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Abstract
In 2011, by 1.3 mm wavelength VLBI radio wave observations of the SgrA*, Fish, V. L. et al showed that the emissions tightly 
related to the formation of a black hole shadow have a remarkably large time-varying feature within a region of less than 50 μas. 
The present paper suggests that the origin of the time variation in the observed emission is due to effects of the orbital motion 
of the existing super-massive black hole binary orbiting at SgrA* with a period of 2150±2.5 s. This suggestion is based on 
observations of decameter radio wave pulses from SgrA*. We show a good correlation between the time variation in the coherent 
flux density of the VLBI results and the time variation model of estimated emission intensities based on the periodic motion of 
the super-massive black hole binary by applying parameters deduced from the decameter radio wave pulse observation model 
(DRWP-Model). With further confirmation by Fourier analyses of the potential periodicity of the VLBI data that show the same 
periods of DRWP Model, we conclude that the time variation detected by the 1.3 mm wavelength radio wave VLBI is evidence of 
an existing super-massive black hole at Sgr A*.  

Earth & Environmental Science Research & Reviews
Interpretation of Time-Varying Radio Emissions of SgrＡ* Observed by 1.3 
Millimeter-Wavelength VLBI with Black Hole Binary Concluded by Decameter 
Radio Wave Pulse Observations

Research Article

Hiroshi Oya

Geophysical Department, Graduate School for Science, Tohoku 
University, Space and Astrophysics Research Task, Seisa University, 
Japan. 

*Corresponding author
Hiroshi Oya, Geophysical Department, Graduate School for Science, 
Tohoku University, Space and Astrophysics Research Task, Seisa University, 
Japan. 

Submitted:22 Sep 2022; Accepted: 14 Oct  2022; Published: 27 Nov 2022

Citation: Hiroshi Oya (2022). Interpretation of Time-Varying Radio Emissions of SgrＡ* Observed by 1.3 Millimeter-
Wavelength VLBI with Black Hole Binary Concluded by Decameter Radio Wave Pulse Observations, Eart & Envi Scie Res & 
Rev. 5(4): 185-216.

Keywords: Galaxy center, Supermassive Black Hole, Black Hole Binary, VLBI, Millimeter Radio Wave, Decameter Radio Wave, 
Event Horizon

ISSN: 2639-7455

Introduction
In May 2022, EHTC (Event Horizon Telescope Collaboration) has 
released the visible shadow image of the event horizon of SgrA*, 
the supermassive black hole (SMBH) , at the center of the Milky 
Way Galaxy, corresponding to 1.3 mm VLBI observations [1,-
6] after three years delaying from the release of the image of the 
event horizon of the SMBH, M87* at the center of the elliptical 
galaxy in the Virgo constellation. [7-12]. The EHTC observations 
for these two SMBHs were carried out together in April 2017.  The 
delay of release of the SgrA* image is thought as being caused 
by difficulty to make image for SgrA*; the difficulty involved in 
capturing an image of the black hole shadow was understood [13]  
as mainly caused by the time variation that results from the intense 
scattering of radio waves by electron turbulence in dense plasma. 
After releases of the images of M87*, however, we meet unexpected 
stage of the studies on two SMBH images ; though EHTC insists 
on their results to be no problem[14], there are apparently defects 
indicating misevaluation to take a hole in collected data as real 

black hole in their starting map ( image) in their hybrid mapping 
processes to form the images [15]. Because the data collection 
system is completely same for M87* and SgrA* cases, we regret 
to state that the both images are not correct and we should restart 
for improvement. About the subjects which are directly related 
to present paper, i,e., time variation of 1.3mm wavelength radio 
wave intensity surrounding SgrA*, EHTC made wrong selection 
of ways of data handling [2,3]; EHTC is considering the time 
variations consist of only random components and try to avoid and 
to depress to obtain a static image. We, then, show in this paper the 
essential point of the time variations of SgrA* returning back to 
the original data before EHTC was organized.

Studies on the time variation in the radio wave flux at SgrA* have 
grown, starting from the investigation of intermittently occurring 
flares that were detected by millimeter radio wave telescopes [16-
19]. In the history of the research of the time variation in millimeter 
wavelength radio emissions, epoch making results were provided 
by Fish et al [20] through 1.3 mm wavelength VLBI observations, 
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which became the initiation point of the EHT activities [21];  the 
observation results are characterized by a resolution of a few10 
μas , corresponding to the Schwarzschild radius at SgrA*. In 
studies of the time variation in millimeter wavelength radio wave 
fluxes, the short time variation in the emissions at Sgr A* has been 
gradually recognized, not only in times of flare but persisting with 
a quiescent structure [20,21]   and with some periodicity [22].

Independently to the activity of observations by the millimeter 
wavelength radio-waves from Sgr A*, we continued to investigate 
Sgr A* to find the spin signature of the event horizon of possible 
super-massive black holes using decameter radio wave pulses 
(DRWP) at 21.86 MHz[23]. DRWP observations are not standard 
for the quest of Sgr A*, because the observation frequency is much 
lower than the plasma frequencies surrounding SgrA*. Due to the 
structured magnetic field that is possible in the plasma environment 
surrounding SgrA*, however, the DRWP can propagate in the 
form of whistler mode waves that are converted to the ordinary 
radio waves at points of turbulent and tenuous plasmas as well 
known in the field of planetary radio-wave science. Furthermore, 
the source points of decameter radio-waves are possibly located 
at the region extremely close to the event horizon of the rotating 
Kerr black hole where the time passage becomes slow due to GR 
effects. Coinciding with the spin period, therefore, we can observe 
the decameter radio pulses at the Earth’s ground.

Since the start of DRWP observations from SgrA*, it took almost 
20 years for convincing results to be reported in 2019 [23]. The 
principal results revealed two kinds of pulses with intrinsic pulse 
periods of (173±1) and (148±1) s, showing sinusoidal variation 
with a common period at 2,200±50 s. By attributing the pulses 
to spins of two Kerr BHs, we concluded that two SMBHs exist. 
There are temporarily called Gaa with a mass of (2.27±0.02)×106 
M⦿  and Gab with a mass of (1.94±0.01)×106 M⦿  (4.21±0.03)×106 
M⦿  in total), and they form a binary system with an orbital period 
of 2,200±50 s. The orbital velocities of Gaa and Gab are also 
calculated to be 18% and 22%, respectively, of the velocity of 
light.

In terms of accepting the results of the DRWP observations, there 
are arguments that such an extreme super-massive black hole 
binary system is contradictory because of the possible generation 
of gravitational waves which exhaust orbiting energy within an 
extremely short period of time (see Sec. 8.4). However, because it 
has not yet been experimentally confirmed whether the gravitational 
waves are generated from the SMBH binary (SMBHB) whose 
density of matter included within the event horizon is apparently 
tenuous with a ratio less than 10-12 compared to the case of star 
mass BHs. Then it is worthwhile that the presented SMBHB results 
are checked using independent experiments such as 1.3 millimeter 
wavelength VLBI data (VLBI-Data) observations [20,21]. Here, 
we should emphasize that the recently released image of SgrA*  by 
EHTC that shows a single event horizon is not correct and needed 
to be reformed.

The motivation of the present study is, therefore, to investigate 
whether the variation in the intensity and source structure at SgrA* 
that were detected by the 1.3 mm radio wave VLBI by Fish et al 
[20,21] are caused by the orbital motion of SMBHB, as concluded 
by the DRWP observations [23]. It is assumed ,by EHTC, that 
a variation with short characteristic time (VSCAT hereafter) of 
several tens of minutes has characteristics of random variation 
caused through paths of propagating mm wavelength radio-
waves due to turbulent plasma media. But we hypothesize that the 
VSCAT is caused by the orbital motions of SMBHB [23] .Though 
the approach method of searching for the time variation is different 
from the intention of Fish et al [20,21] (FEHT hereafter), we 
consider that the original data published in FEHT are significant 
when searching for VSCAT information.

For this purpose, we constructed a model of the VSCAT of mm 
wavelength emissions caused by the orbital motions of SMBHB 
with orbiting parameters based on the DRWP observations [23] 
(DRWP-Model hereafter) that give control to the emissions of 
VLBI-Data that are observed as correlated radio-wave data by 
VLBI within ~50μas. The principal component of the present work 
is, then, the comparison of he DRWP-Model with VLBI-Data 
focusing on VSCAT. The comparison is carried out through fitting 
processes between the DRWP-Model and VLBI-Data by adjusting 
the parameters of the DRWP-Model. We express this fitting work 
as FITW hereafter. The significant principle that is kept currently 
throughout the FITW is that we never change the parameters 
resulted from the study on DRWP observations in terms of physics 
matters of the constructing the DRWP-Model such as the orbiting 
period range (2200±50 sec), orbiting speeds, and size of the orbits. 
The adjustment of parameters in the DRWP-Model is only done 
for numerical components, such as the amplitude related to the 
flux density, the starting time used to determine the initial timing, 
and the level in the model to meet with VLBI-Data. In this context, 
the only exception is the sweeping of the period values. This is not 
done to find a suitable period from the VLBI-Data but is just for 
confirmation of how well the DRWP-Model fits the VLBI-Data.

Brief Review of the FEHT and DRWP  Observations (Review)
Two selected FEHT works
In the present FITW we mainly refer three works: two by Fish et al 
[20,21] for VLBI-Data and one by Oya[23] for the DRWP-Model. 
The VLBI-Data were obtained on three succeeding days from April 
5 (95th day) to 7 (97th day) in 2009 by the 1.3 mm wavelength 
radio wave interferometer with three base lines formed among 
three stations in the USA: the James Clerk Maxwell Telescope on 
Mauna Kea in Hawaii (designated J-station), the Arizona Radio 
Observatory’s Submillimeter Telescope in Arizona( S-station), 
and two telescopes from the combined array for Research in 
Millimeter-wave Astronomy in California (telescopes C and D). 
Sources were observed with a high band at 229.601 GHz and a low 
band at 229.089 GHz, both with a bandwidth of 480 MHz. Using 
the interferometry correlator at MIT, the system was able to detect 
the coherency of observed signals for a minimum source size of 10 
μas , corresponding to a Schwartzschild radius at 8.3 kpc. 
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From the two collected papers, here, we focus on VSCAT, mostly by 
using the correlated fluxes reported in the first paper [20] as VLBI-
Data and the VSCAT of the asymmetrical source configuration 
reported with non-zero closure phase data in the second paper[21] 
as VLBI-CLP-Data. The time variation data displayed in the 
bottom panel of Figure 2 [20]  is significant from the point of view 
of investigating the VSCAT for emissions from a compact area 
within 50μas at Sgr A*. In the first paper of Fish et al, the data 
are published for S-C (S-D) base line correlation after complete 
calibration and correction of local deviation of the receiving gains 
of devices. Corresponding to the displayed data given in Figure 2 
of the first paper of FEHT, the original numerical information is 
given in Table 1 of their paper. From this, we selected the portion 
of the Sgr A* given for the S-C baseline, as shown in Table 1 of 
the present work. We refer to Fish et al.’s data through the present 
FITW as VLBI-Data focusing on VSCAT. 

In FEHT published paper [20],  it was described that a time 
variation in the observed data was apparent between observation 
data collected on the 97th day and those collected on days 95 and 
96. The increase in observed power on day 97 was about 17%, 
which can be attributed to a brightening of the structure on a 

scale of only a few Schwartzschild radii. Though the authors did 
not explicitly state this in their paper, there are time-dependent 
variations in the corrected data that are displayed in Figure 2 of 
their paper and the corresponding Table 1. 
 
After Fish et al stated the significance of the nonzero closure phase 
angle to the anisotropy of the source structure in the first paper 
[20], more extensive reports using the results of EHT group activity 
were made in a second paper in 2016 [21]. It was concluded that 
the time variation in the asymmetrical source structure persisted 
constantly, keeping a quiescent signature. Fish et al [21] stated 
that it was “likely coupled with some structural variability”. Their 
description is significant to the present paper, because we tried to 
find the signature of the motion of SMBHB using the VLBI-Data 
given in Table 1 that were taken from their published data table 
[20].  We further investigate the coincidence of the time variation 
with the DRWP-Model with respect to the published results of the 
closure phase presented in their Table 2 in the second paper [21].  
To use their Table 2 only essential parts are taken as given in the 
present Table 2.
                

Table1: VLBI-Data sorted for Sgr A*, from Table1 of Fish et al [20]  

Table 2: Closure Phases taken from Table 2 in Fish et al (2016) [21]
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coincidence of the time variation with the DRWP-Model with respect to the published 
results of the closure phase presented in their Table 2 in the second paper [21].  To use 
their Table 2 only essential parts are taken as given in the present Table 2. 

Table 2 .Closure Phases taken from Table 2 in Fish et al (2016) [21] 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Spectra of the decameter wavelength radio wave pulses from Sgr A* published 
in 2019 [23]. The relative levels of the analyzed FFT spectra for pulses observed at 21.86 
MHz (Black) and the simulation spectra obtained by FFT to express the spinning 
SMBHB orbiting at 2200±50 s (Green) are indicated overwrapping both in the top 
panel, where the simulation spectrum is displayed on the front side, and in the bottom 
panel, where the observation spectrum is displayed on the front side. The abscissa 
indicates the pulse frequency with a linear index, where index 100 corresponds to 
0.0122 Hz. In the given frequency range, a combination of pulses is displayed with 
higher harmonics up to the third harmonic for both SMBH Gaa and Gab with multiple 
side bands that are caused by the observed frequency modulation by Doppler shifts due 
to periodic orbital motion. 
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Figure 1: Spectra of the decameter wavelength radio wave pulses from Sgr A* published in 2019 [23]. The relative levels of the 
analyzed FFT spectra for pulses observed at 21.86 MHz (Black) and the simulation spectra obtained by FFT to express the spinning 
SMBHB orbiting at 2200±50 s (Green) are indicated overwrapping both in the top panel, where the simulation spectrum is displayed on 
the front side, and in the bottom panel, where the observation spectrum is displayed on the front side. The abscissa indicates the pulse 
frequency with a linear index, where index 100 corresponds to 0.0122 Hz. In the given frequency range, a combination of pulses is 
displayed with higher harmonics up to the third harmonic for both SMBH Gaa and Gab with multiple side bands that are caused by the 
observed frequency modulation by Doppler shifts due to periodic orbital motion.

Figure 2: Configuration of the SMBHB concluded by deciphering the analyzed FFT spectra for the decameter wavelength radio waves 
from Sgr A*, assuming that the pulse frequencies are synchronized with spins of SMBHs Gaa and Gab that are subjected to the Doppler 
effect due to orbital motion. The distance between two SMBH is 2.84 Rss with respect to the Schwartzschild radius Rss  if we assume that 
there is a single black hole (Radii of two BH are given by the unit cm) .
DRWP Observations [23] 
At Tohoku University, by using a long baseline interferometer for 
decameter wavelength radio waves consisting of three antenna 
sites with baseline lengths ranging from 44 to 83 km at 21.86 MHz, 
we observed decameter radio wave pulses from Sgr A* at our 
Galaxy center, mainly in June 2016 and June 2017. Because of the 
extremely low S/N (signal to noise ratio), where the background 
noise levels were 300 to 500 times larger than the signal levels, the 
observed interferometer data were analyzed uniquely to detect the 
source direction using the Earth’s rotation. Separation of the signal 
from the high background noise was accomplished by applying the 
Interferometer Fringe Function Correlation Method (IFFCM, see 

[23]), where the aperture synthesis method of the interferometer 
data that utilize the Earth’s rotation, was modified to eliminate 
any ambiguity of local phase shifts in the system as well as phase 
shifts due to ionosphere propagation. Pulse forms in the signal 
were confirmed in the Fourier-transformed domain by applying 
FFT operations to the time series data of the IFFCM. By taking an 
average of the FFT results over 2016 independent sets, the pulse 
frequencies were discriminated from the background white noise. 
The resulting signals indicate the source direction at Sgr A* within 
±6 arc minutes. Further, the final data, called the BH code, (see 
Figure 1) were deciphered by applying the simulation; that is,
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Figure 2. 
Configuration 
of the SMBHB 
concluded by 
deciphering 
the analyzed 
FFT spectra 
for the 
decameter 
wavelength 
radio waves 
from Sgr A*, 

assuming that the pulse frequencies are synchronized with spins of SMBHs Gaa and 
Gab that are subjected to the Doppler effect due to orbital motion. The distance between 
two SMBH is 2.84 𝑅𝑅𝑠𝑠𝑠𝑠 with respect to the Schwartzschild radius 𝑅𝑅𝑠𝑠𝑠𝑠 if we assume that 
there is a single black hole (Radii of two BH are given by the unit cm) . 
 
2.2 DRWP Observations [23]. 
At Tohoku University, by using a long baseline interferometer for decameter wavelength 
radio waves consisting of three antenna sites with baseline lengths ranging from 44 to 
83 km at 21.86 MHz, we observed decameter radio wave pulses from Sgr A* at our 
Galaxy center, mainly in June 2016 and June 2017. Because of the extremely low S/N 
(signal to noise ratio), where the background noise levels were 300 to 500 times larger 
than the signal levels, the observed interferometer data were analyzed uniquely to 
detect the source direction using the Earth’s rotation. Separation of the signal from the 
high background noise was accomplished by applying the Interferometer Fringe 
Function Correlation Method (IFFCM, see [23]), where the aperture synthesis method 
of the interferometer data that utilize the Earth’s rotation, was modified to eliminate 
any ambiguity of local phase shifts in the system as well as phase shifts due to 
ionosphere propagation. Pulse forms in the signal were confirmed in the 
Fourier-transformed domain by applying FFT operations to the time series data of the 
IFFCM. By taking an average of the FFT results over 2016 independent sets, the pulse 
frequencies were discriminated from the background white noise. The resulting signals 
indicate the source direction at Sgr A* within ±6 arc minutes. Further, the final data, 
called the BH code, (see Figure 1) were deciphered by applying the simulation; that is,  
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Figure 3: Geometrical configuration of the view from the observation points at the time of the maximal eclipse phase of two SMBH, 
Gaa and Gab. The orbital plane surface of the SMBHB is tilted by 6°   from the direction parallel to the line of sight from the observation 
point.

the function of time variation for the FFT analyses has been 
constructed to represent the SMBHB system where two spinning 
Kerr BHs are radiating decameter radio waves whose intensities 
are synchronized with spins that are subjected to orbital motions 
indicating spin frequency variations due to Doppler effects caused 
by the orbital motions. The matching of FFT spectra between the 
observation results and the simulation results shows the existence 
of two kinds of pulses; that is, the detected intrinsic pulse periods 
of (173±1) and (148±1)  s show sinusoidal variation in the period 
values with common periods at 2,200±50 s. By attributing the pulses 
to spins of two Kerr BHs with the maximum rotation parameter, the 
masses of the two BHs were deduced with additional Newtonian 
dynamics information obtained from orbiting parameters such 
as the orbit radii, the orbiting period, and the orbiting velocities 
deduced from the Doppler effects. We have concluded that two 
supermassive BHs exist, temporarily called Gaa with a mass of 
(2.27±0.02)× 106 M⦿ and Gab with a mass of (1.94±0.01)×106 M⦿   
((4.21±0.03)×106 M⦿ in total), forming a binary system with an 
orbital period of 2,200±50 s, as given in Introduction. In Figure 
2, the configuration of  the SMBHB at Sgr A* is depicted with 
parameters selected from Tables 9 and 10 of the paper [23]. To 
deduce the black hole masses, we assumed that we were observing 
the orbital motion from the direction parallel to the surface of the 
orbital plane. ; as it is described in the next Sec. we are required a 
slight correction for the looking angle of the orbital motions.

Construction of the DRWP-Model to show the Origin of Time 
Variation for the VLBI-Data
Eclipse effects due to the orbital motion of the SMBHB
In the present study, we hypothesize that the origin of the VSCAT 
in the VLBI-Data is mainly related to the motion of the SMBHB, 
except for the time of flare [16-19] ; in the case of gradual variation 
of background condition [20], the model is still applicable. Two 

effects are considered to generate VSCAT emissions at SgrA*, 
and these were detected within the 50 μac range by the 1.3 mm 
wavelength VLBI. These are the eclipse of the orbiting SMBHB 
and spectral shift due to Doppler effects caused by the fast speeds 
of the SMBHB orbital motion. 

Here, we first describe the eclipse effects. To conclude that the total 
mass of the SMBHB is MD=(4.21±0.03)×106 M⦿,  we assumed 
that the inclination of the orbital plane surface is parallel in the 
direction of the observation line of sight, with θI being close to 
90.° Regarding the accuracy of the θI  value, however, there is a 
room for correction when we refer to the BH mass obtained from 
the effects of gravity on the motion of surrounding stars, which 
was determined to be MCD=(4.28±0.31)× 106 M⦿ by Gillessen 
et al. [24]. (GSM, hereafter). By attributing the difference in 
the masses deduced from DRWP observations and GSM to the 
assumption of the inclination of the orbits of the SMBHB, we have 
deduced correction angle ∆θ to θI (= 90°) . As details are given in 
Appendix-A, the relationship of the total mass MD  of the SMBHB 
to MCD of GSM is 

where θI
*=π⁄2-∆θ ,with units of radians. Then, the angle ∆θ can be 

expressed as

By taking the central values of the given MCD and MD as the most 
likely values, we have determined the ∆θ value to be 0.105 radians 
(6.0 degrees). As shown in Figure 3, the orbiting radii of Gaa and 
Gab are 1.89×107  km and 2.21×107 km,   respectively.

(1)

(2)
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paper [23]. To deduce the black hole masses, we assumed that we were observing the 
orbital motion from the direction parallel to the surface of the orbital plane. ; as it is 
described in Sec. 3, we are required a slight correction for the looking angle of the 
orbital motions. 
 
 
3 CCoonnssttrruuccttiioonn  ooff  tthhee  DDRRWWPP--MMooddeell  ttoo  sshhooww  tthhee  OOrriiggiinn  ooff  TTiimmee  VVaarriiaattiioonn  ffoorr  tthhee  
VVLLBBII--DDaattaa  
3.1 Eclipse effects due to the orbital motion of the SMBHB 
  In the present study, we hypothesize that the origin of the VSCAT in the VLBI-Data 
is mainly related to the motion of the SMBHB, except for the time of flare [16-19] ; in 
the case of gradual variation of background condition [20], the model is still applicable. 
Two effects are considered to generate VSCAT emissions at SgrA*, and these were 
detected within the 50 μac range by the 1.3 mm wavelength VLBI. These are the eclipse 
of the orbiting SMBHB and spectral shift due to Doppler effects caused by the fast 
speeds of the SMBHB orbital motion.  

Here, we first describe the eclipse effects. To conclude that the total mass of the 
SMBHB is 𝑀𝑀𝐷𝐷 = (4.21 ± 0.03) × 106𝑀𝑀⦿ ,  we assumed that the inclination of the orbital 
plane surface is parallel in the direction of the observation line of sight, with 𝜃𝜃𝐼𝐼 being 
close to 90.° Regarding the accuracy of the 𝜃𝜃𝐼𝐼 value, however, there is a room for 
correction when we refer to the BH mass obtained from the effects of gravity on the 
motion of surrounding stars, which was determined to be 𝑀𝑀𝐶𝐶𝐷𝐷 = (4.28 ± 0.31) × 106𝑀𝑀⦿ 
by Gillessen et al. [24]. (GSM, hereafter). By attributing the difference in the masses 
deduced from DRWP observations and GSM to the assumption of the inclination of the 
orbits of the SMBHB, we have deduced correction angle ∆θ to 𝜃𝜃𝐼𝐼 (= 90°) . As details 
are given in Appendix-A, the relationship of the total mass MD   of the SMBHB to 
MCD   of GSM is 

MCD  = MD  
𝑠𝑠𝑠𝑠𝑠𝑠3𝜃𝜃𝐼𝐼

∗ = MD  
𝑐𝑐𝑐𝑐𝑠𝑠3∆𝜃𝜃 .                                                                                        (1) 

where 𝜃𝜃𝐼𝐼
∗ = 𝜋𝜋 2⁄ − ∆𝜃𝜃 ,with units of radians. Then, the angle ∆𝜃𝜃 can be expressed as 

∆𝜃𝜃 = √2
3 ∙ (𝑀𝑀𝐶𝐶𝐷𝐷

𝑀𝑀𝐷𝐷
− 1)   .                             (2)      

By taking the central values of the given 𝑀𝑀𝐶𝐶𝐷𝐷 and 𝑀𝑀𝐷𝐷 as the most likely values, 
we have determined the ∆𝜃𝜃 value to be 0.105 radians (6.0 degrees). As shown in Figure 
3, the orbiting radii of Gaa and Gab are 1.89 × 107 km and 2.21 × 107km,   respectively.  
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Figure 4: Model of the SMBHB eclipse between Gaa and Gab. Three eclipse phases are illustrated as the orbital view looking down 
from the vertical direction of the orbital plane in the top line for three phases at different moments in time, 2Ω(t-t0)= 2mπ(Rad) ,  2Ω(t-t0 
)=(2m+1⁄2)π (Rad) and 2Ω(t-t0)=(2m+1)π (Rad), for the integer m with an arbitrary starting time t0. Corresponding to each phase 
observation, sight views are depicted in the middle line. In all views and phases, SMBHs are depicted as being associated with two rings; 
the first ring has radius of 3rg (rg is the gravitational radius that is given by rg=GM⁄c2  for a constant gravity G, mass M, and light velocity 
c), which is given as a reference to estimate the curvature of the light path. The second large circle has a radius of 5rg, which shows the 
approximate shadow limit for emissions from sources surrounding the rotating black hole. The red curves in the first and second phases 
in the line of the orbital view are examples of ray paths to show the qualitatively estimated gravity effects on the propagation of radio 
waves. In the bottom line, two cases of eclipse function are shown for coefficients k=0.2 and k=0.8 with the corresponding parameter n. 
These are indicated to model the emissions feature versus the eclipse phases 2Ω(t-t0).

A shift in the inclination by 6.0° results an upward shift of 
1.98×106 km from the virtual orbital plane assumed for a pure 
vertical inclination with respect to the line of the sight for the 
center of Gaa, whose radius of the event horizon is 3.35×106 km. 
A downward shift of 2.32×106 km, also from the virtual plane, is 
deduced for the center of Gab, whose radius of the event horizon 
is 2.87×106 km (see Figure 3). The upper and lower positions 
of both partner BHs in the SMBHB system, with respect to the 
virtual plane, are switched alternatively at each coming maximal 
phase of the eclipse. Then, we observe twice of the decrease of 
emission power in every orbiting period of 2200±50 s. Based 
on the 6.0° tilt of the SMBHB orbit plane surface from the pure 
parallel direction with respect to the line of sight, we construct 
a function of the DRWP-Model for comparison with the VLBI-
Data. Deferring highly accurate quantitative analyses of the 
eclipse effects for future work, here, we only consider a qualitative 
ray paths effects subjected to the intense gravity condition in the 
spacetime of Kerr black holes that form the SMBHB.  In Figure 4, 
we depict the configurations of the Gaa and Gab SMBHB for three 
sampled phases of mutual motion along the orbits of the SMBHB, 
together with functions to express the eclipse effects (Bottom two 

diagrams). The two SMBHs on the binary orbits, Gaa and Gab, 
are depicted using the orbit view looking down the orbital plane 
and using the view from the observation sight for three phases of 
the positions of the SMBHB. In the figure, we express the orbital 
motion of the SMBHs with the angular velocity Ω. Then, in Figure 
4, the positions of the SMBHs Gaa and Gab at the first, second, and 
third phases correspond to the moments when 2Ω(t-t0 )= 2mπ(Rad)  
,2Ω(t-t0)=(2m+1⁄2)π (Rad)  and 2Ω(t-t0 )=(2m+1)π (Rad) with 
integer m and time  t, measured from an arbitrarily selected start 
time t0. In all the views and phases shown in Figure 4, the SMBHs 
are depicted as being associated with two rings; the first ring has a 
radius of 3rg (rg is the gravitational radius given by rg=GM⁄c2  for 
the gravity constant G, mass M, and light velocity c), which is 
given as a reference to allow better understanding of the curvature 
of the light path. The second large circle has a radius of 5rg which 
shows the approximate shadow limit. We refer to the case of the 
non gravito magnetic effect shown by Abdujabbarov,et al. [25] for 
emissions from sources surrounding a rotating black hole. 

We have constructed a model function to reflect qualitatively 
describe the state of the eclipse of radio emissions surrounding the 
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Figure 4. Model of the SMBHB eclipse between Gaa and Gab. Three eclipse phases 

are illustrated as the orbital view looking down from the vertical direction of the orbital 
plane in the top line for three phases at different moments in time, 2Ω(t − 𝑡𝑡0) =
 2𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑅𝑅) ,  2Ω(t − 𝑡𝑡0) = (2𝑚𝑚 + 1 2⁄ )𝑚𝑚 (𝑅𝑅𝑅𝑅𝑅𝑅) and 2Ω(t − 𝑡𝑡0) = (2𝑚𝑚 + 1)𝑚𝑚 (𝑅𝑅𝑅𝑅𝑅𝑅), for the 
integer m with an arbitrary starting time 𝑡𝑡0. Corresponding to each phase observation, 
sight views are depicted in the middle line. In all views and phases, SMBHs are 
depicted as being associated with two rings; the first ring has radius of 3𝑟𝑟𝑔𝑔 (𝑟𝑟𝑔𝑔 is the 
gravitational radius that is given by 𝑟𝑟𝑔𝑔 = 𝐺𝐺𝐺𝐺 𝑐𝑐2⁄  for a constant gravity G, mass M, and 
light velocity c), which is given as a reference to estimate the curvature of the light path. 
The second large circle has a radius of 5𝑟𝑟𝑔𝑔, which shows the approximate shadow limit 
for emissions from sources surrounding the rotating black hole. The red curves in the 
first and second phases in the line of the orbital view are examples of ray paths to show 
the qualitatively estimated gravity effects on the propagation of radio waves. In the 
bottom line, two cases of eclipse function are shown for coefficients k=0.2 and k=0.8 with 
the corresponding parameter n. These are indicated to model the emissions feature 
versus the eclipse phases 2Ω(t − 𝑡𝑡0). 
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SMBHs phase-by-phase, as given in Figure 4.  
• The phase at 2mπ: This is the phase where two SMBHs, Gaa 

and Gab, are separated with the maximum separation phase 
angle seen in the observation areas. We observed maximum 
emission power from the two SMBHs. In this phase, shadows 
at each SMBH exist inherently without depending on the 
mutual separation angle. We describe the emission power in 
the 1.3 mm wavelength range as the total situation in the region 
of bright emissions together with the individual shadow and 
lensing ring regions, as seen in the M87* image [7-12]. (The 
exact feature should be different though). In this phase, we can 
also recognize that the propagation of the radio waves towards 
the observation areas may not be hindered by the effects of 
gravity from the partner BH, as depicted by the example 
ray path (red curve) that starts from the region at about 3rg 
from the center of the SMBH Gaa. To approximately depict 
the ray path under intense gravity conditions, we consider 
the situation qualitatively with reference to the curving ray 
path using a rough estimation method of simplified general 
relativity, because we are not required to have accurate 
solution as is the case solving null geodetics [eg,26], which is 
the most essential approach for ray tracing. The rationale for 
using the method of simplified general relativity is explained 
in Appendix B.

• The phase at (2m+1⁄2)π: This is an example case of the 
intermediate position of two SMBHs before approaching the 
maximal phase of the eclipse. As depicted by an example 
ray path (red curve), the ray path that is hindered by the 
gravity effect of the partner SMBH starts to appear. The radio 
emissions are decreased gradually as the motions of SMBHs 
approach the maximal phase of the eclipse. 

• The phase at (2m+1)π : This is the maximal phase of the 
eclipse; the two SMBHs overwrap with a slight vertical shift 
with respect to the orbital plane, as explained in Figure 3. The 
shadow effects are not limited to shading by the disk of the 
front SMBH with the radius of the event horizon, but the effect 
of shadow formation by the partner SMBH moving behind 
is expanded to the range of the SMBH’s own gravity lens. 
Then, the total emissions from the two SMBH environments 
are depressed to the minimum level for the entire phase of the 
mutual positioning of the two SMBHs.

In the bottom two panels in Figure 4, the constructed eclipse 
functions are indicated with the functional form Ec (t) .  We 
selected a simplified function to express Ec (t), assuming that the 
same effects occur for two SMBHs in the cases of shading of the 
partner SMBH. Therefore, the same rate of eclipse shading takes 
place twice alternatively within a revolution of orbital motion; that 
is,

where n is an index to control the effective interval of the eclipse, 

and k is the rate of emission shaded by the partner SMBH at the 
maximal phase of the eclipse. On the left and right sides of the 
bottom line diagrams shown in Figure 4 , the cases of k=0.2  and 
k=0.8 are displayed with parameters of n=2, 4, 8, and16. In the 
FITW processes between the VLBI- Data and the DRWP-Model, 
these n values are varied to find the best fitting case. 

Variation in the observed spectral shift due to Doppler effects
 Though the effects of the time variation in the observed VLBI-
Data are weak compared with the eclipse effect of the SMBHB, 
the possibility of time variation when observing VLBI-Data can be 
considered. Except for the case of burst time radiation, the power 
law spectra of the radio emissions from Sgr A* is known to have 
the index of 0.3 [27]. In the regular state of the average condition 
of the accretion of the plasma, we assume that the radio wave 
emission spectra Pj (ω)   for SMBH- j ( j=Gaa or Gab) is    

P𝑗(𝜔) = 𝐾𝑗𝑓0.3.

where f  is the emission frequency at the sources, and Kj is a constant 
coefficient that reflects all electromagnetic environments related to 
the radio wave emissions from each member j of the SMBHB. The 
observed frequency fob is related to the source frequency f that is 
subjected to the Doppler effects of orbiting SMBH-j as

where vj  and  t0 are the orbiting velocity and arbitrary time when 
SMBH Gaa is at the zero Doppler effect position for SMBH-j ; θI 
is an angle between the sight direction from the observation point 
and the normal direction of the orbital plane (Determined to be 
84.0° ,see Sub Sec 2.1) . Then, the source frequency f that provides 
the observation frequency fob  is given by

We selected vGaa⁄ c=0.18 and vGab⁄ c=0.21    in accordance with the 
DRWP results [23]. Thus, eq.(6) can be approximated as

Considering eq.(4), therefore, the emission power Pdj (fob) detected 
by observation points at fob for each SMBH-j is expressed by

Considering the values 𝑣𝑗 /𝑐, again, 𝑃𝑑𝑗(𝑓𝑜𝑏)  is given by

To obtain the total emission power from the SMBHB, we apply the 
eclipse effects together with the simple addition of two individual 
spectra variations.

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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shadows at each SMBH exist inherently without depending on the mutual 
separation angle. We describe the emission power in the 1.3 mm wavelength range 
as the total situation in the region of bright emissions together with the individual 
shadow and lensing ring regions, as seen in the M87* image [7-12]. (The exact 
feature should be different though). In this phase, we can also recognize that the 
propagation of the radio waves towards the observation areas may not be hindered 
by the effects of gravity from the partner BH, as depicted by the example ray path 
(red curve) that starts from the region at about 3𝑟𝑟𝑔𝑔 from the center of the SMBH 
Gaa. To approximately depict the ray path under intense gravity conditions, we 
consider the situation qualitatively with reference to the curving ray path using a 
rough estimation method of simplified general relativity, because we are not 
required to have accurate solution as is the case solving null geodetics [eg,18], 
which is the most essential approach for ray tracing. The rationale for using the 
method of simplified general relativity is explained in Appendix B. 

B) The phase at (2m + 1 2)𝜋𝜋: ⁄  This is an example case of the intermediate position of 
two SMBHs before approaching the maximal phase of the eclipse. As depicted by an 
example ray path (red curve), the ray path that is hindered by the gravity effect of 
the partner SMBH starts to appear. The radio emissions are decreased gradually as 
the motions of SMBHs approach the maximal phase of the eclipse.  

C) The phase at (2𝑚𝑚 + 1)𝜋𝜋 : This is the maximal phase of the eclipse; the two SMBHs 
overwrap with a slight vertical shift with respect to the orbital plane, as explained 
in Figure 3. The shadow effects are not limited to shading by the disk of the front 
SMBH with the radius of the event horizon, but the effect of shadow formation by 
the partner SMBH moving behind is expanded to the range of the SMBH’s own 
gravity lens. Then, the total emissions from the two SMBH environments are 
depressed to the minimum level for the entire phase of the mutual positioning of 
the two SMBHs. 

  In the bottom two panels in Figure 4, the constructed eclipse functions are indicated 
with the functional form E𝑐𝑐(t) .  We selected a simplified function to express E𝑐𝑐(t), 
assuming that the same effects occur for two SMBHs in the cases of shading of the 
partner SMBH. Therefore, the same rate of eclipse shading takes place twice 
alternatively within a revolution of orbital motion; that is, 

E𝑐𝑐(t) = 1 − k [ 1 − 𝑐𝑐𝑐𝑐𝑐𝑐2𝛺𝛺(𝑡𝑡 − 𝑡𝑡0)
2 ]

𝑛𝑛
.                                (3) 

where n is an index to control the effective interval of the eclipse, and k is the rate of 
emission shaded by the partner SMBH at the maximal phase of the eclipse. On the left 
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and right sides of the bottom line diagrams shown in Figure 4 , the cases of k=0.2  and 
k=0.8 are displayed with parameters of n=2, 4, 8, and16. In the FITW processes between 
the VLBI- Data and the DRWP-Model, these n values are varied to find the best fitting 
case.  
 
3.2 Variation in the observed spectral shift due to Doppler effects 
 Though the effects of the time variation in the observed VLBI-Data are weak compared 
with the eclipse effect of the SMBHB, the possibility of time variation when observing 
VLBI-Data can be considered. Except for the case of burst time radiation, the power law 
spectra of the radio emissions from Sgr A* is known to have the index of 0.3 [27]. In the 
regular state of the average condition of the accretion of the plasma, we assume that the 
radio wave emission spectra P𝑗𝑗(𝜔𝜔)  for SMBH- j ( j=Gaa or Gab) is     

P𝑗𝑗(𝜔𝜔) = 𝐾𝐾𝑗𝑗𝑓𝑓0.3.                                        (4) 
where 𝑓𝑓  is the emission frequency at the sources, and 𝐾𝐾𝑗𝑗 is a constant coefficient that 
reflects all electromagnetic environments related to the radio wave emissions from each 
member j of the SMBHB. The observed frequency 𝑓𝑓𝑜𝑜𝑜𝑜 is related to the source frequency 
f that is subjected to the Doppler effects of orbiting SMBH-j as 

𝑓𝑓𝑜𝑜𝑜𝑜 = 𝑓𝑓 ∙ [1 − 𝑣𝑣𝑗𝑗
𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)]                        (5) 

where 𝑣𝑣𝑗𝑗 and  𝑡𝑡0 are the orbiting velocity and arbitrary time when SMBH Gaa is at the 
zero Doppler effect position for SMBH-j ; 𝜃𝜃𝐼𝐼 is an angle between the sight direction from 
the observation point and the normal direction of the orbital plane (Determined to be 
84.0° , see Sub Sec 2.1) . Then, the source frequency 𝑓𝑓 that provides the observation 
frequency 𝑓𝑓𝑜𝑜𝑜𝑜 is given by 

𝑓𝑓 = 𝑓𝑓𝑜𝑜𝑜𝑜

1 − 𝑣𝑣𝑗𝑗
𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)

 .                                                       (6) 

We selected 𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐 = 0.18 and ⁄  𝑣𝑣𝐺𝐺𝐺𝐺𝑜𝑜 𝑐𝑐 = 0.21  ⁄   in accordance with the DRWP results 
[23]. Thus, eq.(6) can be approximated as 

𝑓𝑓 = 𝑓𝑓𝑜𝑜𝑜𝑜 [1 + 𝑣𝑣𝑗𝑗
𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)] .                                                       (7) 

Considering eq.(4), therefore, the emission power 𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) detected by observation 
points at 𝑓𝑓𝑜𝑜𝑜𝑜 for each SMBH-j is expressed by 

𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) = 𝐾𝐾𝑗𝑗 {𝑓𝑓𝑜𝑜𝑜𝑜 [1 + 𝑣𝑣𝑗𝑗
𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)]}

0.3
.                             (8) 

Considering the values 𝑣𝑣𝑗𝑗 𝑐𝑐⁄ , again, 𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) is given by 
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and right sides of the bottom line diagrams shown in Figure 4 , the cases of k=0.2  and 
k=0.8 are displayed with parameters of n=2, 4, 8, and16. In the FITW processes between 
the VLBI- Data and the DRWP-Model, these n values are varied to find the best fitting 
case.  
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 Though the effects of the time variation in the observed VLBI-Data are weak compared 
with the eclipse effect of the SMBHB, the possibility of time variation when observing 
VLBI-Data can be considered. Except for the case of burst time radiation, the power law 
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where 𝑣𝑣𝑗𝑗 and  𝑡𝑡0 are the orbiting velocity and arbitrary time when SMBH Gaa is at the 
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 .                                                       (6) 

We selected 𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐 = 0.18 and ⁄  𝑣𝑣𝐺𝐺𝐺𝐺𝑜𝑜 𝑐𝑐 = 0.21  ⁄   in accordance with the DRWP results 
[23]. Thus, eq.(6) can be approximated as 

𝑓𝑓 = 𝑓𝑓𝑜𝑜𝑜𝑜 [1 + 𝑣𝑣𝑗𝑗
𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)] .                                                       (7) 

Considering eq.(4), therefore, the emission power 𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) detected by observation 
points at 𝑓𝑓𝑜𝑜𝑜𝑜 for each SMBH-j is expressed by 

𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) = 𝐾𝐾𝑗𝑗 {𝑓𝑓𝑜𝑜𝑜𝑜 [1 + 𝑣𝑣𝑗𝑗
𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)]}

0.3
.                             (8) 

Considering the values 𝑣𝑣𝑗𝑗 𝑐𝑐⁄ , again, 𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) is given by 
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[23]. Thus, eq.(6) can be approximated as 
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Considering eq.(4), therefore, the emission power 𝑃𝑃𝑑𝑑𝑗𝑗(𝑓𝑓𝑜𝑜𝑜𝑜) detected by observation 
points at 𝑓𝑓𝑜𝑜𝑜𝑜 for each SMBH-j is expressed by 
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𝑃𝑃𝑑𝑑𝑑𝑑(𝑓𝑓𝑜𝑜𝑜𝑜) = 𝐾𝐾𝑑𝑑𝑓𝑓𝑜𝑜𝑜𝑜
0.3 [1 + 0.3𝑣𝑣𝑑𝑑

𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)].                             (9) 

To obtain the total emission power from the SMBHB, we apply the eclipse effects 
together with the simple addition of two individual spectra variations. 
 
3.3 Total model function to express the time variation due to SMBHB orbital motion 

The emissions of partner SMBH-j that are shaded by the eclipse switch alternatively 
between Gaa and Gab. In the equation, to express the time-varying power, we defined a 
switching function 𝑆𝑆𝑑𝑑(𝑡𝑡);  thus, the model of the time-dependent emission power 
𝑊𝑊𝑇𝑇(𝑡𝑡) from the SMBHB at Sgr A* is 

𝑊𝑊𝑇𝑇(𝑡𝑡) = {𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑜𝑜𝑜𝑜
0.3 [1 + 0.3𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺

𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)] 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)

+ 𝐾𝐾𝐺𝐺𝐺𝐺𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜
0.3 [1 − 0.3𝑣𝑣𝐺𝐺𝐺𝐺𝑜𝑜

𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)] 𝑆𝑆𝐺𝐺𝐺𝐺𝑜𝑜(𝑡𝑡)} E𝑐𝑐(𝑡𝑡)                                (10) 

where S𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) and  S𝐺𝐺𝐺𝐺𝑜𝑜(𝑡𝑡)  are defined as follows 
       

𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) = { 1             𝑓𝑓𝑐𝑐𝑓𝑓   2𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 1)𝑚𝑚 
1 𝐸𝐸𝑐𝑐(𝑡𝑡)⁄   𝑓𝑓𝑐𝑐𝑓𝑓 2(𝑚𝑚 + 1)𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 2)𝑚𝑚 

 
     

 

and 

𝑆𝑆𝐺𝐺𝐺𝐺𝑜𝑜(𝑡𝑡) = { 1 𝐸𝐸𝑐𝑐(𝑡𝑡)⁄              𝑓𝑓𝑐𝑐𝑓𝑓   2𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 1)𝑚𝑚 
    1            𝑓𝑓𝑐𝑐𝑓𝑓 2(𝑚𝑚 + 1)𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 2)𝑚𝑚 

 
     

  

                                                                             (11) 
44..  SSeelleeccttiioonn  ooff  ppaarraammeetteerrss  ttoo  CCoonnssttrruucctt  tthhee  DDRRWWPP--MMooddeell  
4.1 Power ratio between Gaa and Gab 

The ratio of the radio wave emission power of Gaa and Gab at the1.3 mm wavelength 
is strictly related to the environment, where the source energy is fed by accreting 
plasma from the outside and the efficiency with which the energy of accreting plasma is 
converted into radio wave emissions. In this context, we can conclude that there is no 
apparent difference for the accreting plasma condition between the two SMBHs because 
of their similar orbit situations in the SMBHB. Regarding the conversion efficiency, the 
slight differences in the masses and sizes of the two SMBH may affect the processes by 
which the radio waves are generated. From a macroscopic estimation point of view, 
black holes have, however, constancy in their radio wave emissions energy. It is well 
known that the intensity of radiated electric and magnetic fields of radio waves is 
proportional to the acceleration of the charged particles at the sources. When we 
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Total model function to express the time variation due to 
SMBHB orbital motion
The emissions of partner SMBH-j that are shaded by the eclipse 
switch alternatively between Gaa and Gab. In the equation, to 

express the time-varying power, we defined a switching function 
𝑆𝑗(𝑡) ; thus, the model of the time-dependent emission power 
𝑊𝑇(𝑡)  from the SMBHB at Sgr A* is

(10)

where SGaa (t)  and  SGab (t)   are defined as follows

(11)

Selection of parameters to Construct the DRWP-Model
Power ratio between Gaa and Gab
The ratio of the radio wave emission power of Gaa and Gab at the1.3 
mm wavelength is strictly related to the environment, where the 
source energy is fed by accreting plasma from the outside and the 
efficiency with which the energy of accreting plasma is converted 
into radio wave emissions. In this context, we can conclude that 
there is no apparent difference for the accreting plasma condition 
between the two SMBHs because of their similar orbit situations 
in the SMBHB. Regarding the conversion efficiency, the slight 
differences in the masses and sizes of the two SMBH may affect 
the processes by which the radio waves are generated. From a 
macroscopic estimation point of view, black holes have, however, 
constancy in their radio wave emissions energy. It is well known 
that the intensity of radiated electric and magnetic fields of radio 
waves is proportional to the acceleration of the charged particles 
at the sources. When we describe the macroscopic features of 
the radio-wave emission energy from the Schwarzschild BH, for 
simplicity, the total power WT  can be expressed as

where η is a coefficient to indicate the region of interest in units of 
the radius of gravity, and K is the coefficient of energy conversion 
in units of area. Because GM⁄rg =c2, it follows that

Because of the plasma environment and region of interest for the 
emissions of mm wave length wave radiation from a macroscopic 
point of view, we can take K and η as being almost the same for 
Gaa and Gab SMBHs; thus, we set the ratio of the radio wave 

emissions between Gaa and Gab to be unity.
Using this assumption and the already presented vGaa⁄c and  vGab⁄c 
values, together with θI= 90°-6.0°  , we can express eq.(10) in a 
simplified form as

where WT (t) ≡ WT (t)⁄(KGaa fob
0.3 ). At this point, we recognize that 

the effects of time variation when observing emission spectra are 
minor with a rate of about 20% compared with the effects of the 
eclipse on the time variation, which indicates the rate k (=0.3) for 
shading the observing emissions from one of the SMBHs.

Setting the parameters
Amplitude and Bias
Using this model function as the DRWP-Model based on data 
from the DRWP observations, we carried out a FITW (comparison 
with VLBI-Data). For this purpose, we are required an additional 
adjustment by introducing the amplitude A(m) to match with the 
observation level given by the VLBI-Data, because the function 
of the DRWP-Model given by eq.(14) is expressed only as 
relative quantity that is normalized by the 1.3 mm wavelength 
emission power of the SMBH Gaa. The amplitude A(m) is 
given as a function of the observation day m where m=1,2 and 
3 correspond to days 95, 96 and 97 in 2009, respectively, when 
the observations of VLBI-Data were carried out. Furthermore, we 
introduce another parameter, Bias(m), to represent the emission 
power in the 1.3 mm frequency range from the accreting plasma 
environment surrounding the SMBHB that is not directly related 
to the movement of the SMBHs. Thus, we have prepared the 

(12)

(13)

(14)
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𝑃𝑃𝑑𝑑𝑑𝑑(𝑓𝑓𝑜𝑜𝑜𝑜) = 𝐾𝐾𝑑𝑑𝑓𝑓𝑜𝑜𝑜𝑜
0.3 [1 + 0.3𝑣𝑣𝑑𝑑

𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)].                             (9) 

To obtain the total emission power from the SMBHB, we apply the eclipse effects 
together with the simple addition of two individual spectra variations. 
 
3.3 Total model function to express the time variation due to SMBHB orbital motion 

The emissions of partner SMBH-j that are shaded by the eclipse switch alternatively 
between Gaa and Gab. In the equation, to express the time-varying power, we defined a 
switching function 𝑆𝑆𝑑𝑑(𝑡𝑡);  thus, the model of the time-dependent emission power 
𝑊𝑊𝑇𝑇(𝑡𝑡) from the SMBHB at Sgr A* is 

𝑊𝑊𝑇𝑇(𝑡𝑡) = {𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑜𝑜𝑜𝑜
0.3 [1 + 0.3𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺

𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)] 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)

+ 𝐾𝐾𝐺𝐺𝐺𝐺𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜
0.3 [1 − 0.3𝑣𝑣𝐺𝐺𝐺𝐺𝑜𝑜

𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐼𝐼𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)] 𝑆𝑆𝐺𝐺𝐺𝐺𝑜𝑜(𝑡𝑡)} E𝑐𝑐(𝑡𝑡)                                (10) 

where S𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) and  S𝐺𝐺𝐺𝐺𝑜𝑜(𝑡𝑡)  are defined as follows 
       

𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) = { 1             𝑓𝑓𝑐𝑐𝑓𝑓   2𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 1)𝑚𝑚 
1 𝐸𝐸𝑐𝑐(𝑡𝑡)⁄   𝑓𝑓𝑐𝑐𝑓𝑓 2(𝑚𝑚 + 1)𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 2)𝑚𝑚 

 
     

 

and 

𝑆𝑆𝐺𝐺𝐺𝐺𝑜𝑜(𝑡𝑡) = { 1 𝐸𝐸𝑐𝑐(𝑡𝑡)⁄              𝑓𝑓𝑐𝑐𝑓𝑓   2𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 1)𝑚𝑚 
    1            𝑓𝑓𝑐𝑐𝑓𝑓 2(𝑚𝑚 + 1)𝑚𝑚 ≤ 𝑐𝑐(𝑡𝑡 − 𝑡𝑡0) < (2𝑚𝑚 + 2)𝑚𝑚 

 
     

  

                                                                             (11) 
44..  SSeelleeccttiioonn  ooff  ppaarraammeetteerrss  ttoo  CCoonnssttrruucctt  tthhee  DDRRWWPP--MMooddeell  
4.1 Power ratio between Gaa and Gab 

The ratio of the radio wave emission power of Gaa and Gab at the1.3 mm wavelength 
is strictly related to the environment, where the source energy is fed by accreting 
plasma from the outside and the efficiency with which the energy of accreting plasma is 
converted into radio wave emissions. In this context, we can conclude that there is no 
apparent difference for the accreting plasma condition between the two SMBHs because 
of their similar orbit situations in the SMBHB. Regarding the conversion efficiency, the 
slight differences in the masses and sizes of the two SMBH may affect the processes by 
which the radio waves are generated. From a macroscopic estimation point of view, 
black holes have, however, constancy in their radio wave emissions energy. It is well 
known that the intensity of radiated electric and magnetic fields of radio waves is 
proportional to the acceleration of the charged particles at the sources. When we 
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describe the macroscopic features of the radio-wave emission energy from the 
Schwarzschild BH, for simplicity, the total power 𝑊𝑊𝑇𝑇 can be expressed as 

W𝑇𝑇 = K [ 𝐺𝐺𝐺𝐺
(𝜂𝜂𝑟𝑟𝑔𝑔)2]

2

4π(𝜂𝜂𝑟𝑟𝑔𝑔)2 = 4πK (𝐺𝐺𝐺𝐺
𝜂𝜂𝑟𝑟𝑔𝑔

)
2

.                                    (12) 

where 𝜂𝜂 is a coefficient to indicate the region of interest in units of the radius of gravity, 
and K is the coefficient of energy conversion in units of area. Because GM 𝑟𝑟𝑔𝑔⁄ = 𝑐𝑐2, it 
follows that 

W𝑇𝑇 = 4πK 𝑐𝑐4

𝜂𝜂2   .                                                                           (13) 

Because of the plasma environment and region of interest for the emissions of mm wave 
length wave radiation from a macroscopic point of view, we can take K and 𝜂𝜂 as being 
almost the same for Gaa and Gab SMBH; thus, we set the ratio of the radio wave 
emissions between Gaa and Gab to be unity. 
  Using this assumption and the already presented 𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐 and ⁄  𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐⁄  values, together 
with 𝜃𝜃𝐼𝐼 = 90° − 6.0° , we can express eq.(10) in a simplified form as 

𝑊𝑊𝑇𝑇(𝑡𝑡)̅̅ ̅̅ ̅̅ ̅̅ = {[1 + 0.0537𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)]𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)
+ [1 − 0.0626𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)]𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)}E𝑐𝑐(t)          (14)             
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final form of the model function Mod (t,m) as the DRWP-Model 
starting from eq.(14) as

For decision of the parameters A(m), and Bias(m), we tried to find 
the best fitting values by sweeping the possible range for each 
parameter. 

Period and Initial Phase angle
The most important parameter for the FITW is the period of the 
VSCAT in the VLBI-Data. Because of the principal purpose of the 
present study, we set the period range according to the results of 
the DRWP observations, which indicated the period of T=2200±50 
s. Then, we search T to find the best fit by sweeping T in a range 
from (2200-70)  s to  (2200+70)  s with expanding the range by 
±20 s.  

The second significant parameter for the FITW is the initial phase, 
which is controlled by the time t0 in eq. (15). Taking t=0 as 11:00 
h UT time on the 95th day of VLBI-Data observations, we tried to 
sweep the whole range from 0 to 2π Rad   as the initial phase angle   
Ωt0 with a step of (5π/360 ) Rad. This selected initial phase is kept 
throughout the entire 3 day data collection period until the end of 
the VLBI-Data observations. It should be emphasized that fitting 
in the FITW is conducted with strict constraint to keep the phase 
consistent throughout the entire 3day period for the DRWP-Model 
to avoid making an arbitrary phase shift for adjustment at each 
local time spot.

Evaluation Index
To decide the best fitting point objectively, we defined the 
evaluation index based on Gaussian statistics for the values to 
show coincidence between the VLBI-Data and DRWP-Model. 
Considering the standard deviation value σi associated with data 
points VD(ti)  at the observation time ti (Fish et al, see Table 1[20]), 
we set the argument of coincidence ξi as

where DM(ti)  is the DRWP-Model value at the same time ti. 
Because there are many factors that bother the coincidence between 
two values, it is reasonable to consider the Gaussian stochastics to 
evaluate the significance of ξi . To set the index to be unity when 
all 20 data points coincide with the model values, and considering 
the situation where the occurrence of coincidence is independent 
between each data point at t=ti, we define the evaluation index Ic 
as follows:

Figure 5: Gray code display of the evaluation indices Ic for the 
fitting results between the VLBI-Data and DRWP-Model versus 
the orbiting period of the DRWP-Model (with n=4) and the initial 
phase angle (°) at 11:00 h UT on April 5, 2009. The results are given 
for period (range of 2130 to 2270 s) versus the initial phase angle 
(0 to 360 degrees) set at 11:00 UT on the 95th day. We can see that 
there are 6 candidates for period and initial phase combinations: 
two cases with a period of 2150 s, two cases with a period of 2175 
s, and two cases with a period of 2180 s.

With this evaluation index, we have tested whether the VLBI-Data 
are time-varying or not using a constant as the average value. For 
this subject, the calculated index is 0.54. The meaning of this index 
value is that there is a 50% possibility of the VLBI-Data points 
being constant vs. varying. We can state, then, that the VSCAT 
may be either constant or varying, depending on the standing

Table 3: Determined Parameters: Amp (m), Bias (m), and k.

points approaching the subject of concern. Because our approach 
to VLBI-Data was to clarify the state of VSCAT, we are required  
to find an index that appears to be higher than 0.54. The evaluation 
of the fitting index amplitude parameter A(m), bias parameter 
Bias(m), and the coefficient k to construct the eclipse function are 
given in Table 3.

Fitting Results
Confirmation of the period of VSCAT(variation with short 
characteristics time)
In Figure 5, the fitting index IC of the FITW results given for n=4 
for a period range of 2130 to 2270 s versus an initial phase angle of 
0 to 360 degrees show 6 candidates and initial phase combinations; 
two cases with a period of 2150 s , two cases with a period of 2175 
s, and two cases with a period of 2180 s. The evaluation indices of 
these candidates are given in Table 4. Apparently, these 6 candidate 
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factors that bother the coincidence between two values, it is reasonable to consider the 
Gaussian stochastics to evaluate the significance of ξ𝑖𝑖 . To set the index to be unity 
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For decision of the parameters A(m), and Bias(m), we tried to find the best fitting values 
by sweeping the possible range for each parameter.  
4.2.2 Period and Initial Phase angle 

The most important parameter for the FITW is the period of the VSCAT in the 
VLBI-Data. Because of the principal purpose of the present study, we set the period 
range according to the results of the DRWP observations, which indicated the period of 
T = 2200 ± 50 s. Then, we searched T to find the best fit by sweeping T in a range from 
(2200 − 70) s   𝑡𝑡𝑐𝑐 (2200 + 70) s with expanding the range by ±20 s.   

The second significant parameter for the FITW is the initial phase, which is 
controlled by the time 𝑡𝑡0 in eq. (15). Taking t=0 as 11:00 h UT time on the 95th day of 
VLBI-Data observations, we tried to sweep the whole range from 0 to 2π Rad   as the 
initial phase angle   Ω𝑡𝑡0 with a step of (5π/360 ) Rad. This selected initial phase is 
kept throughout the entire 3 day data collection period until the end of the VLBI-Data 
observations. It should be emphasized that fitting in the FITW is conducted with strict 
constraint to keep the phase consistent throughout the entire 3day period for the 
DRWP-Model to avoid making an arbitrary phase shift for adjustment at each local time 
spot. 
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To decide the best fitting point objectively, we defined the evaluation index based on 
Gaussian statistics for the values to show coincidence between the VLBI-Data and 
DRWP-Model. Considering the standard deviation value σ𝑖𝑖 associated with data points 
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coincidence ξ𝑖𝑖 as 

ξ𝑖𝑖 = (𝑉𝑉𝑉𝑉(𝑡𝑡𝑖𝑖) − 𝑉𝑉𝐷𝐷(𝑡𝑡𝑖𝑖)) σ𝑖𝑖⁄ .                                  (16) 
where DM(𝑡𝑡𝑖𝑖) is the DRWP-Model value at the same time 𝑡𝑡𝑖𝑖 . Because there are many 
factors that bother the coincidence between two values, it is reasonable to consider the 
Gaussian stochastics to evaluate the significance of ξ𝑖𝑖 . To set the index to be unity 
when all 20 data points coincide with the model values, and considering the situation 
where the occurrence of coincidence is independent between each data point at 𝑡𝑡 = 𝑡𝑡𝑖𝑖, 
we define the evaluation index I𝑐𝑐 as follows: 
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Figure 5. Gray code 
display of the evaluation 
indices Ic  for the fitting 
results between the 
VLBI-Data and 
DRWP-Model versus the 
orbiting period of the 
DRWP-Model (with n=4) 
and the initial phase 
angle (°) .at 11:00 h UT 
on April 5, 2009. The 
results are given for 

period (range of 2130 to 2270 s) versus the initial phase angle (0 to 360 degrees) set at 
11:00 UT on the 95th day. We can see that there are 6 candidates for period and initial 
phase combinations: two cases with a period of 2150 s, two cases with a period of 2175 
s, and two cases with a period of 2180 s. 
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With this evaluation index, we tested whether the VLBI-Data are time-varying or not 
using a constant as the average value. For this subject, the calculated index was 0.54. 
The meaning of this index value is that there is a 50% possibility of the VLBI-Data 
points being constant vs. varying. We can state, then, that the VSCAT may be either  

Table 3   Determined Parameters: Amp (m), Bias (m), and k. 
 
 
 
 
 

constant or varying, depending on the standing points approaching the subject of 
concern. Because our approach to VLBI-Data was to clarify the state of VSCAT, we are 
required  to find an index that appears to be higher than 0.54.. The evaluation of the 
fitting index amplitude parameter A(m), bias parameter Bias(m), and the coefficient k 
to construct the eclipse function are given in Table 3. 
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cases consist of 3 pairs of results whose initial phase angles can be 
related by shifting π Rad for the second peaks of the fitting index 
at the same period. By investigating the total 6 candidate cases, we 
concluded, using the results of the FITW, that a period of 2150 s 
with an initial phase angle of 15° is the best fitting case with the 
maximal Ic index of 0.811. 
Figures 6 to 8 show the FITW results for the three cases of the 
eclipse model with n=2, 4, and 8. It is clarified that the DRWP-
Model fits the VLBI-Data well, suggesting the significance of the 
VSCAT with a systematic period of around 2150 sec.
In Table 5 the fitting indexes are shown as the FITW results for 
three eclipse models.

Table 4: Local Maxima of the Fitting Index    

Table 5: Fitting Index for Three Eclipse Model
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55..  FFiittttiinngg  RReessuullttss  
5.1 Confirmation of the period of VSCAT（variation with short characteristics time） 

In Figure 5, the fitting index IC   of the FITW results is given for n=4 for the period  
for a period range of 2130 to 2270 s versus an initial phase angle of 0 to 360 degrees 
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Figure 6 
The results of the 
FITW for three 
observation days, 
from April 5 (95th 
day) to April 7 (97th 
day) in 2009 with the 
DRWP-Model with an 
eclipse function of 
n=2. The red spots 
with error bars are 
the VLBI-Data series 
presented by Fish et 
al [20 ]and the black 
curves are the 
DRWP-Model. 
 
 
 
 

 
with n=2, 4, and 8. Though there are slight differences among the three models, the 
results show that all cases have sufficiently high Ic values, giving us 80% confidence to 
conclude that the FITW is successful 

. In terms of concluding that fitting was complete, however, three data points given by 
the labels a, b, and c in the diagrams in Figures 6, 7, and 8, show deviations around σ. 
Considering these data do still not depart from the error bar limit and owe only 15% in 
relation to all other data, we consider that these three data points do not negate the 
conclusion of a successful FITW.  

 
5.2 Significance of the Period Selection 
As has been stated previously, the most significant parameter in the present FITW is 

the period T when searching for the VSCAT in the VLBI-Data. To make a firm 
conclusion, we expanded the period range from the initial setting based on the DRWP 
observation result of 2200 ± 50 s to a wider range of 1550 to 2850 s. In Figure 9, the  

 

Figure 6: The results of the FITW  for  three observation days, from April 5 (95th day) to April 7 (97th day) in 2009 with the DRWP-
Model with an eclipse function of n=2. The red spots with error bars are the VLBI-Data series presented by Fish et al [20 ]and the black 
curves are the DRWP-Model.
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with n=2, 4, and 8. Though there are slight differences among the 
three models, the results show that all cases have sufficiently high 
Ic values, giving us 80% confidence to conclude that the FITW 
is successful. In terms of concluding that fitting was complete, 
however, three data points given by the labels a, b, and c in 
the diagrams in Figures 6, 7, and 8, show deviations around σ. 
Considering these data do still not depart from the error bar limit 
and owe only 15% in relation to all other data, we consider that 
these three data points do not negate the conclusion of a successful 
FITW.
Significance of the Period Selection
As has been stated previously, the most significant parameter in the 
present FITW is the period T when searching for the VSCAT in the 
VLBI-Data. To make a firm conclusion, we expanded the period 
range from the initial setting based on the DRWP observation result 
of 2200 ± 50 s to a wider range of 1550 to 2850 s. In Figure 9, the

Figure 7: As with Figure 6 but for the case of the eclipse function 
parameter n=4 in the DRWP-Model.

Figure 8: As with Figure 6 but for the case of the eclipse function 
parameter n=8 in the DRWP-Model.

Figure 9: The fitting index Ic for the maximal case for each period 
in the range from 1550 to 2850 s. DRWM indicates the period 
range of 2200 ± 50 sec that was determined by the decameter radio 
wave pulse observations [23] . The red line shows the fitting index 
Ic for hypothetical  assumption of constant VLBI-Data.

the fitting index Ic for the maximum case at each period in the 
range from 1550 to 2850 s is indicated together with Ic =0.56 (Red 
line ) as a reference to show the assumption of constant VLBI-
Data. It is remarkable that there is a single maximum within the 
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Figure 8 
As with Figure 6 but for 
the case of the eclipse 
function parameter n=8 
in the DRWP-Model. 
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Figure 8 
As with Figure 6 but for 
the case of the eclipse 
function parameter n=8 
in the DRWP-Model. 
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Figure 9.  The fitting index Ic 
for the maximal case for each 
period in the range from 1550 
to 2850 s. DRWM indicates the 
period range of 2200 ± 50 sec 
that was determined by the 
decameter radio wave pulse 
observations [23] . The red 
line shows the fitting index Ic 
for hypothetical assumption  
of constant VLBI-Data.  
 
 
 

the fitting index Ic for the maximum case at each period in the range from 1550 to 2850 
s is indicated together with Ic =0.56 (Red line ) as a reference to show the assumption of 
constant VLBI-Data. It is remarkable that there is a single maximum within the period 
range at the period of 2150 s, which coincides with the DRWP prediction, although the 
peak occurs right at the minimum limit of the DRWP prediction (see Figure 9). 

Before stating that the VSCAT is a complete manifestation of the SMBHB effects, we 
need to carefully check the present FITW processes, because we are analyzing the time 
variation within the restrictions of the data sampling time window. We will investigate 
this using other approaches. One is involved in additional work on the closure phase 
data provided by Fish et al [21].  The second is the approach by the Fourier 
transformation that reveals the potential periodicity of the time-varying component of 
the data.  

 
6.  VSCAT in the closure phase data 
6,1 Model of the rotating asymmetry fitted to the VLBI-closure phase 
   The closure phase related to VLBI-Data contains significant information on the 
structure of the source region within 50 μas, as pointed out by Fish et al [21]. as has 
been described in the Introduction and Review sections in the present paper.  
     We have tried to find the VSCAT by applying the periodicity of orbital motion of 
SMBHB with respect to the closure phase data provided by FEHT (see Sec. 2) that are 
reproduced for the VSCAT-related portions (VLBI-CLP-Data). As pointed out in the 
original paper by Fish et al, [21], the closure phase data are a manifestation of the 
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period range at the period of 2150 s, which coincides with the 
DRWP prediction, although the peak occurs right at the minimum 
limit of the DRWP prediction (see Figure 9).
Before stating that the VSCAT is a complete manifestation of the 
SMBHB effects, we need to carefully check the present FITW 
processes, because we are analyzing the time variation within the 
restrictions of the data sampling time window. We will investigate 
this using other approaches. One is involved in additional work on 
the closure phase data provided by Fish et al [21]. The second is the 
approach by the Fourier transformation that reveals the potential 
periodicity of the time-varying component of the data.

VSCAT in the closure phase data
Model of the rotating asymmetry fitted to the VLBI-closure 
phase
The closure phase related to VLBI-Data contains significant 
information on the structure of the source region within 50 μas, 
as pointed out by Fish et al [21] as has been described in the 
Introduction and Review sections in the present paper.

We have tried to find the VSCAT by applying the periodicity of 
orbital motion of SMBHB with respect to the closure phase data 
provided by FEHT (see Sec. Review) that are reproduced for the 
VSCAT related portions (VLBI-CLP-Data). As pointed out in 
the original paper by Fish et al, [21], the closure phase data are a 
manifestation of the

Figure 10: Assumption of a rotating  bar  structure  that represents 
the SMBHB orbital motion observed at remote points. The 
distance between Gaa and Gab corresponds to 40 μas, as shown by 
the results of DRWP observations. It seems to rotate twice within 
a SMBHB orbiting period  of 2200±50 s.

asymmetrical structure of the radiation sources. Based on the 
DRWP results  [23] , we have assumed that there could be the 
existing VSCAT in the VLBI-CLP-Data  whose time variation 
could be synchronized with the orbiting motion of the SMBHB.
In Figure 10, a model of rotating asymmetry is shown on the basis 
of the SMBHB results presented in the DRWP study. Because 
the asymmetry is caused by aligning two SMBHs, Gaa and Gab, 
the asymmetrical region formed with a bar-like structure rotates 

with an orbiting period of 2200 ± 50 s . The line of sight of the 
interferometer observation stations is almost in a parallel direction 
to the orbital plane. The bar structure occupies a similar position 
two times within one rotation of the orbital motion of the SMBHs. 
We constructed a simplified model (DRWP-CLP-Model) to make 
the possible occurrence of the closure phase 𝜃𝐶𝐿 detectable by the 
interferometer with triangle baselines as

where 𝛺 = (2𝜋⁄𝑇𝑜𝑟𝑏)  with the orbiting period of the SMBHB 𝑇𝑜𝑟𝑏, 
and 𝜃𝑀𝑎𝑥 is the possible maximum closure phase angle.
In Figure 11, examples of FITW with the VLBI-CLP-Data are 
given for two cases of the DRWP-CLP-Model with setting periods 
of 2105 and 2200 s with the fitting index Ic for each. The definition 
of the fitting index is the same as that given in eq.(17), but the 
amount of data for this case of the closure phase is limited only by 
10 points where two data points coming from the Low and high 
frequency channels are overwrapped, forming a pair at the same 
sampled time for the three cases given in Table 2. We used all data 
as principle but avoided the last data point observed on the 93rd 
day 13.8750 h, because it appeared to deviate from the trend of the 
other data. observed on day 93 in 2009 .

Figure 11: Fitting  of  the  DRWP- CLP-Model (black curves) 
with the, VLBI-CLP-Data (green spots) observed on day 93 in 
2009 . Two orbital periods are set for DRWP-CLP-Model as 2105 
s (top panel) and 2200 s (bottom panel). The fitting index (FI) is 
indicated in the each panel.

Two orbital periods are set for DRWP-CLP-Model as 2105 s 
(top panel) and 2200 s (bottom panel). The fitting index (FI) is 
indicated in the each panel. The σ values are not indicated in Table 
2 of the second paper [21] for FEHT, but in Figure 2 of their paper, 
σ values for the corresponding data are recorded, and these are 
usable for the present analysis of the fitting index.
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asymmetrical structure of the radiation sources. Based on the DRWP results [23] , we 
have assumed that there could be the existing VSCAT in the VLBI-CLP-Data whose 
time variation could be synchronized with the orbiting motion of the SMBHB.  

In Figure 10, a model of rotating asymmetry is shown on the basis of the SMBHB 
results presented in the DRWP study. Because the asymmetry is caused by aligning two 
SMBHs, Gaa and Gab, the asymmetrical region formed with a bar-like structure rotates 
with an orbiting period of 2200 ± 50 s . The line of sight of the interferometer 
observation stations is almost in a parallel direction to the orbital plane. The bar 
structure occupies a similar position two times within one rotation of the orbital motion 
of the SMBHs. We constructed a simplified model (DRWP-CLP-Model) to make the 
possible occurrence of the closure phase   𝜃𝜃𝐶𝐶𝐶𝐶 detectable by the interferometer with 
triangle baselines as 

  𝜃𝜃𝐶𝐶𝐶𝐶 =   𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐[2𝛺𝛺(𝑡𝑡 + 𝑡𝑡0)] .                (18)
where 𝛺𝛺 = (2𝜋𝜋 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜⁄ ) with the orbiting period of the SMBHB 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and   𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 is the 
possible maximum closure phase angle. 

In Figure 11, examples of FITW with the VLBI-CLP-Data are given for two cases of 
the DRWP-CLP-Model with setting periods of 2105 and 2200 s with the fitting index Ic 
for each. The definition of the fitting index is the same as that given in eq.(17), but the 
amount of data for this case of the closure phase is limited only by 10 points where two 
data points coming from the Low and high frequency channels are overwrapped, 
forming a pair at the same sampled time for the three cases given in Table 2. We used 
all data as principle but avoided the last data point observed on the 93rd day 13.8750 h, 
because it appeared to deviate from the trend of the other data. observed on day 93 in 
2009 . 
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Figure 11.   
 Fitting of the DRWP- 
CLP-Model (black curves) with 
the ,BLBI-CLP-Data (green 
spots) observed on day 93 in 
2009 . Two  orbital periods are 
set for DRWP-CLP-Model as 
2105 s (top panel) and 2200 s 
(bottom panel). The fitting index 
(FI) is indicated in the each 
panel. 

 
 

Two orbital periods are set for DRWP-CLP-Model as 2105 s (top panel) and 2200 s 
(bottom panel). The fitting index (FI) is indicated in the each panel. The σ values are not 
indicated in Table 2 of the second paper [21] for FEHT, but in Figure 2 of their paper, σ 
values for the corresponding data are recorded, and these are usable for the present 
analysis of the fitting index. 

In this FITW, the assumption of there being no VSCAT for this time series of the 
closure phase data gives a fitting index of 0.564. We understand that no VSCAT 
condition has a likelihood of about 50%. In a paper on persisting time variation reported 
by FEHT, only a longer characteristic time was reported. However, as shown in each 
panel of Figure 11, for fitting indexes higher than 0.65, there remains room to discuss 
the periodic variation of VSCAT in the VLBI-CLP-Data.  
 
6.2 Effects of the Earth’s rotation at the VLBI sight 

In Figure 12, the fitting indexes produced as a result of the FITW for the 
VLBI-CLP-Data and DRWP -CLP-Model are given for the period range of 2005 to 2500 s. 
The results of the fitting indexes are clearly higher than those produced for the no 
VSCAT assumption for the closure phase. Though there are peaks of relatively high 
fitting indexes with periods of 2050, 2105, and 2200 s (0.70 and 0.65, respectively), the 
principal period of 2150 that has been confirmed as the period of the VSCAT for the flux 
density of the radiated 1.3 mm wavelength radio waves at SgrA* is a remarkable dip 
point. This evidence seems to show a contradiction between the flux density and closure 
phase in VSCATs. However, we found that the 2150 s periodic variation is still the  
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In this FITW, the assumption of there being no VSCAT for this 
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We understand that no VSCAT condition has a likelihood of about 
50%. In a paper on persisting time variation reported by FEHT, 
only a longer characteristic time was reported. However, as shown 
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there remains room to discuss the periodic variation of VSCAT in 
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In Figure 12, the fitting indexes produced as a result of the FITW 
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period range of 2005 to 2500 s. The results of the fitting indexes are 
clearly higher than those produced for the no VSCAT assumption 
for the closure phase. Though there are peaks of relatively high 
fitting indexes with periods of 2050, 2105, and 2200 s (0.70 and 
0.65, respectively), the principal period of 2150 that has been 
confirmed as the period of the VSCAT for the flux density of the 
radiated 1.3 mm wavelength radio waves at SgrA* is a remarkable 
dip point. This evidence seems to show a contradiction between 
the flux density and closure phase in VSCATs. However, we found 
that the 2150 s periodic variation is still the
 

Figure 12: The fitting indexes of the FITW for the VLBI-CLP-
Data and DRWP-CLP-Model for the period range of 2005 to 2500 
s. The peak portion of the Fitting Index shifted from 2150 s to 
a range of 2050-2105 s due to the rotation effects of the VLBI 
sight. The red line is the index of the no VSCAT assumption for 
the closure phase.

principal intrinsic rotation period ; that is, we understand that the 
time variation in the closure phase detected by the VLBI shows 
results relative to the sights which are rotating with the Earth [21] 
. The setting period of the DRWP -CLP-Model given by eq.(18) 
with the angular velocity 𝛺 (= 2𝜋⁄𝑇𝑜𝑟𝑏 )   should be understood as 
to be observed by transformed to 𝛺 𝑑𝑒𝑡 by Earth’s rotation where 
the VLBI triangle baselines are rotating with the angular velocity 
𝛺 𝐸 as

where the sign ± is decided by knowing the relative spin direction 
between the detectable closure phase and the orbiting motion of 
the SMBHB. The present FITW results show that for an orbiting 
period  𝑇𝑜𝑟𝑏 (= 2150 sec  )  and an Earth rotation  period of 86400 
s, the rotation period 𝑇𝑑𝑒𝑡 of the detectable closure phase can be 
predicted to be 2097 s for the case with the + sign. Within the 
possible error limit, the resulting 𝑇𝑑𝑒𝑡 coincides with the FITW 
results for the VLBI-CLP-Data and DRWP CLP Model that show 
gradual peaks in the fitting index at around 0.7 in the period 
range from 2095 to 2105 s (see Figure 12). Though future work 
is required to gain accurate statistics because of the extremely 
limited data available for the closure phase in the present VSCAT 
study, we can state that there is periodic variation in the structure 
at Sgr A*. This result supports the results of the VSCAT for the 
flux density, which can be attributed to the orbital motion of the 
SMBHB, as concluded from the DRWP observations.

Proof of Necessity of the Coincidence by the Fourier 
Transformation Method (PNCF)
Fourier transformation under the effects of the data sampling 
time window (DSTW)

Figure 13: Depiction of the DSTW for the data published for 1.3 
mm wavelength radio waves at Sgr A* by Fish et al [20] observed 
on April 5 (95th day),6 (96th day), and 7 (97th day). The DSTW 
consists of two hierarchies. The first is the time interval of 86400 
s that separates observation days and the second is for observation 
intervals during periods of 10800 s, in average, during which 6 to 
8 sampling time windows were set, as indicated by the black bars 
in green boxes.

Here, we describe the necessity of the coincidence in the FITW. The 
significant point is that the coincidence between the DRWP-Model 
and VLBI-Data for the VSCAT is not an accidental coincidence 
nor simply the external appearance. To investigate the underlying 
periodicity, therefore, we conducted FITW processes through the 
Fourier transformation for the time series of the data for both the 
VLBI-Data and DRWP-Model. In this section, we start with the 
expression of the data sampling time window (DSTW) throughout 
the entire three days of VLBI-Data collection. In Figure 13, the 
DSTW is displayed based on Table 1 corresponding to the FEHT 
paper. Using a sampling moment of t𝑚 (m=1,2,3 ……, 20), we 
define the function of the DSTW ℎ(𝑡, t𝑚) as a continuous function; 
that is, we express the sampled data point f(t𝑚) for the observed 
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of 86400 s, the rotation period 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 of the detectable closure phase can be predicted to be 
2097 s for the case with the + sign. Within the possible error limit, the resulting 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑  
coincides with the FITW results for the VLBI-CLP-Data and DRWP CLP Model that 
show gradual peaks in the fitting index at around 0.7 in the period range from 2095 to 
2105 s (see Figure 12). Though future work is required to gain accurate statistics 
because of the extremely limited data available for the closure phase in the present 
VSCAT study, we can state that there is periodic variation in the structure at Sgr A. 
This result supports the results of the VSCAT for the flux density, which can be 
attributed to the orbital motion of the SMBHB, as concluded from the DRWP 
observations. 
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because of the extremely limited data available for the closure phase in the present 
VSCAT study, we can state that there is periodic variation in the structure at Sgr A. 
This result supports the results of the VSCAT for the flux density, which can be 
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Figure 13. Depiction of the DSTW for the data published for 1.3 mm wavelength 

radio waves at Sgr A* by Fish et al [20] observed on April 5 (95th day),6 (96th day), and 
7 (97th day). The DSTW consists of two hierarchies. The first is the time interval of 
86400 s that separates observation days and the second is for observation intervals 
during periods of 10800 s, in average, during which 6 to 8 sampling time windows were 
set, as indicated by the black bars in green boxes.   

 
Here, we describe the necessity of the coincidence in the FITW. The significant 

point is that the coincidence between the DRWP-Model and VLBI-Data for the VSCAT 
is not an accidental coincidence nor simply the external appearance. To investigate the 
underlying periodicity, therefore, we conducted FITW processes through the Fourier 
transformation for the time series of the data for both the VLBI-Data and DRWP-Model. 
In this section, we start with the expression of the data sampling time window (DSTW) 
throughout the entire three days of VLBI-Data collection. In Figure 13, the DSTW is 
displayed based on Table 1 corresponding to the FEHT paper. Using a sampling moment 
of t𝑚𝑚 (m=1,2,3 ……, 20), we define the function of the DSTW ℎ(𝑡𝑡, t𝑚𝑚)  as a continuous 
function; that is, we express the sampled data point f(t𝑚𝑚) for the observed physical 
quantity results f(𝑡𝑡) as 

f(t𝑚𝑚) =  f(𝑡𝑡)ℎ(𝑡𝑡, t𝑚𝑚) .                                  (20) 
 When we set ℎ(𝑡𝑡, t𝑚𝑚)  as 
h(𝑡𝑡. 𝑡𝑡𝑚𝑚)    

=       

{
 

 ∑ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚)
M

m=0
       for   η𝑇𝑇𝑑𝑑 < 𝑡𝑡 < η𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜 

 
                        0                   for      η𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜 < 𝑡𝑡 < (η+1)𝑇𝑇𝑑𝑑                    

 .                 (21)      
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physical quantity results f(𝑡) as

When we set  ℎ(𝑡, t𝑚) as  

h (𝑡. 𝑡𝑚)

where 𝑇𝑑 𝑖𝑠 a day separation and η is the intrger to indicate passing days after 95 day. The Fourier transformation of eq.(20) is expressed 
( details are described in Appendix D), as
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 
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where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   

This𝐹(𝜔𝑏) represents ,all of three functions as for the case of idealistic data series for VLBI-Data, for the combination of the sinusoidal 
function of the DRWP-Model and the average of 160 cases of a random noise series to provide a flat (white noise) spectra.
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡) = cos(𝜔0𝑡). The Fourier transformation corresponding 
to eq, (23) is given by
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where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚
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random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1
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∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     
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∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
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∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 
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where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  
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This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
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where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

Then, as described in Appendix D, we obtained the following results for D𝐷𝑀𝑜𝑑(𝜔):

 

27 
 

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

where Ms is the DSTW number adjusted to be τ0𝑏 = 𝑀𝑠𝑇𝐼.
Apart from the singular point at ω = 𝜔0 , to express the VSCAT, the spectra given by eq.(26) can be expressed as function of 𝜔 by

 

27 
 

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

where 𝐾𝐷𝑀𝑜𝑑 is a constant that is expressed by

 

27 
 

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝑀𝑜𝑑(𝜔)| are expressed by

 

27 
 

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

for the range of 𝜔  close to  𝜔0; and

 

27 
 

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

for the range of 𝜔 apart from 𝜔0. In eqs. (33)  𝐷𝑅
DRod and 𝐷𝐼𝑚

DRod are defined as
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
and
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
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2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]
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𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]
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where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
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×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
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for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3
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.                       (28)
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2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
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𝑀𝑀𝑠𝑠

𝑚𝑚=1
]
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
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1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 
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where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑏𝑏) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝑀𝑀3

𝑚𝑚=1
.                       (28)

Then, as described in Appendix D, we obtained the following results for D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔): 
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×  S(𝜔𝜔 − 𝜔𝜔0){2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1}𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)}.     (29)

where Ms is the DSTW number adjusted to be 𝜏𝜏0𝑏𝑏 =  𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼.  
Apart from the singular point at ω = 𝜔𝜔0 , to express the VSCAT, the spectra 

given by eq.(26) can be expressed as function of 𝜔𝜔 by 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜).                                                        (30) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (31)
𝑀𝑀3

𝑚𝑚=1
 

Then, the absolute values of the spectra of the DRWP-Model, |D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| are expressed 
by 

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 1
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )

×  S(𝜔𝜔 − 𝜔𝜔0)|2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1|},                  (32) 

For the range of 𝜔𝜔 close to 𝜔𝜔0; and  

|D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) √(𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1| .    (33) 

for the range of 𝜔𝜔 apart from 𝜔𝜔0.  In eqs. (34) and, (35)  𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  are defined as  

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝑀𝑀𝑠𝑠

𝑚𝑚=1
 ,            (34)

and 

,
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These results are characterized by the existence of ripple-like 
modulation in the full range of spectra multiplied by the form 
{2cos[𝜔 𝑇𝑑 ] + 1}, where the spectra show multiple local peaks at 
every frequency corresponding to 𝜔 = 2𝜋𝜁/𝑇𝑑  (for the integer 𝜁 ), 
as given in Figure 16.
The spectra given by eqs.(32) and (33) are associated with 
complicated DSTW effects. To obtain pure VSCAT spectrum peaks 
with the DSTW effects removed, we use the Fourier transformation 

for a random noise time series that close up the features of the 
present DSTW by taking the average of 160 independent random 
noise time series. In the generation of the random noise data 
for the analysis, random numbers are distributed at completely 
synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑚 of the 
DSTW, the noise data N𝑅𝑎𝑛(t𝑚) are generated for 160 independent 
cases using
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 

where 𝑅𝑅𝑎𝑛(𝑡𝑚) ( 𝑅𝑎𝑛 = 1,2, … .160) is a series of four-digit random  numbers  varying from 0 to 1, and  𝑉𝑉 is the variation range, which 
was taken as 0.53 (Jy) to  fit with the variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the observations 
on day 97. Additionally, in eq.(36), the  constant  𝑉𝐶  is  selected to be 1.69 (Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide 
with the VLBI-Data.
When there is no restriction on the sampling timing of 𝑅𝑅𝑎𝑛(𝑡), as in the DSTW, we are able to have the flat spectrum that could be 
expressed with a constant A:
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𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 

As described in Appendix D, also, by using this averaged spectrum, 𝐹(𝜔𝑏) can be considered to be a constant A that reflects the evidence 
of white noise. The Fourier transformation D𝑅𝐴𝑀𝐷(𝜔) corresponding to D(𝜔) given by eq.(22) is then expressed by
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𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 

This relation gives the following result:

 

28 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 

where  𝐾𝑅𝐴𝑁𝐷  is a constant that, setting  𝐴0 = 1 ,  is given by
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

Except for the frequency range with singular points that shows the existence of the VSCAT at ω = 𝜔0, the result given by eq.(37) is 
almost equal to the spectra of the DRWP-Model when the constant is changed from 𝐾𝐷𝑀𝑜𝑑 to, 𝐾𝑅𝐴𝑁𝐷 .Then, the absolute value of the 
RAND spectra can be expressed by

 

29 
 

where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

Then,  we  can  find  the  unknown  value  of  S(𝜔 − 𝜔0) ∙ √(𝐷 𝑅
𝐷𝑀𝑜𝑑)

2 + (𝐷𝐼𝑚
𝐷𝑀𝑜𝑑)

2 using the results of the numerical experiments 
|D𝐷𝐴𝑁𝐷(𝜔)| by averaging 160 cases of the random noise series. That is,
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

Then, we can express |D𝐷𝑀𝑜𝑑(𝜔)|  as
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

 

29 
 

where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

.
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼 = − ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝐼𝐼=1
 .          (35)            

  These results are characterized by the existence of ripple-like modulation in the full 
range of spectra multiplied by the form {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1}, where the spectra show 
multiple local peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋𝜋𝜋/(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) (for the 
integer 𝜋𝜋 ), as given in Figure 16. 

The spectra given by eqs.(32) and (33) are associated with complicated DSTW 
effects. To obtain pure VSCAT spectrum peaks with the DSTW effects removed, we use 
the Fourier transformation for a random noise time series that close up the features of 
the present DSTW by taking the average of 160 independent random noise time series. 
In the generation of the random noise data for the analysis, random numbers are 
distributed at completely synchronized times with the DSTW of the VLBI-Data that is 
applied to the data sampling of the DRWP-Model also. At 𝑡𝑡𝐼𝐼  of the DSTW,  the noise 
data N𝑅𝑅𝑅𝑅𝑅𝑅(t𝐼𝐼) are generated for 160 independent cases using 

N𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼) × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝐶𝐶.            (36) 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝐼𝐼)  ( 𝑅𝑅𝑅𝑅𝑠𝑠 = 1,2, … .160) is a series of four-digit random numbers varying 
from 0 to 1, and 𝑉𝑉𝑉𝑉 is the variation range, which was taken as 0.53 (Jy) to fit with the 
variation range of the VLBI-Data on days 95 and 96 and 0.32 (Jy) corresponding to the 
observations on day 97. Additionally, in eq.(36), the constant 𝑉𝑉𝐶𝐶 is selected to be 1.69 
(Jy) for days 95 and 96 and 2.62 (Jy) for day 97 to coincide with the VLBI-Data.  

When there is no restriction on the sampling timing of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), as in the DSTW, 
we are able to have the flat spectrum that could be expressed with a constant A: 

A = 1
160 ∑ ∫ 𝑉𝑉𝑉𝑉

∞

−∞

160

𝑅𝑅𝑅𝑅𝑅𝑅=1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡 .                  (37)            

As described in Appendix D, also, by using this averaged spectrum, 𝐹𝐹(𝜔𝜔𝑜𝑜) can be 
considered to be a constant A that reflects the evidence of white noise. The Fourier 
transformation D𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝜔𝜔)  corresponding to D(𝜔𝜔) given by eq.(22) is then expressed by 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑚𝑚∗𝐷𝐷1
𝐼𝐼=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

 

                                                                   (38) 
This relation gives the following result: 

D𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝐼𝐼=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
     (39) 
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

where
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 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  

If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the procedure to obtain an absolute value through the 
Fourier analyses applied to the DRWP-Model; that is, dividing the absolute value |D𝑉𝐿𝐵𝐷(𝜔)| of the calculated Fourier transformed results 
by |D𝑅𝐴𝑁𝐷(𝜔)|, for the VLBI-Data, we can search for the possible spectra peaks by removing the DSTW effects that naturally occurred 
during the time of the observations by FEHT. Thus, we compared  |D𝑉𝐿𝐵𝐷(𝜔)| ⁄ |D𝑅𝐴𝑁𝐷(𝜔)| with
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Figure 14. Absolute values of the results of the direct Fourier transformation 
|D𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜔𝜔)|,  |D𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)|   and |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)| corresponding, respectively, to the VLBI-Data 
(top panel), DRWP-Model (middle panel), and RAND (bottom panel). The abscissa 
indicates the frequency expressed in μHz. We use the relation f ∙ T = 106 to translate 
the frequency f in  μHz with the period T in s, vice versa.. In all panels, frequencies 
corresponding to the two principal spectra peaks at T=1075 s and 2150 s are indicated. 
In all panels, the spectra are associated with remarkable ripples whose repeating 
frequency intervals are half of 10.2 to half of 10.3 μHz (see Appendix E). 

 
 

|D𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)|⁄  to verify the existence of the peaks in the spectra at the same 
frequencies (periods inversely) by removing the DSTW (data sampling time window) 
effects.  
 
7..2 Numerical Results of the Fourier Transformation with DSTW effects 

In Figure 14, the direct Fourier-transformed results |D𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜔𝜔)|, |D𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)|   and 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)| corresponding to the VLBI-Data, DRWP-Model, and RAND are displayed in 
the top, middle and bottom panels, respectively. In this figure, the abscissa is indicated 
by the frequency f in μHz . The transformation of the abscissa in the period of  

Figure 14:  Absolute  values  of  the  results  of  the  direct  Fourier  transformation D𝑉𝐿𝐵𝐷(𝜔)|, |D𝐷𝑀𝑜𝑑(𝜔)| and |D𝑅𝐴𝑁𝐷(𝜔)| corresponding, 
respectively, to the VLBI-Data (top panel), DRWP-Model (middle panel), and RAND (bottom panel). The abscissa indicates the 
frequency expressed in μHz. We use the relation f ∙ T = 106 to translate the frequency f in μHz with the period T in s, vice versa.. In all 
panels, frequencies corresponding to the two principal spectra peaks at T=1075 s and 2150 s are indicated. In all panels, the spectra are 
associated with remarkable ripples whose repeating frequency intervals are around 11.6 µ Hz and with half of that in several portions 
(see Appendix E).

|D𝐷𝑀𝑜𝑑(𝜔)| ⁄ |D𝑅𝐴𝑁𝐷(𝜔)| to verify the existence of the peaks in the 
spectra at the same frequencies (periods inversely) by removing 
the DSTW (data sampling time window) effects.

Numerical Results of the Fourier Transformation with DSTW 
effects
In Figure 14, the direct Fourier-transformed results |D𝑉𝐿𝐵𝐷(𝜔)|, 
|D𝐷𝑀𝑜𝑑(𝜔)| and |D𝑅𝐴𝑁𝐷(𝜔)| corresponding to the VLBI-Data, 
DRWP-Model, and RAND are displayed in the top, middle and 
bottom panels, respectively. In this figure, the abscissa is indicated 
by the frequency f in μHz . The transformation of the abscissa in 
the period of
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   

 

29 
 

where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  
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where 𝑇𝑇𝑑𝑑 𝑖𝑖𝑖𝑖 a day separation and η is the intrger to indicate passing days after 95 day , 
the Fourier transformation of eq.(20) is expressed ( details are described in Appendix D), 
as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 . (22

∞

−∞
 ) 

where 𝐹𝐹(𝜔𝜔𝑜𝑜) is the Fourier transformation of f(𝑡𝑡)  for an idealistic data series, 
assuming that there is no effect of the DSTW; that is,  

𝐹𝐹(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)
∞

−∞
 e−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡 .                       (23)

This𝐹𝐹(𝜔𝜔𝑜𝑜) represents ,all of three functions as for the case of idealistic data series  for 
VLBI-Data, for  the combination of the sinusoidal function of the DRWP-Model and the 
average of 160 cases of a random noise series to provide a flat (white noise) spectra.    
Using a function of the DRWP-Model to represent VSCAT, here, we considered f(𝑡𝑡) =
cos(𝜔𝜔0𝑡𝑡). The Fourier transformation corresponding to eq, (23) is given by 

F(𝜔𝜔𝑜𝑜) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (24) 

Considering the relationship with the delta function, eq.(24) gives the expression 
F(𝜔𝜔𝑜𝑜) = π[δ(𝜔𝜔𝑜𝑜 − 𝜔𝜔0) + δ(𝜔𝜔𝑜𝑜 + 𝜔𝜔0)].                   (25)          

Then, the Fourier transformation D(𝜔𝜔)  corresponding to eq.(22) can be expressed as 

D𝐷𝐷𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = 1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}.          (26) 

where 𝑡𝑡𝑚𝑚
∗  is defined in relation to the DSTW 𝑡𝑡𝑚𝑚 as  𝑡𝑡𝑚𝑚

∗ = 𝑡𝑡𝑚𝑚 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)  for the 
observation date 𝜂𝜂 (= 0 for the first day ,95 and 2 for the last day, 97);  𝑇𝑇𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑜𝑜  are the 
time lengths for a day (86400 s) in seconds, and the observation interval for each 
observation day are determined to be 3 h (10800 s) by adjusting the final rest time for 
each observation day. It should be noted that we use a time series 𝑡𝑡𝑚𝑚

∗   consisting of 
random intervals.in general, between each time interval, 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . Contrary to the 

general time interval , we consider a time series with a constant interval 𝑇𝑇𝐼𝐼  by 
introducing a new function S(𝜔𝜔 − 𝜔𝜔0)  ; that is,     

𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)
∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝑀𝑀3

𝑚𝑚=1
= S(𝜔𝜔 − 𝜔𝜔0) .                            (27)   
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where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that, setting 𝐴𝐴0 = 1 , is given by 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑
1

𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1)
∙ (𝑒𝑒𝑖𝑖𝜔𝜔2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝜔𝜔1𝑡𝑡𝑚𝑚∗ ) .                                      (40)

𝑀𝑀1

𝑚𝑚=0

 Except for the frequency range with singular points that shows the existence of the 
VSCAT at ω = 𝜔𝜔0, the result given by eq.(37) is almost equal to the spectra of the 
DRWP-Model when the constant is changed from  𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷   to, 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .Then, the absolute 
value of the RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| =
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| .             (41) 

Then, we can find the unknown value of S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2 using the 

results of the numerical experiments |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|   by averaging 160 cases of the random 
noise series. 
That is, 

S(𝜔𝜔 − 𝜔𝜔0) ∙ √(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2   = 2(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
|2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| ∙ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .       (42) 

Then, we can express |D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| as 

|D𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔)| =

{
 
 
 

 
 
 

 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|

√(𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷𝐼𝐼𝑚𝑚 )2
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

{𝑠𝑠𝑖𝑖𝑠𝑠
{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}
𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) ∙ 𝐺𝐺(𝜔𝜔)}

………… . for   𝜔𝜔0 − ∆𝜔𝜔 < 𝜔𝜔 <  𝜔𝜔0 + ∆𝜔𝜔 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|
𝐾𝐾𝑅𝑅𝑀𝑀𝐷𝐷𝐷𝐷
𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ……… for 𝜔𝜔0 − ∆𝜔𝜔 > 𝜔𝜔 , or 𝜔𝜔 > 𝜔𝜔0 + ∆𝜔𝜔 
 

 

                                                                   (43) 
  where  

 𝐺𝐺(𝜔𝜔) = |2cos[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1| |2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1|⁄ .      (44) 
If there are VSCATs that have potential periodicity in the VLBI-Data, we can apply the 
procedure to obtain an absolute value through the Fourier analyses applied to the 
DRWP-Model; that is, dividing the absolute value |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| of the calculated Fourier 
transformed results by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|, for the VLBI-Data, we can search for the possible 
spectra peaks by removing the DSTW effects that naturally occurred during the time of 
the observations by FEHT. Thus, we compared |D𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)|⁄  with  
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Figure 15 Spectra of the VLBI-Data and DRWP-Model with the effects of the DSTW 
removed through division with RAND (see eq. (46)) using |D𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)|⁄  (in the 
top panel) and |D𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)|⁄ (in the bottom panel). The results of the direct 
Fourier transformation (Figure 14) show that the DSTW effects were cleaned up, and 
peaks at 930 μHz (1075 s) and 465 μHz (2150 s) are indicated, coinciding with the 
results of the VLBI-Data and DRWP-Model for several minor peaks corresponding to 
the frequency 1/𝑡𝑡𝑚𝑚

∗ . The modulation of the surrounding peaks of the local frequency 
range was newly formed due to division by |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)| through the effects of the 
function G(𝜔𝜔) (see eq.(47)). 
 
 
T s is made using a mutual relation at f ∙ T = 106 . In all spectra given in the top to 
bottom panels, a similar tendency of complex features can be seen. This is characterized 
by the case of the RAND spectra, suggesting common effects of the DSTW. Whole 
spectra are clearly modulated by the DSTW of a day length plus 3hour observation 
periods, as theoretically predicted in Appendixes D and E. The appearance of 
modulation in the VLBI-Data spectra and DRPW-Model is evidence to realize  the 
theoretical background in terms of setting the concept of DSTW and righteousness 
focusing the average of multiple random noise series to remove the DSTW effects. 
 
 7.3 Numerical Results of the Fourier Transformation by Removing DSTW Effects 
  The numerical results for |D𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)|⁄  and   |D𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| |D𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉(𝜔𝜔)|⁄  are 
displayed in Figure 15 where spectra in the frequency range of 250 to 2500 μHz are  

Figure 15: Spectra of the VLBI-Data and DRWP-Model with the effects of the DSTW removed through division with RAND (see 
eq. (46)) using  |D𝑉𝐿𝐵𝐷(𝜔)| ⁄ |D𝑅𝐴𝑁𝐷(𝜔)|(in the top panel) and |D𝐷𝑀𝑜𝑑(𝜔)| ⁄ |D𝑅𝐴𝑁𝐷(𝜔)|(in the bottom panel). The results of the direct 
Fourier transformation (Figure 14) show that the DSTW effects were cleaned up, and peaks at 930 μHz (1075 s) and 465 μHz (2150 s) 
are  indicated,  coinciding  with  the results of the VLBI-Data and  DRWP-Model  associated with several  minor  peaks  corresponding  
to the frequency 1/𝑡∗ . The modulation of the surrounding peaks of  the  local  frequency range was newly formed due to division by 
|D𝑅𝐴𝑁𝐷(𝜔)| through  the  effects  of  the function G(𝜔) (see eq.(47)).

T s is made using a mutual relation at f ∙ T = 106 . In all spectra  given  in  the  top  to bottom panels, a similar tendency of complex 
features can be seen. This is characterized by the case of the RAND spectra, suggesting common effects of the DSTW. Whole spectra are 
clearly modulated by the DSTW of a day length observation periods, as theoretically predicted in Appendixes D and E. The appearance 
of modulation in the VLBI-Data spectra and DRPW-Model is evidence to realize the theoretical background in terms of setting the 
concept of DSTW and righteousness focusing the average of multiple random noise series to remove the DSTW effects.

 Numerical Results of the Fourier Transformation by Removing  DSTW  Effects 
The numerical results for |D𝑉𝐿𝐵𝐷(𝜔) |⁄|D𝑅𝐴𝑁𝐷(𝜔) | and |D𝐷𝑀𝑜𝑑(𝜔) |⁄|D𝑅𝐴𝑁𝐷(𝜔) | displayed in Figure 15 where spectra in the frequency 
range of 250 to 2500 μHz are
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Figure 16.  Close up of the Fourier Transformation results (with the DSTW effects 
removed) for the VLBI-Data and DRWP-Model overwrapped together in the top panel 
for the 930 μHz peak (1075 s period) and the bottom panel for the 465 μHz peak (2150 s 
period). The oscillating subpeaks associated with the principal spectra peaks in both 
panels are explained in Appendix D Modulation with the feature of oscillations takes 
place with the local maxima frequencies at every 1/(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) 𝐻𝐻𝐻𝐻 ≈ 10.2 𝜇𝜇Hz. In the case 
of a period of 1075 s, the maximum peak is shifted one step (≈ 10.2 μHz) to a frequency 
higher than 930.2 μHz being subjected to DSTW modulation. The real maximum peak is 
modified by the DSTW (see G(𝜔𝜔) given in eq.(44)), as confirmed by the complete 
coincidence with the DRWP-Model, whose original center peak is given at 930.232 μHz . 
 
 
indicated for VLBI-Data (top panel) and DRWP-Model (bottom panel) divided by 
|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| to remove the DSTW. The complicated features observed in the results of the 
direct Fourier transformation (Figure 14) are cleaned up so that principal spectra peaks 
are revealed at 930 μHz (1075 s) and 465 μHz (2150 s). These are associated with 
several minor peaks corresponding to a frequency of 1/𝑡𝑡𝑚𝑚

∗ . because the absolute level of 
the spectra are determined through mathematical manipulation of the square root to 
detect the absolute values. Through the process of taking the square root, spectra peaks 
are generated in addition to the original peeks, though the original peaks are never lost. 
After cleaning up the modulation feature of the spectra, further modulation are 
remained required in the local frequency ranges surrounding the peaks, as shown in 
Figure 15. The remainder of the modulation effects can be understood through eq.(44) 

Figure 16: Close up of the Fourier Transformation results (with the DSTW effects removed) for the VLBI-Data and DRWP-Model 
overwrapped together in the top panel for the 930 μHz peak (1075 s period) and the bottom panel for the 465 μHz peak (2150 s period). 
The oscillating subpeaks associated with the principal spectra peaks in both panels are explained in Appendix D. Modulation with the 
feature of oscillations takes place with the local maxima frequencies at every 1/ 𝑇𝑑  𝐻𝑧  ≈ 11.6 𝜇Hz. In the case of a period of 1075 s, the 
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maximum peak is shifted one step (≈ 11.6 μHz) to a frequency higher than 930.2 μHz being subjected to DSTW modulation. The real 
maximum peak is modified by the DSTW (see G(𝜔) given in eq.(44)), as confirmed by the complete coincidence with the DRWP-Model, 
whose original center peak is given at 930.232 μHz .

indicated  for  VLBI-Data  (top  panel)  and  DRWP-Model  
(bottom  panel)  divided  by |D𝑅𝐴𝑁𝐷(𝜔)| to remove the DSTW. The 
complicated features observed in the results of the direct Fourier 
transformation (Figure 14) are cleaned up so that principal spectra 
peaks are revealed at 930 μHz (1075 s) and 465 μHz (2150 s). 
These are associated with several minor peaks corresponding to 
a frequency of 1/𝑡∗ because the absolute level of the spectra are 
determined through mathematical manipulation of the square root 
to detect the absolute values. Through the process of taking the 
square root, spectra peaks are generated in addition to the original 
peeks, though the original peaks are never lost. After cleaning 
up the modulation feature of the spectra, further modulation are 
remained required in the local frequency ranges surrounding the 
peaks, as shown in Figure 15. The remainder of the modulation 
effects can be understood through eq.(44) (see Appendix D, also), 
where the origin of the modulation effects are indicated by G(𝜔) . 
Except for the case of 𝜔0 = 0, modulation takes place as oscillations 
in the spectra with recurrence of peaks at frequencies , every 1/ 𝑇𝑑 
Hz.

Figure 16 shows the close up feature of the principal peaks of the 
spectra at around 930 μHz (1075 sec) and 465 μHz (2150sec) for 
VLBI-Data and DRWP-Model. overwrapping together in these 
resultant spectra; we confirm, here, the complete coincidence 
of the spectra for the VLBI-Data and DRWP-Model. In the case 
of spectra with a period of 1075 s, the maximum peak is shifted 
one step (≈ 11.6 μHz) to a frequency higher than 930.2 μHz being 
subjected to DSTW modulation. We did not select this maximum 
peak of 940.4 μHz, as the principal peak because the modulation of 
the DSTW on the principal peaks is apparent, as confirmed by the 
evidence of complete coincidence of peaks of spectra between 

VLBI data and the DRWP-Model; that is, the DRWP-Model is 
basically constructed with spectra with peaks at 930 μHz (1075 
s) and 465 μHz (2150 s). That is, we conclude that by the Fourier 
analysis with data sampling through the DSTW, the highest peak is 
shifted from 930.2 μHz to 940.4 μHz, completely coinciding with 
the case of VLBI-Data.

The existence of a peak at 465.1 μHz (T=2150 s), together with 
one at 930.2 μHz (T=1075 s), in the VLBI-Data and DPRW-Model 
is confirmation of the necessity of the existence of the VSCAT in 
VLBI-Data coinciding with the DPRW-Model that is constructed 
based on the results of the SMBHB [23].

Discussion
Effects of data sampling time window (DSTW) on the Direct 
Fitting of the DRWP-Model
The importance of the DSTW effects on the present FITW are 
described in Sec PNCF. in relation to the coincidence between 
the VIBI-Data and DRWP-Model in terms of the transformed 
frequency space. Here, we provide a further discussion of the 
effects of the DSTW on the direct fitting (fitting in the time-
space) between the VIBI-Data and DRWP-Model to give further 
confirmation of the existence of VSCAT in the VLBI-Data that 
coincides with the DRWP-Model..
When function f(t𝑚) is expressed with f(t) 𝑎𝑛𝑑 h(t, t𝑚) (see eq. 
(20)) we can rewrite h(t, t𝑚)  functions  with inverse  Fourier  
transformation  as  described in  Appendix  C by eq.(C4) using 
angular frequency  ω = 2π⁄𝑇  for the period T; that is, 
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The integration in eq.(45), that is subjected to the wide range of the period T makes the 
contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
𝑡𝑡𝑚𝑚; then we can approximate eq.(45) to the following  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) ≈ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]                                              (46) 

where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
Because the interval 𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚 in DETW is random , we set a constant interval 𝑇𝑇𝑠𝑠 by 
introducing a new time difference ∆𝑡𝑡𝑚𝑚 as 

∆𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠 .                           (47) 
Then, we have the following relation, (details are described in Appendix C)  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 ∆𝑡𝑡𝑚𝑚] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑆𝑆)]              (48) 

For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
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𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
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𝑇𝑇𝑆𝑆
− 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 

The integration in eq.(45), that is subjected to the wide range of the period T makes the contribution from above two terms which 
approximately vanish except for the case 𝑡 ≈ 𝑡𝑚; then we can approximate eq.(45) to the following
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contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
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where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
Because the interval 𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚 in DETW is random , we set a constant interval 𝑇𝑇𝑠𝑠 by 
introducing a new time difference ∆𝑡𝑡𝑚𝑚 as 

∆𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠 .                           (47) 
Then, we have the following relation, (details are described in Appendix C)  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
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𝑇𝑇 (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑆𝑆)]              (48) 

For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
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𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
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) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
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In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 

where 𝐻c is a constant whose value is decided to fit the result of integration in eq.(45); and in DSTW we set a constant interval 𝑇𝑠 . 
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The integration in eq.(45), that is subjected to the wide range of the period T makes the 
contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
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where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
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introducing a new time difference ∆𝑡𝑡𝑚𝑚 as 
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For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 
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As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 
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In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
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In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 

for1< m < M   
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f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
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𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
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) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 

 ; for1< m < M
𝑠
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contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
𝑡𝑡𝑚𝑚; then we can approximate eq.(45) to the following  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) ≈ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]                                              (46) 

where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
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compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
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period range predicted by the DRWP observations (P.R. given in the diagrams). Though 
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For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is f(t) = 𝐴𝑚𝑐𝑜𝑠(2𝜋𝑡 ⁄ 𝑇𝑜𝑏). Then, it follows from 
eq.(20) that (see Appendix C)
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compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
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series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
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In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 
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Figure 17,  
Maximum fitting indexes (Vari) 
for the three DRWP-Models 
with eclipse function 
parameters of n=2, 4, and 8 at 
each period in the range of 
1500 to 3950 s. For values 
greater than 2500 s, the peak of 
the maximum fitting index is 
shown at a period of 2950 s. 
This is caused by the coupling 
of the principal period, 2150 s 
(P.R.), with the DSTW, which 
can be estimated as an interval 
of 1243 s. The red line (Line) 
shows the fitting index for the 
case with the assumption of no 
VSCAT. 
 
 
 
 
 
 

 
the second peak is further out of the predicted rage, we observe that the second peak 
occurs as result of the coupling with the DSTW, and it becomes clear that this peak is 
intimately related to the first peak period. Regarding the argument in eq.(50) where we 
have described the effect of DSWT ; the occurrence of the second peak at 𝜔𝜔2𝑛𝑛𝑛𝑛 =
2𝜋𝜋 𝑇𝑇2𝑛𝑛𝑛𝑛⁄ , is related to the first peak at 𝜔𝜔1𝑠𝑠𝑠𝑠 = 2𝜋𝜋 𝑇𝑇1𝑠𝑠𝑠𝑠⁄  by 
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Figure 17: Maximum fitting indexes (Vari) for the three DRWP-Models with eclipse function parameters of n=2, 4, and 8 at each period 
in the range of 1500 to 3950 s. For values greater than 2500 s, the peak of the maximum fitting index is shown at a period of 2950 s. This 
is caused by the coupling of the principal period, 2150 s (P.R.), with the DSTW, which can be estimated as an interval of 1243 s. The red 
line (Line) shows the fitting index for the case with the assumption of no VSCAT.
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h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = − ∫ {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)] + 𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]}
∞

−∞

𝑑𝑑𝑇𝑇
𝑇𝑇2 .                      (45) 

The integration in eq.(45), that is subjected to the wide range of the period T makes the 
contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
𝑡𝑡𝑚𝑚; then we can approximate eq.(45) to the following  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) ≈ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]                                              (46) 

where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
Because the interval 𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚 in DETW is random , we set a constant interval 𝑇𝑇𝑠𝑠 by 
introducing a new time difference ∆𝑡𝑡𝑚𝑚 as 

∆𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠 .                           (47) 
Then, we have the following relation, (details are described in Appendix C)  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 ∆𝑡𝑡𝑚𝑚] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑆𝑆)]              (48) 

For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
4 {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
+ 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚] + 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
− 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 

2 ; for 1 < m < M       (47)
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h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 ∆𝑡𝑡𝑚𝑚] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑆𝑆)]              (48) 

For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 
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compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
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period range predicted by the DRWP observations (P.R. given in the diagrams). Though 

4 . for 1 < m < M       (48)
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series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 
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The integration in eq.(45), that is subjected to the wide range of the period T makes the 
contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
𝑡𝑡𝑚𝑚; then we can approximate eq.(45) to the following  
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where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
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∆𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠 .                           (47) 
Then, we have the following relation, (details are described in Appendix C)  
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For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
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As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 
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𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
4 {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
+ 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚] + 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
− 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
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𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 
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compared with the VLBI-Data are given for the maximum values in each period; that is,  
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maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
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In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
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the second peak is further out of the predicted rage, we observe that the second peak occurs as result of the coupling with the DSTW, and 
it becomes clear that this peak is intimately related to the first peak period. Regarding the argument in eq.(48) where we have described 
the effect of DSWT , the occurrence of the second peak at 𝜔2𝑛𝑑 = 2𝜋⁄𝑇2𝑛𝑑, is related to the first peak at 𝜔1𝑠𝑡 = 2𝜋⁄𝑇1𝑠𝑡 by
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Figure 17,  
Maximum fitting indexes (Vari) 
for the three DRWP-Models 
with eclipse function 
parameters of n=2, 4, and 8 at 
each period in the range of 
1500 to 3950 s. For values 
greater than 2500 s, the peak of 
the maximum fitting index is 
shown at a period of 2950 s. 
This is caused by the coupling 
of the principal period, 2150 s 
(P.R.), with the DSTW, which 
can be estimated as an interval 
of 1243 s. The red line (Line) 
shows the fitting index for the 
case with the assumption of no 
VSCAT. 
 
 
 
 
 
 

 
the second peak is further out of the predicted rage, we observe that the second peak 
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Figure 18 
 Histogram showing 
the interval 𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚 
of the DSTW for all 
three days from 11:00  
h(UT) on the 95th day 
to 14:00 h on the 97th 
day. 
 

 
where 𝑇𝑇𝑆𝑆 is the one of representative sampling period. The sampling period 𝑇𝑇𝑆𝑆 of the 
VLBI-Data is not fixed to a single value; therefore, the effect of the sampling period 
shows complicated features. However, we observe two clear tendency, as given in Figure 
18. The first is the data sampling period around 1200 s. The 8 sampled data points 
possibly affect as the constant sampling time window with a period around 1200s. By 
assuming the second peak was a shadow of the first peak, we deduced the possible 
average period of the sampling, from eq.(51) as 

𝑇𝑇𝑆𝑆 = 𝑇𝑇1𝑠𝑠𝑠𝑠 ∙ 𝑇𝑇2𝑛𝑛𝑛𝑛
𝑇𝑇2𝑛𝑛𝑛𝑛 + 𝑇𝑇1𝑠𝑠𝑠𝑠

= 2150 × 2950
2950 + 2150 = 1243 (𝑠𝑠𝑠𝑠𝑠𝑠)                 (52) 

We can accept these results as possible values within a considerable error range around 
1200 s, which can be considered one of the dominant values of the DSTW. Then we 
consider that the occurrence of the first peak represents the direct manifestation of the 
period connected to underlying physical processes predicted by DRWP observations. By 
referring to the results of the Fourier analysis given in Sec.7, we can confirm this 
context; that is, while we observe the complete existence of the spectra peak at 465 μHz 
corresponding to a period 2150 s (Figure 15), there is no signature of the peak at 339.0 
μHz, corresponding to a period of 2950 s.     

The second tendency of DSTW that we can find from the histogram, in Figure 18 ,is  
randomness for 11 sampling intervals whose periods are spread for over a fairly wide 
range, from 3000 sec to 86400.  Due to this randomness of DSTW no remarkable 𝑇𝑇𝑆𝑆 
appears to bother the sampling period for the detection of the first peak at 2150 sec, 
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the dominant values of the DSTW. Then we consider that the 
occurrence of the first peak represents the direct manifestation of 
the period connected to underlying physical processes predicted 
by DRWP observations. By referring to the results of the Fourier 
analysis given in Sec PNCF, we can confirm this context; that is, 
while we observe the complete existence of the spectra peak at 
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Fitting of the DRWP-Model to Random noise with the DSTW
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Figure 19. Examples of fitting 
results for 10 random noise 
series with the same DSTW for 
the VLBI-Data and 
DRWP-Model. The evaluation 
indexes are lower than ithe 
constant assumption of no 
VSCAT (LINE A) for 7 cases, but 
case No.6 suggests the existence 
of accidental coincidence, 
although the fitting index is  

clearly lower than in the case of maximum coincidence (DRWM) 
 
 
In Figure 19, the fitting results for the DRWP-Model with n=4 that is applied to the 

FITW with the VLBI-Data resulting evaluation index of 0.811 (see Figure 9.) are 
indicated with the fitting results for10 sets of random noise data. As expected, the 
fitting results show an apparently less coincidence. For the majority of cases of random 
noise, the fitting status are worse than for the case of stationary assumption (given by 
LINE A.). There is, however, one case, No.6, which is determined to be an accidental 
coincidence, although we do not accept its fit, because the evaluation index was still 
clearly lower than 0.8. 

These numerical experiments with random noises suggest, however, that if we rely 
only on the time-space fitting between VLBI-Data and DRWP-Model, there would occur 
accidental coincidences in parallel to real coincidences. From this point of view, it is 
essential to investigate the potential periodicity of VSCAT using the Fourier 
transformation as carried out in Sec,7.. 

 
8,3 Robust repetition phase  

In addition to the confirmation of the necessity of the coincidence in FITW that has 
already been described, we are further able to confirm the extremely robust 
characteristics of the time variation in VSCAT by keeping the phase given at the 
starting time of 11:00 h (UT) on the 95th day .As we see in Figures 7 and 8, the 
coincidences take place at extremely critical moments in the variation in the 
DRWP-Model, indicating steep variation in the eclipse effects, as indicated for the case 

Figure 19: Examples of fitting results for 10 random noise series with the same DSTW for the VLBI-Data and DRWP-Model. The 
evaluation indexes are lower than the constant assumption of no VSCAT (LINE A) for 7 cases, but case No.6 suggests the existence of  
accidental  coincidence, although the fitting index is clearly lower than in the case of maximum coincidence (DRWM)

In Figure 19, the fitting results for the DRWP-Model with n=4 that 
is applied to the FITW with the VLBI-Data resulting evaluation 
index of 0.811 (see Figure 9.) are indicated with the fitting results 
for10 sets of random noise data. As expected, the fitting results 
show an apparently less coincidence. For the majority of cases 
of random noise, the fitting status are worse than for the case of 
stationary assumption (given by LINE A.). There is, however, one 
case, No.6, which is determined to be an accidental coincidence, 
although we do not accept its fit, because the evaluation index was 
still clearly lower than 0.8.

These numerical experiments with random noises suggest, however, 
that if we rely only on the time-space fitting between VLBI-Data 
and DRWP-Model, there would occur accidental coincidences in 
parallel to real coincidences. From this point of view, it is essential 
to investigate the potential periodicity of VSCAT using the Fourier 
transformation as carried out in Sec PNCF.

Robust repetition phase
In addition to the confirmation of the necessity of the coincidence 
in FITW that has already been described, we are further able to 
confirm the extremely robust characteristics of the time variation 
in VSCAT by keeping the phase given at the starting time of 
11:00 h (UT) on the 95th day .As we see in Figures 7 and 8, the 
coincidences take place at extremely critical moments in the 
variation in the DRWP-Model, indicating steep variation in the 
eclipse effects, as indicated for the case of the 97th day after 12:00 
h (UT), for example, when the time passed are more than 170,000 
s after setting the initial phase angle. For the datum sampled at this 
timing  it is allowed only ±30 sec to obtain  an fitting index value 
of 0.9 as achieved by this datum ; we are required accurate stability 
with a blurring rate of less than 1.8 × 10−4. That is, we cannot 

expect the continuation of such highly accurate repetition, except 
for in the orbiting motion of the celestial body.

On generation of the gravitational wave from the SMBHB
In terms of accepting the results of the present FITW for the VLBI-
Data and VLBI-CLP-Data, it could be argued that the result would 
be contradictory to the possible generation of gravitational waves 
from the binary of compact celestial objects such as neutron stars 
and black holes. Due to radiation of the intense gravitational wave 
energy, it is impossible to exist for an extreme system, such as 
that described in the present work. That is, if we apply the Landau 
Lifshitz equation [28] for the variation of the distance of the binary 
with parameter that we have indicated in Figure 2, two bodies 
merge within 8 hours.

However, when we reconsider the current paradigm for gravitational 
waves from compact objects, there still remains a wide area of 
investigation. These are 1) Has the assumption that the observed 
gravitational waves are sourced by star mass to the medium mass 
black hole binaries been proved experimentally? 2) Is there any 
evidence of the merging of the supermassive black hole that 
involves confirmation via observations of the gravitational waves?
We are at the point of considering that there is a possibility to 
quest for the case of no gravitational waves from the SMBHB. 
The present theories regarding gravitational waves from black 
holes concern stellar mass to intermediate mass black holes, but 
the theories regarding the generation of gravitational waves from 
the SMBH are deferred for future studies

Conclusion
The millimeter wavelength VLBI observations in the EHT project 
are based on the firm results of Fish et al, revealed a promising 
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direction for research on the formation of the coherent radio wave 
flux density related to the black hole shadow at Sgr A*. However, 
because of the unexpected time variation in the VLBI data for 
sources within a few Schwartzschild radii, the formation of a 
visualized radio wave image of Sgr A* has been delayed three 
years after the publication of the image of M87* which were 
observed almost the same periods in April 2017. Explanations for 
the time variation and the persistence of the time variation in the 
structure within 50 μas have been mostly related to movements 
of the turbulent plasma, whose dense electrons interrupt stable 
propagation of the emitted mm wavelength radio waves. Under 
such circumstance, the EHTC forced to release the visualized 
image of the shadow of SgrA*. Unfortunately from the stand 
point of smooth progress of the astrophysics, the released image 
contains double defects; one is the structural defects caused by 
misevaluation of initial image for the step processes of hybrid 
mapping and other is caused by misevaluation of time varying 
nature of the mm wavelength radio wave emissions. Without 
relation to the such recently occurred issue of defects, the studies 
of sources around SgrA* continued firm progresses after 2009, by 
1.3 mm wavelength VLBI that approaches to the source size of the 
event horizon of SgrA*.

Independently of the high-frequency radio wave observation tasks, 
we have considered the radio wave radiation from the closest 
regions of the event horizon of the supermassive Kerr black holes 
in the decameter wavelength range, which is generated as whistler 
mode waves associated with the magnetized plasma environment. 
We reviewed the results of decameter radio wave research,; after 
tunneling through the dense plasma region (where the propagating 
wave frequency f is less than the local plasma frequency 𝑓𝑃) , 
the whistler mode waves are converted into ordinary mode radio 
waves, which can propagate through the galactic space until 
arriving at the observation point at the Earth’s surface in the form 
of pulses reflecting the spin and orbital motion of the sources, 
as deciphered from the observed complexed spectra of the pulse 
periods. By analyzing pulse periods with the regular FFT method, 
information about the supermassive black holes has been clarified. 
The black holes at Sgr A* consist of the binary with masses of 
2.27 million 𝑀⦿ (called temporarily Gaa) and 1.94 million 𝑀⦿ 
(called Gab) orbiting with a period of  2200 ± 50 sec.  The  radii of 
the orbits of Gaa and Gab are  1.89 × 107km   and  2.21 × 107km 
, respectively. The range covered by the orbits of  4.10 × 107km  
corresponds to 3.25  𝑅𝑠𝑠   for the currently believed Shwarzschild 
radius 𝑅𝑠𝑠   of the single black hole with a mass of about  4.28 × 
106 𝑀⦿. The supermassive black holes are orbiting with speeds of 
0.18c and 0.21c for Gaa and Gab, respectively.

In the present paper, we concern with time variations detected at 
Sgr A* using the 1.3 mm wavelength VLBI observations of the 
Fish et al group that affected to start of EHT group, especially 
those presented in the initial studies by Fish et al regarding 
variation with short characteristic time (VSCAT) of around a few 
ten minutes, although the authors did not explicitly point this out, 
except for longer time scales in the order of days. Our concern is 

whether the time variation in the flux density has the same period 
of around 2200 ± 50 sec. as the manifestation of the orbital motion 
of the SMBHB.
 
For the purpose of the comparison with the flux density of 1.3 mm 
wavelength VLBI data (VLBI-Data) for the VSCAT, a model with 
time variation coinciding with  the orbital motion of the SMBHB 
has been constructed. For this, we have employed essential 
parameters obtained by observations of the decameter radio wave 
pulses (DRWP). Considering the difference in the total mass of 
the supermassive black hole based on the orbital motion, 4.21 × 
106 𝑀⦿ and 4.28 × 106 𝑀⦿, as deduced by star tracking studies, 
the tilt of the orbital plane from the looking direction from the 
earth are deduced to be 6°; that is, we are observing the eclipse of 
the SMBHB. Using the constructed time variation model (DRWP-
Model), the comparison of the VLBI data and DRWP-Model has 
been carried out focusing on VSCAT. To make the evaluation of 
the fitting objective, a statistical index to evaluate the significance 
of the fitting state is defined with a Gaussian statistic function 
which indicates the unity when both data completely coincide.

By fitting works (FITW) between DRWP-Model and the VLBI-
Data from the results published by Fish et al (observed from May 
5 to 7 corresponding to days 95, 96 and 97,respectively in 2009), 
the existence of VSCAT has been concluded. In the original paper, 
the authors pointed out the variation in the observed flux density 
on a daily basis between the previous two days (days 95 and 96) 
and the data observed on day 97, indicating variation from 2.07 Jy 
on days 95 and 96 days to 2.4 Jy on day 97 in term of the median 
value. By overwrapping on the variation in the daily time scale as 
a variation in the background luminosity, we further conclude that 
there exists VSCAT with definite periodicity at a period of 2150 
± 2.5s with a fitting index of 0.81, which is remarkably closer to 
unity than the fitting index of 0.54, which can be considered as 
the threshold for assuming a constant flux density through out the 
entire three days; the resultant period is within the period range of 
2200 ± 50 s predicted by the DRWP observation study, though it 
is close to the lowest limit. To verify that the fitting of the DRWP-
Model to VLBI-Data is not accidental, the necessity of the resultant 
periodicity of the VSCAT has been investigated by applying the 
Fourier transformation. The results have revealed the significance 
of the data sampling time window (DSTW) with respective to the 
periods of the observing phenomena. By taking 160 cases of the 
random noise utilized to detect the Fourier-transformed DSTW, the 
coupling effects of DSTW with the intrinsic time-varying spectra 
of the observing phenomena are determined. After discrimination 
of the effects of the DSTW, it is concluded that the VSCAT in the 
VLBI-Data  has intrinsic time variation with a period of at 2150 
± 2.5s for the data published by Fish et al for three days in May 
2009.
 
In addition to the intensity of the flux density from the compact 
area of SgrA*, the significance of the non-zero closure phases of 
the VLBI triangle system were pointed out by the authors; within 
limited amount of usable data for the FITW, we tried to investigate 
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the coincidence with the closure phase data of VLBI-data (VLBI-
CLP-Data ) and the simplified model based on the orbital motion 
of the SMBHB (DRWP-CLP-Model), which consists of an aligned 
bar of two SMBHBs observed from Earth with a line of sight that 
is almost parallel to the orbital plane of the SMBHB. Though the 
published data with accurate observation timing are limited to only 
10 data points within a day on day 93 in 2009, the maximum fitting 
indexes in the FITW show values in the range around 0.7 in the 
maximum region in the period from 2090 to 2105 s, suggesting 
that there is rotation of the structure at the Sgr A* with a proper 
rotation period of 2150 s that is shifted to around 2100 s due to 
the effect of the Earth’s rotation. However, because of the limited 
data points for the closure phase, confirmation is deferred to future 
study.

Through the results of the FITW, we conclude that, in the data 
reported by the 1.3 mm wavelength VLBI for compact sources 
within a few Schwartzschild radii, the variation in the short 
characteristic time scale exists not only as a random scatter 
feature, but also as a long-persisting periodic variation with a 
period of 2150 ± 2,5 s. This coincides with the prediction of the 
existence of the super-massive black hole binary at Sgr A* with 
orbits expanding to 4.10 × 107km concluded by the DRWP work.
To accept this conclusion, however, we are required a paradigm 
shift regarding the generation of gravitational waves from black 
holes if we are to state that all black holes radiate gravitation waves. 
As future work, we will study the generation of gravitational waves 
for the case of the SMBHB questing for cases of no gravitational 
wave from SMBHB..
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Appendix A
To deduce the masses of the SMBHB, Newtonian dynamics is applied with circular orbit approximation. By applying the Kepler relation 
for the Gaa and Gab BHs with masses of 𝑀𝐺𝑎𝑎 and 𝑀𝐺𝑎𝑏, respectively, we obtained the relation
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 .                                          (𝐴𝐴2) 

Considering that the orbital velocity 𝑣𝑣𝑜𝑜𝐺𝐺𝑜𝑜  can be rewritten using the orbit radius 𝑅𝑅𝑜𝑜𝐺𝐺𝑜𝑜 
as 

𝑣𝑣𝑜𝑜𝐺𝐺𝑜𝑜 = 2𝜋𝜋
𝑇𝑇0𝐺𝐺

 𝑅𝑅𝑜𝑜𝐺𝐺𝑜𝑜,                                       (𝐴𝐴3) 

Then eq.(A1) can be written by 

𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 = 1
𝐺𝐺

𝑇𝑇0𝐺𝐺
2𝜋𝜋 (𝑣𝑣𝑠𝑠𝐺𝐺 + 𝑣𝑣𝑠𝑠𝐺𝐺

𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃𝐼𝐼
)

3              
    (𝐴𝐴4) 

where 𝑣𝑣𝑠𝑠𝐺𝐺 and  𝑣𝑣𝑠𝑠𝐺𝐺 represent the velocity component in the direction of the line of the 
sight for the Gaa and Gab BHs, respectively. 
    In Oya’s paper [15] 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 is concluded to have a median value of 4.21 ×
106 𝑀𝑀⦿  by assuming 𝜃𝜃𝐼𝐼 ≅ 90°; but when we use 4.28 × 106 𝑀𝑀⦿ , as  concluded by 
Gillessen et al for 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 , the expression of , 𝜃𝜃𝐼𝐼 𝑖𝑖𝑠𝑠  improved as,  
 

4.28 × 106 𝑀𝑀⦿
4.21 × 106 𝑀𝑀⦿

= ( 1
𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃𝐼𝐼

)
3

  .                  (𝐴𝐴5) 

 
From eq,(A5), 𝜃𝜃𝐼𝐼 can be calculated to be 83.988° ≅ 84°. 
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The ray path under the condition of intense gravity can be found by calculating the 

where 𝑣𝑠𝑎 and 𝑣𝑠𝑏 represent the velocity components in the direction of the line of the sight for the Gaa and Gab BHs, respectively.
In Oya’s paper [23]  𝑀𝐺𝑎𝑎 + 𝑀𝐺𝑎𝑏  is  concluded  to  have  a  median  value  of  4.21 × 106 𝑀⦿ by assuming 𝜃𝐼 ≅ 90°; but when we  use  
4.28 × 106 𝑀⦿ ,  as concluded  by Gillessen et al for 𝑀𝐺𝑎𝑎 + 𝑀𝐺𝑎𝑏 , the expression of , 𝜃𝐼 𝑖𝑠 improved as,
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AAppppeennddiixx  AA  
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    In Oya’s paper [15] 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺 is concluded to have a median value of 4.21 ×
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The ray path under the condition of intense gravity can be found by calculating the 

https://doi.org/10.1086/374581
https://doi.org/10.1086/424004
https://doi.org/10.1086/424004
https://doi.org/10.1086/424004
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\Doi 10.1051\0004-6361:200810924
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\Doi 10.1051\0004-6361:200810924
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\Doi 10.1051\0004-6361:200810924
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\Doi 10.1051\0004-6361:200810924
https://doi.org/10.1086/588806
https://doi.org/10.1086/588806
https://doi.org/10.1086/588806
https://doi.org/10.1086/588806
doi:10.1088/2041-8205/727/2/L36
doi:10.1088/2041-8205/727/2/L36
doi:10.1088/2041-8205/727/2/L36
doi:10.1088/2041-8205/727/2/L36
doi:10.1088/2041-8205/727/2/L36
doi:10.3847/0004-637X/820/2/90
doi:10.3847/0004-637X/820/2/90
doi:10.3847/0004-637X/820/2/90
doi:10.3847/0004-637X/820/2/90
https://doi.org/10.1093/pasj/63.5.1093
https://doi.org/10.1093/pasj/63.5.1093
https://doi.org/10.1093/pasj/63.5.1093
https://doi.org/10.1093/pasj/63.5.1093
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.3847\1538-4357\aa5c41
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.3847\1538-4357\aa5c41
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.3847\1538-4357\aa5c41
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.3847\1538-4357\aa5c41
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.1007\s10509-012-1337-6
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.1007\s10509-012-1337-6
F:\opast pdf\Mahendra\EESR\2022\Sep\EESRR-22-49\doi.org\10.1007\s10509-012-1337-6


Volume 5 | Issue 4 |210Eart & Envi Scie Res & Rev,  2022

From eq,(A5), 𝜃𝐼 can be calculated to be 83.988° ≅ 84°.

Appendix B
The ray path under the condition of intense gravity can be found by calculating the
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Figure B 
Simple depiction of the curved 
ray path under the intense 
gravity at a point   𝑟𝑟 =
 η𝑟𝑟𝑔𝑔  with a gravity radius 
𝑟𝑟𝑔𝑔  , and a factor   η  where the 
Minkowsky system is falling 
with a velocity of  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 
towards the gravity center. 
Using the simplified concept of 
the GR, an approximated ray 
path is depicted for 
propagation in the horizontal 

direction; the ray shifts the position by (1 η⁄ )𝑐𝑐𝑐𝑐  toward the center of the gravity from 
the virtual position assumed at a distance of 𝑐𝑐𝑐𝑐 in the horizontal direction from the 
starting point.      

 
 
zero geodesic in the established theory of general relativity. For the purpose of the 

rough estimation of the ray path under the condition of intense gravity, however, we can 
apply a simplified approach by following the principle of the theory of general relativity. 
That is, when we find a Minkowsky coordinate following the free falling system, the ray 
path can be expressed by a straight line in that coordinate system. This means that we 
can draw the curved ray paths with falling processes in the vertical direction towards 
the center of the gravity of the massive black hole. To estimate the velocity component 
𝑐𝑐𝑉𝑉 in the vertical direction for propagating light (radiowaves) at position r, we follow the 
case of the Schwartzschild space time, which gives the light velocity for the vertical path 
r(𝑡𝑡) (for the radial distance with respective to the time t ) as 

𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡 ≡ v𝐿𝐿 = (1 − 𝑟𝑟𝑔𝑔

𝑟𝑟 ) 𝑐𝑐                      (𝐵𝐵1) 

 
When the observation is made at a position fixed to the black hole system, the 
expression of eq.(B1) indicates that the resultant light velocity is expressed subtracting 
the free falling velocity  𝑐𝑐𝑉𝑉  of the system under the influence of the intense gravity from 
the intrinsic velocity c of the light that propagates towards the outside in the free 

Figure B: Simple depiction of the curved ray path under the intense gravity at a point 𝑟 = η𝑟𝑔 with a gravity radius 𝑟𝑔 , and  a  factor  η  
where  the Minkowsky system is falling with a velocity of 𝑐𝑉 = (1⁄η)𝑐 towards the gravity center. Using the simplified concept of the 
GR, an approximated ray path is depicted for propagation  in  the  horizontal direction; the ray shifts the position by (1⁄η)𝑐τ toward the 
center of the gravity from the virtual position assumed at a distance of 𝑐τ in the horizontal direction from the starting point.

zero geodesic in the established theory of general relativity. For the 
purpose of the rough estimation of the ray path under the condition 
of intense gravity, however, we can apply a simplified approach 
by following the principle of the theory of general relativity. 
That is, when we find a Minkowsky coordinate following the 
free falling system, the ray path can be expressed by a straight 
line in that coordinate system. This means that we can draw the 

curved ray paths with falling processes in the vertical direction 
towards the center of the gravity of the massive black hole. To 
estimate the velocity component 𝑐𝑉 in the vertical direction for 
propagating light (radiowaves) at position r, we follow the case of 
the Schwartzschild space time, which gives the light velocity for 
the vertical path r(𝑡) (for the radial distance with respective to the 
time t ) as
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Figure B 
Simple depiction of the curved 
ray path under the intense 
gravity at a point   𝑟𝑟 =
 η𝑟𝑟𝑔𝑔  with a gravity radius 
𝑟𝑟𝑔𝑔  , and a factor   η  where the 
Minkowsky system is falling 
with a velocity of  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 
towards the gravity center. 
Using the simplified concept of 
the GR, an approximated ray 
path is depicted for 
propagation in the horizontal 

direction; the ray shifts the position by (1 η⁄ )𝑐𝑐𝑐𝑐  toward the center of the gravity from 
the virtual position assumed at a distance of 𝑐𝑐𝑐𝑐 in the horizontal direction from the 
starting point.      

 
 
zero geodesic in the established theory of general relativity. For the purpose of the 

rough estimation of the ray path under the condition of intense gravity, however, we can 
apply a simplified approach by following the principle of the theory of general relativity. 
That is, when we find a Minkowsky coordinate following the free falling system, the ray 
path can be expressed by a straight line in that coordinate system. This means that we 
can draw the curved ray paths with falling processes in the vertical direction towards 
the center of the gravity of the massive black hole. To estimate the velocity component 
𝑐𝑐𝑉𝑉 in the vertical direction for propagating light (radiowaves) at position r, we follow the 
case of the Schwartzschild space time, which gives the light velocity for the vertical path 
r(𝑡𝑡) (for the radial distance with respective to the time t ) as 

𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡 ≡ v𝐿𝐿 = (1 − 𝑟𝑟𝑔𝑔

𝑟𝑟 ) 𝑐𝑐                      (𝐵𝐵1) 

 
When the observation is made at a position fixed to the black hole system, the 
expression of eq.(B1) indicates that the resultant light velocity is expressed subtracting 
the free falling velocity  𝑐𝑐𝑉𝑉  of the system under the influence of the intense gravity from 
the intrinsic velocity c of the light that propagates towards the outside in the free 

When the observation is made at a position fixed to the black hole system, the expression of eq.(B1) indicates that the resultant light 
velocity is expressed subtracting the free falling velocity 𝑐𝑉 of the system under the influence of the intense gravity from the intrinsic 
velocity c of the light that propagates towards the outside in the free falling Minkowsky system. That is, we have the light velocity v𝐿 in 
the system fixed to the black hole , as
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falling Minkowsky system. That is, we have the light velocity v𝐿𝐿 in the system fixed to 
the black hole , as 

v𝐿𝐿 = 𝑐𝑐 − 𝑐𝑐𝑉𝑉     with    𝑐𝑐𝑉𝑉 = 𝑟𝑟𝑔𝑔
𝑟𝑟 𝑐𝑐             (𝐵𝐵2)  

At the point   𝑟𝑟 =  η𝑟𝑟𝑔𝑔  , then, we can  express as  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 .  With this simplified 
concept, we can depict an approximated ray path, as given in Figure B, where a ray 
starts to propagate in the horizontal direction at a point with a distance of η𝑟𝑟𝑔𝑔   from 
the center of the Schwartzschild black hole. The ray shifts the position by 
(1 η⁄ )𝑐𝑐𝑐𝑐   towards the center of the black hole approximately from the virtual position, 
moving a distance of cτ  in a time interval τ, in the horizontal direction from the 
starting point.      
 
AAppppeennddiixx  CC  

  When we look up the table of observation data f(𝑡𝑡𝑚𝑚) in a time series with a series order m (integer), 

the data in the table are expressed by 

f(𝑡𝑡𝑚𝑚) = f(𝑡𝑡) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                           ( C1) 
 
with a sampling function∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚), that can be expressed by 
 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = ∑ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚).                                 (𝐶𝐶2)
𝑀𝑀

𝑚𝑚=1
 

By applying the inverse Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚), we have expression as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
2𝜋𝜋 ∑ ∫ {𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑚𝑚)] + 𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠[𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑚𝑚)]}

∞

−∞

𝑀𝑀

𝑚𝑚=1
𝑑𝑑𝜔𝜔.                   (𝐶𝐶3) 

This expression can be approximated with the discrete form to be suitable for the 
present discussion for sampling data at t = 𝑡𝑡𝑚𝑚 as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
2𝜋𝜋 ∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐 [𝑘𝑘 (2𝜋𝜋

𝑇𝑇𝑠𝑠
) (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑠𝑠)]

𝐾𝐾

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=1
 .                  (𝐶𝐶4) 

where 𝑇𝑇𝑠𝑠 is a constant period of the data sampling time window (DSTW) .  
Here, we consider the case of approximation for simple understanding of the shadow 
phenomena by taking the fundamental frequency for f(t) as f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡𝑚𝑚 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ).  
Because we are concerned with the fundamental period of the phenomena, we can use 
only k=1 in eq.(C4) to express h(t). Then, it follows from eq.(C1) that 

f(𝑡𝑡𝑚𝑚) =∙ 𝐴𝐴𝑚𝑚
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [𝑘𝑘 (2𝜋𝜋

𝑇𝑇𝑠𝑠
) (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠)] .              (𝐶𝐶5) 

Then, the time variation that is the target of the fitting model is expressed by 

At the point 𝑟 =  η𝑟𝑔  ,  then, we can express as 𝑐𝑉 = (1⁄η)𝑐 . With this simplified concept, we can depict an approximated ray path, as 
given in Figure B, where a ray starts to propagate in the horizontal direction at a point with a distance of η𝑟𝑔  from the center  of  the  
Schwartzschild  black  hole.  The  ray  shifts  the  position  by (1⁄η)𝑐τ towards the center of the black hole approximately from the virtual 
position, moving a distance of cτ in a time interval τ, in the horizontal direction from the starting point.

Appendix C
When we look up the table of observation data f(𝑡𝑚) in a time series with a series order m (integer), the data in the table are expressed by
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falling Minkowsky system. That is, we have the light velocity v𝐿𝐿 in the system fixed to 
the black hole , as 

v𝐿𝐿 = 𝑐𝑐 − 𝑐𝑐𝑉𝑉     with    𝑐𝑐𝑉𝑉 = 𝑟𝑟𝑔𝑔
𝑟𝑟 𝑐𝑐             (𝐵𝐵2)  

At the point   𝑟𝑟 =  η𝑟𝑟𝑔𝑔  , then, we can  express as  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 .  With this simplified 
concept, we can depict an approximated ray path, as given in Figure B, where a ray 
starts to propagate in the horizontal direction at a point with a distance of η𝑟𝑟𝑔𝑔   from 
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When we try to fit between 𝑓𝑓(𝑡𝑡𝑚𝑚) and the time-varying model with the sweeping period 
𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚, two cases of fitting results for 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 can be obtained: 
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𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚
= 1
𝑇𝑇𝑠𝑠
+ 1
𝑇𝑇𝑜𝑜𝑜𝑜

 ,   
and                                                                          

              1𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚
= ±(1𝑇𝑇𝑠𝑠

− 1
𝑇𝑇𝑜𝑜𝑜𝑜

) .           }
 
 
 
 
                     (𝐶𝐶7) 

In the main text, the bottom cases in the above equation were described; the top case 
was not concerned, because 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 is outside the discussed range. 
  The DSTW, in the present case, consists of two categories; those are constant  time  
interval around 1200 s  and random time interval as indicated in the main text. For 
the case of the random interval, the DSTW does not appear explicitly for the selection of 
the period in the data fitting in the time-space (direct fitting); we can understand that 
as is equivalent to the case of 𝑇𝑇𝑠𝑠 → ∞, in eq.(C7). 
 
AAppppeennddiixx  DD  
   When we observe a time series of data f(t𝑚𝑚) with the given observation timing 
t𝑚𝑚 , it can be determined by the function h(𝑡𝑡, 𝑡𝑡𝑚𝑚)  as 

f(t𝑚𝑚) = f(t) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                                                      (𝐷𝐷1) 
where h(𝑡𝑡, 𝑡𝑡𝑚𝑚) is given by 

h(𝑡𝑡. 𝑡𝑡𝑚𝑚) =

{ 
 
  ∑ 𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜) − 𝑡𝑡𝑚𝑚]

Mη

m=Mη−1+1
       for   η𝑇𝑇𝑚𝑚 < 𝑡𝑡 < η𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜 

 
                        0                   for      η𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜 < 𝑡𝑡 < (η+1)𝑇𝑇𝑚𝑚         (𝐷𝐷2)           

 

It should be noted that 𝑡𝑡𝑚𝑚 is defined from the starting time of the observation period 
for each observation of η day; and η is defined as 0 for the first day of observation. Mη 
is the maximum number of observation trials where M−1 = 0. It is assumed that the 
observation period 𝜏𝜏𝑜𝑜𝑜𝑜 of each observation day is the same.  
The spectra of the observed data series (eq.(D1)) are expressed by the Fourier 
transformation, as 

D(𝜔𝜔) = ∫ [ 12𝜋𝜋 ∙ ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜)
∞

−∞
𝑒𝑒𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝜔𝜔𝑜𝑜]h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡     

∞

−∞
                       (𝐷𝐷3) 

 
where 𝐹𝐹(𝜔𝜔𝑜𝑜) is given for f(t) as 

When we try to fit between 𝑓(𝑡𝑚) and the time-varying model with the sweeping period 𝑇𝑚𝑜𝑑, two cases of fitting results for 𝑇𝑚𝑜𝑑 can be 
obtained:
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as is equivalent to the case of 𝑇𝑇𝑠𝑠 → ∞, in eq.(C7). 
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   When we observe a time series of data f(t𝑚𝑚) with the given observation timing 
t𝑚𝑚 , it can be determined by the function h(𝑡𝑡, 𝑡𝑡𝑚𝑚)  as 
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where h(𝑡𝑡, 𝑡𝑡𝑚𝑚) is given by 
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It should be noted that 𝑡𝑡𝑚𝑚 is defined from the starting time of the observation period 
for each observation of η day; and η is defined as 0 for the first day of observation. Mη 
is the maximum number of observation trials where M−1 = 0. It is assumed that the 
observation period 𝜏𝜏𝑜𝑜𝑜𝑜 of each observation day is the same.  
The spectra of the observed data series (eq.(D1)) are expressed by the Fourier 
transformation, as 

D(𝜔𝜔) = ∫ [ 12𝜋𝜋 ∙ ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜)
∞

−∞
𝑒𝑒𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝜔𝜔𝑜𝑜]h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡     

∞

−∞
                       (𝐷𝐷3) 

 
where 𝐹𝐹(𝜔𝜔𝑜𝑜) is given for f(t) as 

In the main text, the bottom cases in the above equation were described; the top case was not concerned, because 𝑇𝑚𝑜𝑑 is outside the 
discussed range. The DSTW, in the present case, consists of two categories; those are constant  time interval around 1200 s    and random 
time interval as indicated in the main text. For the case of the random interval, the DSTW does not appear explicitly for the selection of 
the period in the data fitting in the time-space (direct fitting); we can understand that as is equivalent to the case of 𝑇𝑠 → ∞, in eq.(C7).

Appendix D
When we observe a time series of data f(t𝑚) with the given observation timing t𝑚 , it can be determined by the function h(𝑡, 𝑡𝑚)  as
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the case of the random interval, the DSTW does not appear explicitly for the selection of 
the period in the data fitting in the time-space (direct fitting); we can understand that 
as is equivalent to the case of 𝑇𝑇𝑠𝑠 → ∞, in eq.(C7). 
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∞

−∞
                       (𝐷𝐷3) 

 
where 𝐹𝐹(𝜔𝜔𝑜𝑜) is given for f(t) as 

where  h(𝑡, 𝑡𝑚)  is given by
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−∞
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where 𝐹𝐹(𝜔𝜔𝑜𝑜) is given for f(t) as 
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falling Minkowsky system. That is, we have the light velocity v𝐿𝐿 in the system fixed to 
the black hole , as 

v𝐿𝐿 = 𝑐𝑐 − 𝑐𝑐𝑉𝑉     with    𝑐𝑐𝑉𝑉 = 𝑟𝑟𝑔𝑔
𝑟𝑟 𝑐𝑐             (𝐵𝐵2)  

At the point   𝑟𝑟 =  η𝑟𝑟𝑔𝑔  , then, we can  express as  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 .  With this simplified 
concept, we can depict an approximated ray path, as given in Figure B, where a ray 
starts to propagate in the horizontal direction at a point with a distance of η𝑟𝑟𝑔𝑔   from 
the center of the Schwartzschild black hole. The ray shifts the position by 
(1 η⁄ )𝑐𝑐𝑐𝑐   towards the center of the black hole approximately from the virtual position, 
moving a distance of cτ  in a time interval τ, in the horizontal direction from the 
starting point.      
 
AAppppeennddiixx  CC  

  When we look up the table of observation data f(𝑡𝑡𝑚𝑚) in a time series with a series order m (integer), 

the data in the table are expressed by 

f(𝑡𝑡𝑚𝑚) = f(𝑡𝑡) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                           ( C1) 
 
with a sampling function∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚), that can be expressed by 
 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = ∑ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚).                                 (𝐶𝐶2)
𝑀𝑀

𝑚𝑚=1
 

By applying the inverse Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚), we have expression as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
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∞

−∞
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where 𝑇𝑇𝑠𝑠 is a constant period of the data sampling time window (DSTW) .  
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Then, the time variation that is the target of the fitting model is expressed by 

 

47 
 

falling Minkowsky system. That is, we have the light velocity v𝐿𝐿 in the system fixed to 
the black hole , as 

v𝐿𝐿 = 𝑐𝑐 − 𝑐𝑐𝑉𝑉     with    𝑐𝑐𝑉𝑉 = 𝑟𝑟𝑔𝑔
𝑟𝑟 𝑐𝑐             (𝐵𝐵2)  

At the point   𝑟𝑟 =  η𝑟𝑟𝑔𝑔  , then, we can  express as  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 .  With this simplified 
concept, we can depict an approximated ray path, as given in Figure B, where a ray 
starts to propagate in the horizontal direction at a point with a distance of η𝑟𝑟𝑔𝑔   from 
the center of the Schwartzschild black hole. The ray shifts the position by 
(1 η⁄ )𝑐𝑐𝑐𝑐   towards the center of the black hole approximately from the virtual position, 
moving a distance of cτ  in a time interval τ, in the horizontal direction from the 
starting point.      
 
AAppppeennddiixx  CC  

  When we look up the table of observation data f(𝑡𝑡𝑚𝑚) in a time series with a series order m (integer), 

the data in the table are expressed by 

f(𝑡𝑡𝑚𝑚) = f(𝑡𝑡) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                           ( C1) 
 
with a sampling function∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚), that can be expressed by 
 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = ∑ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚).                                 (𝐶𝐶2)
𝑀𝑀

𝑚𝑚=1
 

By applying the inverse Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚), we have expression as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
2𝜋𝜋 ∑ ∫ {𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑚𝑚)] + 𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠[𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑚𝑚)]}

∞

−∞

𝑀𝑀

𝑚𝑚=1
𝑑𝑑𝜔𝜔.                   (𝐶𝐶3) 

This expression can be approximated with the discrete form to be suitable for the 
present discussion for sampling data at t = 𝑡𝑡𝑚𝑚 as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
2𝜋𝜋 ∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐 [𝑘𝑘 (2𝜋𝜋

𝑇𝑇𝑠𝑠
) (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑠𝑠)]

𝐾𝐾

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=1
 .                  (𝐶𝐶4) 

where 𝑇𝑇𝑠𝑠 is a constant period of the data sampling time window (DSTW) .  
Here, we consider the case of approximation for simple understanding of the shadow 
phenomena by taking the fundamental frequency for f(t) as f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡𝑚𝑚 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ).  
Because we are concerned with the fundamental period of the phenomena, we can use 
only k=1 in eq.(C4) to express h(t). Then, it follows from eq.(C1) that 

f(𝑡𝑡𝑚𝑚) =∙ 𝐴𝐴𝑚𝑚
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [𝑘𝑘 (2𝜋𝜋

𝑇𝑇𝑠𝑠
) (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠)] .              (𝐶𝐶5) 

Then, the time variation that is the target of the fitting model is expressed by 

 

48 
 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚
2 {12𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 (

1
𝑇𝑇𝑠𝑠
+ 1
𝑇𝑇𝑜𝑜𝑜𝑜

) 𝑡𝑡𝑚𝑚] +
1
2 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 (

1
𝑇𝑇𝑠𝑠
− 1
𝑇𝑇𝑜𝑜𝑜𝑜

) 𝑡𝑡𝑚𝑚]}              (𝐶𝐶6) 

When we try to fit between 𝑓𝑓(𝑡𝑡𝑚𝑚) and the time-varying model with the sweeping period 
𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚, two cases of fitting results for 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 can be obtained: 

                                     
1

𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚
= 1
𝑇𝑇𝑠𝑠
+ 1
𝑇𝑇𝑜𝑜𝑜𝑜

 ,   
and                                                                          

              1𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚
= ±(1𝑇𝑇𝑠𝑠

− 1
𝑇𝑇𝑜𝑜𝑜𝑜

) .           }
 
 
 
 
                     (𝐶𝐶7) 

In the main text, the bottom cases in the above equation were described; the top case 
was not concerned, because 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 is outside the discussed range. 
  The DSTW, in the present case, consists of two categories; those are constant  time  
interval around 1200 s  and random time interval as indicated in the main text. For 
the case of the random interval, the DSTW does not appear explicitly for the selection of 
the period in the data fitting in the time-space (direct fitting); we can understand that 
as is equivalent to the case of 𝑇𝑇𝑠𝑠 → ∞, in eq.(C7). 
 
AAppppeennddiixx  DD  
   When we observe a time series of data f(t𝑚𝑚) with the given observation timing 
t𝑚𝑚 , it can be determined by the function h(𝑡𝑡, 𝑡𝑡𝑚𝑚)  as 

f(t𝑚𝑚) = f(t) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                                                      (𝐷𝐷1) 
where h(𝑡𝑡, 𝑡𝑡𝑚𝑚) is given by 

h(𝑡𝑡. 𝑡𝑡𝑚𝑚) =

{ 
 
  ∑ 𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜) − 𝑡𝑡𝑚𝑚]

Mη

m=Mη−1+1
       for   η𝑇𝑇𝑚𝑚 < 𝑡𝑡 < η𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜 

 
                        0                   for      η𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜 < 𝑡𝑡 < (η+1)𝑇𝑇𝑚𝑚         (𝐷𝐷2)           

 

It should be noted that 𝑡𝑡𝑚𝑚 is defined from the starting time of the observation period 
for each observation of η day; and η is defined as 0 for the first day of observation. Mη 
is the maximum number of observation trials where M−1 = 0. It is assumed that the 
observation period 𝜏𝜏𝑜𝑜𝑜𝑜 of each observation day is the same.  
The spectra of the observed data series (eq.(D1)) are expressed by the Fourier 
transformation, as 

D(𝜔𝜔) = ∫ [ 12𝜋𝜋 ∙ ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜)
∞

−∞
𝑒𝑒𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝜔𝜔𝑜𝑜]h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡     

∞

−∞
                       (𝐷𝐷3) 

 
where 𝐹𝐹(𝜔𝜔𝑜𝑜) is given for f(t) as 
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was not concerned, because 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 is outside the discussed range. 
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h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = − ∫ {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)] + 𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]}
∞

−∞

𝑑𝑑𝑇𝑇
𝑇𝑇2 .                      (45) 

The integration in eq.(45), that is subjected to the wide range of the period T makes the 
contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
𝑡𝑡𝑚𝑚; then we can approximate eq.(45) to the following  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) ≈ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]                                              (46) 

where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
Because the interval 𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚 in DETW is random , we set a constant interval 𝑇𝑇𝑠𝑠 by 
introducing a new time difference ∆𝑡𝑡𝑚𝑚 as 

∆𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠 .                           (47) 
Then, we have the following relation, (details are described in Appendix C)  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 ∆𝑡𝑡𝑚𝑚] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑆𝑆)]              (48) 

For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
4 {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
+ 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚] + 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
− 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 
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h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = − ∫ {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)] + 𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]}
∞

−∞

𝑑𝑑𝑇𝑇
𝑇𝑇2 .                      (45) 

The integration in eq.(45), that is subjected to the wide range of the period T makes the 
contribution from above two terms which approximately vanish except for the case 𝑡𝑡 ≈
𝑡𝑡𝑚𝑚; then we can approximate eq.(45) to the following  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) ≈ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 (𝑡𝑡 − 𝑡𝑡𝑚𝑚)]                                              (46) 

where 𝐻𝐻𝑐𝑐 is a constant whose value is decided to fit the result of integration in eq.(45). 
Because the interval 𝑡𝑡𝑚𝑚+1 − 𝑡𝑡𝑚𝑚 in DETW is random , we set a constant interval 𝑇𝑇𝑠𝑠 by 
introducing a new time difference ∆𝑡𝑡𝑚𝑚 as 

∆𝑡𝑡𝑚𝑚 = 𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠 .                           (47) 
Then, we have the following relation, (details are described in Appendix C)  

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋
𝑇𝑇 ∆𝑡𝑡𝑚𝑚] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑆𝑆)]              (48) 

For understanding the coupling effect of DSTW, we select a simple case for f(t) ; that is 
f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ). Then, it follows from eq.(20) that 

f(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑆𝑆)] .              (49) 

As  described  in Appendix C also, we have relation, by rewriting eq.(49) , with 
selection of 𝑇𝑇 = 𝑇𝑇𝑆𝑆 as 

𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋

𝑇𝑇 ∆𝑡𝑡𝑚𝑚]
4 {𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
+ 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚] + 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 ( 1

𝑇𝑇𝑆𝑆
− 1

𝑇𝑇𝑜𝑜𝑜𝑜
) 𝑡𝑡𝑚𝑚]} .    (50) 

 
In eq.(50) we see the feature of the modulation of DSTW which modify the original data 
series 𝐴𝐴𝑚𝑚cos[2𝜋𝜋(1 𝑇𝑇𝑜𝑜𝑜𝑜⁄ )𝑡𝑡𝑚𝑚] with respect to the period 𝑇𝑇𝑜𝑜𝑜𝑜 to the data form given by two 
terms with the period ,𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑆𝑆)⁄  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑆𝑆 (𝑇𝑇𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑆𝑆)⁄ . 

In Figure 17, fitting indexes for setting a wide period range in the DRWP-Model 
compared with the VLBI-Data are given for the maximum values in each period; that is,  
with respect to each period from 1500 to 3950 s, for cases with an eclipse parameter of 
n=2, 4 and 8, (indicates the eclipse feature, see the bottom diagrams in Figure 4), the  
maximum Ic (see eq.(17)) is investigated with the initial phase of the DRWP-Model set 
at 11:00 h (UT) on the 95th day by sweeping the entire range from 0 to 360 degrees with 
2.5 degree steps. Two fitting index peaks 𝐼𝐼𝑐𝑐  are observed for all three cases of n; the 
first peak appears at the period of 𝑇𝑇1𝑠𝑠𝑠𝑠(=2150) s and the second appears at the period of 
𝑇𝑇2𝑛𝑛𝑛𝑛(=2950) s. As shown in all three diagrams, the first peak correlated within the 
period range predicted by the DRWP observations (P.R. given in the diagrams). Though 
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falling Minkowsky system. That is, we have the light velocity v𝐿𝐿 in the system fixed to 
the black hole , as 

v𝐿𝐿 = 𝑐𝑐 − 𝑐𝑐𝑉𝑉     with    𝑐𝑐𝑉𝑉 = 𝑟𝑟𝑔𝑔
𝑟𝑟 𝑐𝑐             (𝐵𝐵2)  

At the point   𝑟𝑟 =  η𝑟𝑟𝑔𝑔  , then, we can  express as  𝑐𝑐𝑉𝑉 = (1 η⁄ )𝑐𝑐 .  With this simplified 
concept, we can depict an approximated ray path, as given in Figure B, where a ray 
starts to propagate in the horizontal direction at a point with a distance of η𝑟𝑟𝑔𝑔   from 
the center of the Schwartzschild black hole. The ray shifts the position by 
(1 η⁄ )𝑐𝑐𝑐𝑐   towards the center of the black hole approximately from the virtual position, 
moving a distance of cτ  in a time interval τ, in the horizontal direction from the 
starting point.      
 
AAppppeennddiixx  CC  

  When we look up the table of observation data f(𝑡𝑡𝑚𝑚) in a time series with a series order m (integer), 

the data in the table are expressed by 

f(𝑡𝑡𝑚𝑚) = f(𝑡𝑡) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                           ( C1) 
 
with a sampling function∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚), that can be expressed by 
 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = ∑ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚).                                 (𝐶𝐶2)
𝑀𝑀

𝑚𝑚=1
 

By applying the inverse Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚), we have expression as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
2𝜋𝜋 ∑ ∫ {𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑚𝑚)] + 𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠[𝜔𝜔(𝑡𝑡 − 𝑡𝑡𝑚𝑚)]}

∞

−∞

𝑀𝑀

𝑚𝑚=1
𝑑𝑑𝜔𝜔.                   (𝐶𝐶3) 

This expression can be approximated with the discrete form to be suitable for the 
present discussion for sampling data at t = 𝑡𝑡𝑚𝑚 as 

h(𝑡𝑡, 𝑡𝑡𝑚𝑚) = 1
2𝜋𝜋 ∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐 [𝑘𝑘 (2𝜋𝜋

𝑇𝑇𝑠𝑠
) (𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑠𝑠)]

𝐾𝐾

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=1
 .                  (𝐶𝐶4) 

where 𝑇𝑇𝑠𝑠 is a constant period of the data sampling time window (DSTW) .  
Here, we consider the case of approximation for simple understanding of the shadow 
phenomena by taking the fundamental frequency for f(t) as f(t) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑡𝑡𝑚𝑚 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ).  
Because we are concerned with the fundamental period of the phenomena, we can use 
only k=1 in eq.(C4) to express h(t). Then, it follows from eq.(C1) that 

f(𝑡𝑡𝑚𝑚) =∙ 𝐴𝐴𝑚𝑚
2 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑡𝑡𝑚𝑚

𝑇𝑇𝑜𝑜𝑜𝑜
) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 [𝑘𝑘 (2𝜋𝜋

𝑇𝑇𝑠𝑠
) (𝑡𝑡𝑚𝑚 − 𝑚𝑚𝑇𝑇𝑠𝑠)] .              (𝐶𝐶5) 

Then, the time variation that is the target of the fitting model is expressed by 

; for 1 < m < M

; for 1 < m < M  (C6)
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It should be noted that 𝑡𝑚 is defined from the starting time of the observation period for each observation of η day; and η  is defined as 0 
for the first day of observation.  Mη is the maximum number of observation trials where M−1 = 0. It is assumed that the observation period 
τ𝑜𝑏 of each observation day is the same.
The spectra of the observed data series eq.(D1) are expressed by the Fourier transformation, as
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𝑓𝑓(𝑡𝑡𝑚𝑚) =∙
𝐴𝐴𝑚𝑚
2 {12𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 (

1
𝑇𝑇𝑠𝑠
+ 1
𝑇𝑇𝑜𝑜𝑜𝑜

) 𝑡𝑡𝑚𝑚] +
1
2 𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋 (

1
𝑇𝑇𝑠𝑠
− 1
𝑇𝑇𝑜𝑜𝑜𝑜

) 𝑡𝑡𝑚𝑚]}              (𝐶𝐶6) 

When we try to fit between 𝑓𝑓(𝑡𝑡𝑚𝑚) and the time-varying model with the sweeping period 
𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚, two cases of fitting results for 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 can be obtained: 

                                     
1

𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚
= 1
𝑇𝑇𝑠𝑠
+ 1
𝑇𝑇𝑜𝑜𝑜𝑜

 ,   
and                                                                          

              1𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚
= ±(1𝑇𝑇𝑠𝑠

− 1
𝑇𝑇𝑜𝑜𝑜𝑜

) .           }
 
 
 
 
                     (𝐶𝐶7) 

In the main text, the bottom cases in the above equation were described; the top case 
was not concerned, because 𝑇𝑇𝑚𝑚𝑜𝑜𝑚𝑚 is outside the discussed range. 
  The DSTW, in the present case, consists of two categories; those are constant  time  
interval around 1200 s  and random time interval as indicated in the main text. For 
the case of the random interval, the DSTW does not appear explicitly for the selection of 
the period in the data fitting in the time-space (direct fitting); we can understand that 
as is equivalent to the case of 𝑇𝑇𝑠𝑠 → ∞, in eq.(C7). 
 
AAppppeennddiixx  DD  
   When we observe a time series of data f(t𝑚𝑚) with the given observation timing 
t𝑚𝑚 , it can be determined by the function h(𝑡𝑡, 𝑡𝑡𝑚𝑚)  as 

f(t𝑚𝑚) = f(t) ∙ h(𝑡𝑡, 𝑡𝑡𝑚𝑚) .                                                      (𝐷𝐷1) 
where h(𝑡𝑡, 𝑡𝑡𝑚𝑚) is given by 

h(𝑡𝑡. 𝑡𝑡𝑚𝑚) =

{ 
 
  ∑ 𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜) − 𝑡𝑡𝑚𝑚]

Mη

m=Mη−1+1
       for   η𝑇𝑇𝑚𝑚 < 𝑡𝑡 < η𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜 

 
                        0                   for      η𝑇𝑇𝑚𝑚 + 𝜏𝜏𝑜𝑜𝑜𝑜 < 𝑡𝑡 < (η+1)𝑇𝑇𝑚𝑚         (𝐷𝐷2)           

 

It should be noted that 𝑡𝑡𝑚𝑚 is defined from the starting time of the observation period 
for each observation of η day; and η is defined as 0 for the first day of observation. Mη 
is the maximum number of observation trials where M−1 = 0. It is assumed that the 
observation period 𝜏𝜏𝑜𝑜𝑜𝑜 of each observation day is the same.  
The spectra of the observed data series (eq.(D1)) are expressed by the Fourier 
transformation, as 

D(𝜔𝜔) = ∫ [ 12𝜋𝜋 ∙ ∫ 𝐹𝐹(𝜔𝜔𝑜𝑜)
∞

−∞
𝑒𝑒𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝜔𝜔𝑜𝑜]h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡     

∞

−∞
                       (𝐷𝐷3) 

 
where 𝐹𝐹(𝜔𝜔𝑜𝑜) is given for f(t) as 

where 𝐹(𝜔𝑏)  is given for  f(t)  as
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

We rewrite eq.(D3) as
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

When we express the Fourier transformation for h(𝑡, 𝑡𝑚) for the whole observation interval of DSTW, it follows that
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

where 𝑡m
∗   is newly defined in relation to the DSTW 𝑡m as
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

for 𝑡𝑚 ≥ 𝜂𝑇𝑑  ; 𝑀η is the maximum number given 8 for 𝜂 = 0, and 14, and 20, respectively, for 𝜂 = 1, and 2. Using eq.(D6), eq.(D5) can 
be rewritten as
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

From a theoretical standpoint, we are concerned with three kinds of 𝐹(𝜔𝑏) function that are an unknown function for VLBI-Data, a 
combination of the sinusoidal function for the DRWP-Model, and an average of 160 cases of random noise series. To understand the 
coupling feature between the time variation of the phenomena and the DSTW, here, we consider the representative of f(𝑡) = cos(𝜔0𝑡) to 
represent the time variation of the DRWP-Model taking 𝜔0 as parameter. The Fourier transformation F(𝜔b)  for f(𝑡)  is given by
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

Considering the relation with the delta function as
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  
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] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

F(𝜔𝑏) given by eq.(D9) is rewritten as
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

,
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 

 

49 
 

𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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𝐹𝐹(𝜔𝜔𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞
.                                                                      (𝐷𝐷4) 

We rewrite eq.(D3) as  

D(𝜔𝜔) = 1
2𝜋𝜋 ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) [∙ ∫ ℎ(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑑𝑑𝑡𝑡 

∞

−∞
]  𝑑𝑑𝜔𝜔𝑏𝑏   

∞

−∞
                       (𝐷𝐷5) 

When we express the Fourier transformation for h(𝑡𝑡, 𝑡𝑡𝑚𝑚) for the whole observation 
interval of DSTW, it follows that  

H𝐷𝐷(ξ) = 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∫ h(𝑡𝑡, 𝑡𝑡𝑚𝑚)𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡
2𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

0

= 1
2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏

∑ ∫ ∑ 𝐴𝐴𝜂𝜂𝛿𝛿[𝑡𝑡 − 𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) − 𝑡𝑡𝑚𝑚
∗ ]

Mη

m=Mη−1+1
𝑒𝑒−𝑖𝑖ξ𝑡𝑡𝑑𝑑𝑡𝑡

𝜂𝜂𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏

𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
.        (𝐷𝐷6) 

where 𝑡𝑡𝑚𝑚
∗  is newly defined in relation to the DSTW 𝑡𝑡𝑚𝑚  as 

𝑡𝑡𝑚𝑚 =  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑡𝑡𝑚𝑚
∗  ,                                 (𝐷𝐷7)

 for 𝑡𝑡𝑚𝑚 ≥  𝜂𝜂(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏); 𝑀𝑀𝜂𝜂 is the maximum number given 0 for 𝜂𝜂 = 0, and 8, 14, and 20, 
respectively, for 𝜂𝜂 = 0,1, and 2. Using eq.(D6), eq.(D5) can be rewritten as 

D(𝜔𝜔) = 1
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑏𝑏) ∫ 𝐹𝐹(𝜔𝜔𝑏𝑏) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑏𝑏 .  

∞

−∞
  

                                                                        (D8) 
From a theoretical standpoint, we are concerned with three kinds of 𝐹𝐹(𝜔𝜔𝑏𝑏) function 
that are an unknown function for VLBI-Data, a combination of the sinusoidal function 
for the DRWP-Model, and an average of 160 cases of random noise series. To understand 
the coupling feature between the time variation of the phenomena and the DSTW, here, 
we consider the representative of f(𝑡𝑡) = cos(𝜔𝜔0𝑡𝑡) to represent the time variation  of the 
DRWP-Model taking 𝜔𝜔0  as parameter The Fourier transformation F(𝜔𝜔) for f(𝑡𝑡) is 
given by 

F(𝜔𝜔𝑏𝑏) = ∫ f(𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡 = 1

2 ∫ (𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡)𝑒𝑒−𝑖𝑖𝜔𝜔𝑏𝑏𝑡𝑡
∞

−∞
𝑑𝑑𝑡𝑡              (𝐷𝐷9) 

Considering the relation with the delta function as 

δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) = 1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖(𝜔𝜔𝑏𝑏−𝜔𝜔0)𝑡𝑡

∞

−∞
𝑑𝑑𝑡𝑡.                             (𝐷𝐷10)     

F(𝜔𝜔𝑏𝑏) given by eq.(D9) is rewritten as 
F(𝜔𝜔𝑏𝑏) = π[δ(𝜔𝜔𝑏𝑏 − 𝜔𝜔0) + δ(𝜔𝜔𝑏𝑏 + 𝜔𝜔0)].                    (𝐷𝐷11) 

By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature D(𝜔𝜔), which 
is coupled with the given SDWT as 
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By inserting eq.(D11) into eq.(D8), we have the spectra of the total feature DDMod(𝜔), which is coupled with the given SDWT as
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

It should be noted that the time series 𝑡*
m consists of random intervals, in general, between each time interval 𝑡𝑚+1

∗ − 𝑡 𝑚
∗ . When we 

consider a time series with a constant interval 𝑇𝐼, the introduction of a new function  S(𝜔 − 𝜔0)   is required; that is,
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

Then, using the defined function, S(𝜔 − 𝜔0) , eq.(D12) can be rewritten as
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

where 𝑀𝑠 is a constant number defined as 𝑀𝑠𝑇𝐼 = τ𝑜𝑏
Then, eq.(D15) can be further rewritten as
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

The summation part with the data sampling timing of the constant interval 𝑇𝐼 in the above eq.(D16) is given through normalization as
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

After several steps of mathematical manipulation, it follows that
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)
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𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
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] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
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+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)
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𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
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𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
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= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  
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}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  
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2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
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2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
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] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
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2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)
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𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
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𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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where  
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Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

,
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
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𝜂𝜂=0
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2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
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𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)
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𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
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}.          (𝐷𝐷15) 
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where  
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𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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When the angular frequency 𝜔 approaches 𝜔0, we have an approximated expression for eq.(D18) as
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

By inserting eq.(D19) into eq.(D16), we have the result

 

51 
 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

The last term on the right-hand-side of eq.(D16) that is given with the normalization by 𝑀𝑠 as
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

is neglected because of the magnitude of order of  1⁄𝑀𝑠.  The last part of right-hand-side of eq.(D20) is expressed as

 

51 
 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

Apart from the singular point used to express the VSCAT at ω = 𝜔0 , the spectra given by eq.(D16) can be expressed as
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by where 𝐾𝐷𝑀𝑜𝑑 is a constant that is expressed by
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

we have the expression for the absolute value of the spectra of VSCAT of the DRWP-Model as
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
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𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
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2
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2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 
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This result shows the existence of the ripple-like modulation in the full range of  the spectra due to effects with the form 𝑐𝑜𝑠[𝜔𝑇𝑑], where  
the  spectra  show  local peaks at every frequency corresponding to 𝜔 = 2𝜋/𝑇𝑑 . This is  pointed out in the main text in relation to the 
result given in Figure 16.
For the case of the average random noise (RAND) spectra, we start with the step corresponding to eq.(D8) that is expressed by setting 
F(𝜔𝑏) to be a constant A as
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

Because 𝑇𝑑 ≫ 𝑡m
∗ , the integration of            by 𝜔b for large m values, which is related to 𝑡𝑚 > τOb , becomes negligible. Then, eq.(D19) 

can be approximately rewritten by
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

(D28)

This relation gives the result, finally, that
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 

 

where  𝐾𝑅𝐴𝑁𝐷  is a constant that is given, setting  𝐴0 = 1 , 𝑎𝑠
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 

 

Except for the resultant constant 𝐾𝑅𝐴𝑁𝐷 the result given by eq.(D27) is almost equal to the spectra of the DRWP-Model for the frequency 
range, apart from the singular points, which shows the existence of the VSCAT at ω = 𝜔0 .Then, the absolute value of the RAND spectra 
can be expressed by
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 

 

As  shown  in  main  text,  we  can  find  unknown  S(𝜔 − 𝜔0) and √(𝐷𝑅
DMod)2 + (𝐷𝐼𝑚

DMod)
2 through numerical experiments using 160 

random noise series.

Appendix E: To understand the feature of the modulation of the spectra, we start from the expression given in Appendix D with 
eq.(D20) and (D29), which are repeated here with slight rewritten parts as
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

52 
 

𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

52 
 

𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

52 
 

𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

52 
 

𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

52 
 

𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

52 
 

𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 

 

53 
 

                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 1

𝑀𝑀𝑠𝑠
∙ 1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠+1)𝑇𝑇𝐼𝐼

1 − 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑇𝑇𝐼𝐼
.                               (𝐷𝐷17) 

After several steps of mathematical manipulation, it follows that 

1
𝑀𝑀𝑠𝑠

∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
𝑀𝑀𝑠𝑠

𝑚𝑚=1
= 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀𝑠𝑠 2⁄ )𝑇𝑇𝐼𝐼       .               (𝐷𝐷18) 

When the angular frequency 𝜔𝜔 approaches 𝜔𝜔0, we have an approximated expression 
for eq.(D18) as 
𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[(𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ )] ∙ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔𝑏𝑏)(𝑀𝑀3 2⁄ )𝑇𝑇𝑜𝑜𝑏𝑏      = 𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀3 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔𝑏𝑏)𝑇𝑇𝐼𝐼}
𝑀𝑀3 ∙ (𝜔𝜔 − 𝜔𝜔𝑏𝑏)(𝑇𝑇𝐼𝐼 2⁄ ) ∙       (𝐷𝐷19) 

. 
By inserting eq.(D19) into eq.(D16), we have the result 
D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) =                                                                                                                                                               

1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) {𝑠𝑠𝑠𝑠𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)]}.                               (𝐷𝐷20) 

  
  The last term on the right-hand-side of eq.(D14) that is given with the normalization 
by 𝑀𝑀𝑠𝑠 as 

1
𝑀𝑀𝑠𝑠

[ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝑀𝑀𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏)

2

𝜂𝜂=0
 

is neglected because of the magnitude of order of 1 𝑀𝑀𝑠𝑠⁄   . In eq.(D18), the last part of the 
right-hand-side of eq.(D18) is expressed as 
1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) = 1 + 𝑐𝑐𝑐𝑐𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) 

 = 2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)]𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏) .                       (D21) 
Apart from the singular point used to express the VSCAT at ω = 𝜔𝜔0 , the spectra given 
by eq.(D16) can be expressed as 

D𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏) [ ∑ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 − 𝜔𝜔0)

𝑀𝑀𝑠𝑠

𝑚𝑚=1
]

∙ [2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑏𝑏)] + 1] × 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑏𝑏).                                                        (𝐷𝐷22) 
where 𝐾𝐾𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷 is a constant that is expressed by 

| |
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡𝑚𝑚) .                                                        (𝐷𝐷 23)
𝐷𝐷3

𝑚𝑚=1
 

By defining 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐼𝐼𝑚𝑚  as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼) 

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (𝐷𝐷24)

and 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 = − ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔𝑇𝑇𝐼𝐼)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
             (D25)            

   
we have the expression for the absolute value of the spectra of VSCAT of the 
DRWP-Model as  

|D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔)| = 𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷S(𝜔𝜔 − 𝜔𝜔0)
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) √(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅 )2 + (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)] + 1} .             (𝐷𝐷26) 

This result shows the existence of the ripple-like modulation in the full range of the 
spectra due to effects with the form 𝑐𝑐𝑐𝑐𝑐𝑐[𝜔𝜔(𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜)], where the spectra show local 
peaks at every frequency corresponding to 𝜔𝜔 = 2𝜋𝜋/(𝜂𝜂𝑇𝑇𝐷𝐷 + 𝜂𝜂𝜏𝜏𝐷𝐷𝑜𝑜). This is pointed out in 
the main text in relation to the result given in Figure 16. 
For the case of the average random noise (RAND) spectra, we start with the step 
corresponding to eq.(D8) that is expressed by setting F(𝜔𝜔𝑜𝑜) to be a constant A as 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}

× ∫ {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}  𝑑𝑑𝜔𝜔𝑜𝑜 .  

∞

−∞
  

 
                                                                   (D27) 
Because 𝑇𝑇𝐷𝐷 ≫ 𝑡𝑡𝑚𝑚 

∗ , the integration of 𝑒𝑒−𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚  by 𝜔𝜔𝑜𝑜 for large m values, which is related 
to 𝑡𝑡𝑚𝑚 >  𝜏𝜏𝑂𝑂𝑜𝑜  ,becomes negligible. Then, eq.(D19) can be approximately rewritten by 

D𝑅𝑅𝑅𝑅𝑁𝑁𝐷𝐷(𝜔𝜔) = 𝐴𝐴
2𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
} ×

∫ ∑ 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑡𝑡𝑚𝑚∗𝐷𝐷1
𝑚𝑚=1  𝑑𝑑𝜔𝜔𝑜𝑜 .  𝑖𝑖2

𝑖𝑖1
𝜔𝜔2 − 𝜔𝜔1

  

. 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 

 
In preparation for taking the absolute values of the spectra corresponding to Figure 14 in the main text, here, we define two complex 
quantities as
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In preparation for taking the absolute values of the spectra corresponding to Figure 14 
in the main text, here, we define two complex quantities as 
AR + 𝑖𝑖AIm ≡    

1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑠𝑠𝑖𝑖𝑛𝑛{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       ×  S(𝜔𝜔 − 𝜔𝜔0)}     (𝐸𝐸3) 

and 

BR + 𝑖𝑖BIm ≡ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
                                                             (𝐸𝐸4) 

Then we can express 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = (AR + 𝑖𝑖AIm) ∙ [1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]                 (𝐸𝐸5) 

Further, eq.(E5) can be rewritten as 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = AR{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]

+ 𝐴𝐴𝐼𝐼𝑚𝑚{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}
+ 𝑖𝑖{𝐴𝐴𝐼𝐼𝑚𝑚{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}
− AR{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}                            (𝐸𝐸6) 

The absolute value of D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) is then expressed by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {3 + 4𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}1 2⁄        (E7) 

After a few steps of the mathematical manipulation eq.(E7) can be rewritten by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}       (E8) 

 For the case of |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| , we arrive at similar results by replacing 𝐴𝐴𝑅𝑅  and 
𝐴𝐴𝐼𝐼𝑚𝑚  with  𝐵𝐵𝑅𝑅 and 𝐵𝐵𝐼𝐼𝑚𝑚, respectively, which gives 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = (𝐵𝐵𝑅𝑅
2 + 𝐵𝐵𝐼𝐼𝑚𝑚

2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}    (𝐸𝐸9) 
 
Thus, we can see that eqs.(E8) and (E9) show periodic modulation with a frequency 
interval of ∆f = 1/[(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]. 
 
 
 
 
 
 

and

 

54 
 

In preparation for taking the absolute values of the spectra corresponding to Figure 14 
in the main text, here, we define two complex quantities as 
AR + 𝑖𝑖AIm ≡    

1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑠𝑠𝑖𝑖𝑛𝑛{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       ×  S(𝜔𝜔 − 𝜔𝜔0)}     (𝐸𝐸3) 

and 

BR + 𝑖𝑖BIm ≡ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
                                                             (𝐸𝐸4) 

Then we can express 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = (AR + 𝑖𝑖AIm) ∙ [1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]                 (𝐸𝐸5) 

Further, eq.(E5) can be rewritten as 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = AR{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]

+ 𝐴𝐴𝐼𝐼𝑚𝑚{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}
+ 𝑖𝑖{𝐴𝐴𝐼𝐼𝑚𝑚{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}
− AR{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}                            (𝐸𝐸6) 

The absolute value of D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) is then expressed by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {3 + 4𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}1 2⁄        (E7) 

After a few steps of the mathematical manipulation eq.(E7) can be rewritten by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}       (E8) 

 For the case of |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| , we arrive at similar results by replacing 𝐴𝐴𝑅𝑅  and 
𝐴𝐴𝐼𝐼𝑚𝑚  with  𝐵𝐵𝑅𝑅 and 𝐵𝐵𝐼𝐼𝑚𝑚, respectively, which gives 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = (𝐵𝐵𝑅𝑅
2 + 𝐵𝐵𝐼𝐼𝑚𝑚

2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}    (𝐸𝐸9) 
 
Thus, we can see that eqs.(E8) and (E9) show periodic modulation with a frequency 
interval of ∆f = 1/[(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]. 
 
 
 
 
 
 

Then we can express

The absolute value of D𝐷𝑀𝑜𝑑(𝜔)  is then expressed by
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In preparation for taking the absolute values of the spectra corresponding to Figure 14 
in the main text, here, we define two complex quantities as 
AR + 𝑖𝑖AIm ≡    

1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑠𝑠𝑖𝑖𝑛𝑛{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       ×  S(𝜔𝜔 − 𝜔𝜔0)}     (𝐸𝐸3) 

and 

BR + 𝑖𝑖BIm ≡ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
                                                             (𝐸𝐸4) 

Then we can express 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = (AR + 𝑖𝑖AIm) ∙ [1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]                 (𝐸𝐸5) 

Further, eq.(E5) can be rewritten as 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = AR{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]

+ 𝐴𝐴𝐼𝐼𝑚𝑚{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}
+ 𝑖𝑖{𝐴𝐴𝐼𝐼𝑚𝑚{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}
− AR{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}                            (𝐸𝐸6) 

The absolute value of D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) is then expressed by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {3 + 4𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}1 2⁄        (E7) 

After a few steps of the mathematical manipulation eq.(E7) can be rewritten by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}       (E8) 

 For the case of |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| , we arrive at similar results by replacing 𝐴𝐴𝑅𝑅  and 
𝐴𝐴𝐼𝐼𝑚𝑚  with  𝐵𝐵𝑅𝑅 and 𝐵𝐵𝐼𝐼𝑚𝑚, respectively, which gives 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = (𝐵𝐵𝑅𝑅
2 + 𝐵𝐵𝐼𝐼𝑚𝑚

2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}    (𝐸𝐸9) 
 
Thus, we can see that eqs.(E8) and (E9) show periodic modulation with a frequency 
interval of ∆f = 1/[(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]. 
 
 
 
 
 
 

After a few steps of the mathematical manipulation eq.(E7) can be rewritten by
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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                                                                   (D28) 
 
This relation gives the result, finally, that  

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
𝑒𝑒𝑖𝑖𝑖𝑖𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
  

                                                                   (D29) 
where 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a constant that is given, setting 𝐴𝐴0 = 1 , 𝑎𝑎𝑎𝑎 

𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A ∑ 1
𝑖𝑖𝑡𝑡𝑚𝑚∗ (𝜔𝜔2 − 𝜔𝜔1) ∙ (𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡𝑚𝑚∗ − 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡𝑚𝑚∗ ) .                                      (𝐷𝐷30)

𝑀𝑀1

𝑚𝑚=0

 Except for the resultant constant 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the result given by eq.(D27) is almost equal to 
the spectra of the DRWP-Model for the frequency range, apart from the singular points, 
which shows the existence of the VSCAT at ω = 𝜔𝜔0 .Then, the absolute value of the 
RAND spectra can be expressed by 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅S(𝜔𝜔 − 𝜔𝜔0)
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝐼𝐼𝑚𝑚 )2 {2cos[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 1} .             (𝐷𝐷31) 

As shown in main text, we can find unknown S(𝜔𝜔 − 𝜔𝜔0) and  √(𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑
𝑅𝑅 )2 + (𝐷𝐷𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑

𝐼𝐼𝑚𝑚 )2  

through numerical experiments using 160 random noise series. 
 
 
AAppppeennddiixx  EE  
To understand the feature of the modulation of the spectra, we start from the expression 
given in Appendix D with eq.(D20) and (D29), which are repeated here with slight 
rewritten parts as  

D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) =  1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑎𝑎𝑖𝑖𝑠𝑠{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝑖𝑖−𝑖𝑖0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       

×  S(𝜔𝜔 − 𝜔𝜔0)[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]}.                               (𝐸𝐸1) 

 
and 

D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
[1 + 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝑖𝑖2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]           (𝐸𝐸2) 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

 

50 
 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)
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𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
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}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
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2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
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𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)
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+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
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}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

․

,

․

․
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The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 
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D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚∗  

𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ ∑ [ ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑡𝑡𝑚𝑚∗  
𝐷𝐷𝜂𝜂+1

𝑚𝑚=𝐷𝐷𝜂𝜂+1
] 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷12) 

 
It should be noted that the time series 𝑡𝑡𝑚𝑚

∗ .consists of random intervals, in general, 
between each time interval 𝑡𝑡𝑚𝑚+1

∗ − 𝑡𝑡𝑚𝑚
∗ . When we consider a time series with a constant 

interval 𝑇𝑇𝐼𝐼, the introduction of a new function S(𝜔𝜔 − 𝜔𝜔0)   is required; that is,     
𝑍𝑍(𝜔𝜔 − 𝜔𝜔0)

∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] 𝐷𝐷3
𝑚𝑚=1

= S(𝜔𝜔 − 𝜔𝜔0) .                            (𝐷𝐷13)   

where  

𝑍𝑍(𝜔𝜔 − 𝜔𝜔𝑜𝑜) = ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑡𝑡𝑚𝑚 
𝐷𝐷3

𝑚𝑚=1
.                       (𝐷𝐷14)

Then, using the defined function, S(𝜔𝜔 − 𝜔𝜔0) , eq.(D12) can be rewritten as 
  

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 

(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 − 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0

+ ∑ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 
(𝜂𝜂+1)𝐷𝐷𝑠𝑠

𝑚𝑚=𝜂𝜂𝐷𝐷𝑠𝑠+1
] S(𝜔𝜔 + 𝜔𝜔0)𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂𝑇𝑇𝑑𝑑

2

𝜂𝜂=0
}.          (𝐷𝐷15) 

where 𝑀𝑀𝑠𝑠 is a constant number defined as 𝑀𝑀𝑠𝑠𝑇𝑇𝐼𝐼 = 𝜏𝜏𝐷𝐷𝑜𝑜 
Then, eq.(D15) can be further rewritten as 

D𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 1
4𝜋𝜋(2𝑇𝑇𝐷𝐷 + 𝜏𝜏𝐷𝐷𝑜𝑜) {[ ∑ 𝑒𝑒[−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼] S(𝜔𝜔 − 𝜔𝜔0)

𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∙ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0

+ [ ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝑚𝑚𝑇𝑇𝐼𝐼 S(𝜔𝜔 + 𝜔𝜔0)
𝐷𝐷𝑠𝑠

𝑚𝑚=1
] ∑ 𝑒𝑒−𝑖𝑖(𝜔𝜔+𝜔𝜔0)𝜂𝜂(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)

2

𝜂𝜂=0
}.          (𝐷𝐷16) 

 
The summation part with the data sampling timing of the constant interval 𝑇𝑇𝐼𝐼 in the 
above eq.(D16) is given through normalization as 

․

․

․

․

eqs. (E8)

( )

․

For the case of          ,            we arrive at similar results by replacing 𝐴𝑅 and 𝐴𝐼𝑚 with 𝐵𝑅 and 𝐵𝐼𝑚, 
respectively, which gives
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In preparation for taking the absolute values of the spectra corresponding to Figure 14 
in the main text, here, we define two complex quantities as 
AR + 𝑖𝑖AIm ≡    

1
2(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) {𝑠𝑠𝑖𝑖𝑛𝑛{[(𝑀𝑀𝑠𝑠 + 1) 2⁄ ](𝜔𝜔 − 𝜔𝜔0)𝑇𝑇𝐼𝐼}

𝑀𝑀𝑠𝑠 ∙ (𝜔𝜔 − 𝜔𝜔0)(𝑇𝑇𝐼𝐼 2⁄ ) 𝑒𝑒−𝑖𝑖(𝜔𝜔−𝜔𝜔0)(𝑀𝑀3 2⁄ )𝑇𝑇𝐼𝐼       ×  S(𝜔𝜔 − 𝜔𝜔0)}     (𝐸𝐸3) 

and 

BR + 𝑖𝑖BIm ≡ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2𝜋𝜋(2𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜) ∑ 𝐴𝐴𝜂𝜂𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑚𝑚∗  

𝑀𝑀𝜂𝜂+1

𝑚𝑚=𝑀𝑀𝜂𝜂+1
                                                             (𝐸𝐸4) 

Then we can express 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = (AR + 𝑖𝑖AIm) ∙ [1 + 𝑒𝑒−𝑖𝑖𝜔𝜔(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜) + 𝑒𝑒−𝑖𝑖𝜔𝜔2(𝑇𝑇𝑑𝑑+𝜏𝜏𝑜𝑜𝑜𝑜)]                 (𝐸𝐸5) 

Further, eq.(E5) can be rewritten as 
D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) = AR{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]

+ 𝐴𝐴𝐼𝐼𝑚𝑚{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}
+ 𝑖𝑖{𝐴𝐴𝐼𝐼𝑚𝑚{1 + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}
− AR{𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 𝑠𝑠𝑖𝑖𝑛𝑛[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}}                            (𝐸𝐸6) 

The absolute value of D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔) is then expressed by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {3 + 4𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)] + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔2(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}1 2⁄        (E7) 

After a few steps of the mathematical manipulation eq.(E7) can be rewritten by 
|D𝑅𝑅𝑀𝑀𝑜𝑜𝑑𝑑(𝜔𝜔)| = (𝐴𝐴𝑅𝑅

2 + 𝐴𝐴𝐼𝐼𝑚𝑚
2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}       (E8) 

 For the case of |D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| , we arrive at similar results by replacing 𝐴𝐴𝑅𝑅  and 
𝐴𝐴𝐼𝐼𝑚𝑚  with  𝐵𝐵𝑅𝑅 and 𝐵𝐵𝐼𝐼𝑚𝑚, respectively, which gives 

|D𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)| = (𝐵𝐵𝑅𝑅
2 + 𝐵𝐵𝐼𝐼𝑚𝑚

2 )1 2⁄ {1 + 2𝑐𝑐𝑐𝑐𝑠𝑠[𝜔𝜔(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]}    (𝐸𝐸9) 
 
Thus, we can see that eqs.(E8) and (E9) show periodic modulation with a frequency 
interval of ∆f = 1/[(𝑇𝑇𝑑𝑑 + 𝜏𝜏𝑜𝑜𝑜𝑜)]. 
 
 
 
 
 
 


