by the exchange-correlation functional EXC 
[ρ]. Practical calculations use one of many standard approximate 
forms for EXC [ρ]. One of these forms is given by Local Density 
Approximation (LDA), and is calculated for the high and low-

density limits of the homogeneous electron gas and interpolated 
in between as a function of ρ. The LDA which we have used to 
obtain DFT results in this work is based on the parameterization 
suggested by Falletta et al. [47].

Many applications of DFT are based on the Kohn-Sham (KS) 
equation [48]. In this approach the density is constructed from 
non-interacting electron functions ψi:

Where ψ i |ψ j 〉 = δij. The Kohn-Sham Kinetic energy is given by

The true kinetic energy T[ρ] does not equal the KS kinetic 
energy TKS, but the difference can be absorbed into a redefined 
correlation functional. In the ground state, the variation of the 

total energy is stationary with respect to the wavefunctions {ψ 
i (r)}

The orthogonality conditions are maintained by introducing the Lagrange multipliers Eij:

which gives, after diagonalizing Eij,

where VXC is the exchange-correlation potential:
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Now    ( ) and     are short ranged potentials more convenient to work with numerical. 

We have also formally separated the ion-electron potential from 
the total external potential acting on the electrons. This equation 
reduces the interacting problem to a set of non-interacting Schro 
̈dinger-like equations. Since the equation (59) depends on the 
solutions {ψ i} through the density ρ(r), it is a non-linear self-
consistent eigen value problem which requires a considerable 

amount of computational effort to solve. We now discuss some 
of the techniques used to make the solution of this problem 
computationally feasible.

We start by recasting Eq.(59) into a more convenient form. 

The Hartree potential and the Vion-et potential go as N/R and –N/R 
at large separation R and hence are long ranged potentials which 

may be troublesome to work with. By adding and subtracting 
neutral charge density ρNA (r) with the property
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Now    ( ) and     are short ranged potentials more convenient to work with numerical. 

We rewrite Eq.(59) as

Where 

And 

Now VNA (r) and VδH are short ranged potentials more convenient to work with numerical.
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which is easier to calculate 

Once the Kohn-Sahn Hamiltonian Eq. 63 is well defined, in order to solve it numerically one 

must employ a set of basis functions in order to represent the electronic wavefunction. Many 

different types of basis sets are possible, offering various combinations of speed, accuracy and 

ease of implementation. In widely used plane wave methods, the wave functions are expanded in 

terms of plane waves, giving a high accuracy at relatively large computational cost. The reason 

for this is the need to include a large number of plane waves to model the system accurately. 

Also this method is restricted to periodic boundary conditions, and thus it is unable to study 

transport with finite bias. In contrast, real space basis sets expand the wavefunctions in term of 

basis functions localized in real space. The real space basis we use in this work is a modified 

Linear Combination of Atomic Orbitals (LCAO) minimal basis, one obtains a reasonable 

accuracy, much faster numerics and the ability to model large non-periodic systems with 

transport. The accuracy of the LCAO basis can be progressively improved by adding higher 

momentum atomic orbitals to the basis set. 
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One particularly useful formulation of the pseudopotential which 
we use, due to Kleinman and Bylander (KB) [50], introduces 

a separable form for nonlocal pseudopotential, using spherical 
harmonics Ylm,

which is easier to calculate.

Once the Kohn-Sahn Hamiltonian Eq. 63 is well defined, in order 
to solve it numerically one must employ a set of basis functions 
in order to represent the electronic wavefunction. Many different 
types of basis sets are possible, offering various combinations 
of speed, accuracy and ease of implementation. In widely 
used plane wave methods, the wave functions are expanded in 
terms of plane waves, giving a high accuracy at relatively large 
computational cost. The reason for this is the need to include a 
large number of plane waves to model the system accurately. 
Also this method is restricted to periodic boundary conditions, 
and thus it is unable to study transport with finite bias. In contrast, 
real space basis sets expand the wavefunctions in term of basis 
functions localized in real space. The real space basis we use in 
this work is a modified Linear Combination of Atomic Orbitals 
(LCAO) minimal basis, one obtains a reasonable accuracy, 
much faster numerics and the ability to model large non-periodic 
systems with transport. The accuracy of the LCAO basis can 
be progressively improved by adding higher momentum atomic 

orbitals to the basis set.

9. Conclusion
We provided an overview of the Landauer-Bu ̈ttiker formalism 
for conductance in ballistic quantum coherent conductors, and 
discuss how it differs from the classical result. Then we discuss 
the Bu ̈ttiker formalism for calculating capacitance for quantum 
coherent conductors, and contrast it with the classical approach 
to capacitance. In order to obtain quantum capacitance for atomic 
scale devices at a finite bias, the charge variation in response 
to a small bias can be calculated directly. To do this we have 
used the formalism of non-equilibrium Green’s functions, which 
we reviewed briefly. We also review the principles of Density 
Functional Theory, which was essential to modeling molecular 
scale devices.
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