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Note: This paper is, a fraction of my book titled “Preliminary studies 
of climate-environment dynamics for our Climate Prediction and 
Environment” is for contributing to climate-environment studies 
and prediction [1].

Introduction
Mixing is important for not only circulations but also for tracer and 
energy transports. A small fraction kinetic energy from circulations 
can transport huge amount of energy and changes in directions 
or magnitudes of circulations may cause large weather-climate 
adjustment [2]. Dozens of experimental parameters have to be 
adjusted for mixing according to modeling methods and domains. 
Mixing schemes are scale-dependent, e.g., with M-Y used for small 
scales and KPP used for large scales [3-6]. As the major mixing 
component in circulation modeling, vertical mixing process has 
been explored with numerous mixing schemes but still with a long-
standing challenge for accurate parameterization [7-13]. 

The field theory applied in the classical fluid mechanics describes 
continuous fluids accurately without mixing terms [14-15]. The 
mixing terms come up in momentum-uneven or discrete fluids. 
Discretization uses the mean state within grids to replace the state 
at one point and equivalently linearize the kinetic equations in some 
extent, and large-scale numerical models of lower spatial resolutions 
are inadequate to resolve the internal tides with shorter wavelengths 

and the sub-grid processes such as eddies for momentum-uneven 
fluids, as shown in this study. Although momentum-unevenness 
produces gradients (e.g., accelerations) and may cause adjustment to 
a climate system, the momentum-unevenness is often smoothed out 
and treated as “noises” through smoothing and filters that are widely 
employed in numerical processes during climate modeling [16-18]. 
Numerical simulation effects are dependent of temporal and spatial 
resolutions and models lacked skill in simulating and predicting the 
sea surface temperature (SST) in the tropical Pacific Ocean where 
the momentum was more uneven, which imply uncertainties in 
mixing [19].

Uncertainties in mixing may result from multiple approximations 
(see Section 2 for details). Large domain models objectively need 
different mixing schemes especially where multiple resolutions are 
applied. Can uncertainties in mixing be avoided through avoiding 
parameterizations and integrating mixings and advection? This study 
integrated mixing and advection using the mass and momentum-
covering relationships (MMCR) of fluids through a direct application 
of momentum law in discrete fluids, generalizing mixings for all 
scales in multi-resolution modeling (see Section 3 for details), 
followed with a modeling examination for the preliminary effects 
using the MMCR (see Section 4 for details).

Methods
Uncertainties in mixing may result from multiple approximations 
during discretization of momentum equations for fluids. Mathematical 
misrepresentation and linearization during discretization, insufficient 
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resolutions of numerical models, and well-posed contradiction 
for discrete space as well as local parameterizations for subscale 
behaviors with various closures and other numerical modeling 
processes such as smoothing and filter may be the typical 
approximations that cause uncertainties in mixing.

Mathematical misrepresentation and linearization during 
discretization
Lagrangian and Eulerian forms of kinetic equations can be 
equivalently transferred in ideal, mathematically continuous space

                                                                                                (1)

The general discrete form of the Eulerian kinetic equation should be

                                                                                                (2)

Where V is speed in Is (unit vector) direction,                    Δs is the 
distance for the local fluid to move within [t, t+ Δt ], ΔtV and ΔsV   
are the increments of V in Δt and Δs , respectively, F is force.

There are two mathematical preconditions for the discretization as 
shown below

                                                                                               (3)

                                                                                               (4)

For the nonlinear fluids, however, these two mathematical 
preconditions were not met because of the follows: First,                                                                                            
condition was not always satisfied unless V is constant within each 
of the time steps [t, t+Δt]. Second, Δs is not the distance for the local 
fluid to move within one time stepΔt, instead it is set as the grid 
spacing. That using V as constant within each of the time steps or 
setting Δs as the grid spacing during numerical computation is using 
the mean state within each of the time steps or grid spacing to replace 
the real state at one temporal or spatial point, making the model 
dependent of its temporal and spatial resolution and linearizing 
the system in some extent if the system is a nonlinear one. The 
temporal or spatial deformation with large gradients would be missed 
during the numerical computation and fail accurate prediction for the 
climate adjustment because large gradients including accelerations 
cause climate adjustment. At local points, the real gradients can be 
much stronger than that averaged within entire grids (Fig. 1). Grid 
spacing is often much larger than the distance the fluid covers within 
one time step, making the “linearization” unavoidable in large-scale 
climate model. Meaning, smoothing, and filtering in models enhance 
the “linearization”.

Figure 1: Diagram showing that a gradient at a local point can be 
much larger than the gradient averaged within a time step (d = t) 

or grid spacing (d = s).

Insufficient resolutions of numerical models
The two mathematical preconditions require much high resolutions 
with the ∆t and ∆s small enough and require small accelerations in 
order to make the mean within grids approach its real value gradient 
at local points. However, resolutions of large-scale numerical models 
were insufficient to have accurate solutions for tide-associated 
dynamics, which can be demonstrated through two obvious cases 
in follows:

Case one on the internal tidal-forced waves: Suppose the Δs / Δt = 
V is accepted in discretization, the discrete form of Equation 2 can 
be written as 

                                                                                                (5)

The internal tidal-forced waves in s-direction with wave speed (c) 
and wavelength (L) can be written as                         Applying a 
Taylor series expansion, the absolute speed truncation error in the 
spatial discretization with Nth centered approximation is                   
the relative truncation error and the grid spacing limit are

                                                                                               (6)

                                                                                               (7)

For the internal tidal wavelength ranges (~20–50 km) in oceans 
of depths less than 2,000m and rp =10% (relative error limit), 
the grid spacing must be less than ~0.1–4km with time step Δt 
=10~900 seconds and |V| =0.5−2.5m/s for the 2nd and 4th centered 
approximations (Fig. 2)[20]. Higher spatial resolution (most cases 
<1km) is needed for longer time steps, shorter wavelengths, or faster 
flows. It is difficult to see the true tidal effects on climate from the 
large-scale numerical models due to the much lower resolutions.

Figure 2: The maximum permitted grid spacing (km) of 2nd (a and 
b) and 4th (c and d) centered approximations for a 10% relative 
error limit with different wavelength (km), time step (s), and wave 
speed (0.5~2.5 ms-1).

www.opastonline.com

https://www.opastonline.com/


Volume 2 | Issue 2 | 3 of 8Eart & Envi Scie Res & Rev, 2019

Case two on Sun-Moon gravitation induced nonlinear motions 
of geophysical fluids: Sun-Moon gravitation changes with the 
relative location between a moving fluid and the Sun or Moon. For 
a numerical model to determine the location, grid spacing must 
be smaller than the distance the fluids move within one time step. 
Pinpointing accurate relative locations between a float and the Sun 
or Moon, the fast rotation of Earth makes the time step and grid 
spacing much shorter than those used by classic climate models. If, 
for example, the time step is one minute and the smallest speed that 
must be simulated is 0.05m/s (typically for variations of ~10 years), 
grid spacing must be smaller than 3m [21]. Increasing the time 
step may enlarge the grid spacing, but results in errors for relative 
locations and the momentum accumulation effect will be missed.

Well-posed contradiction may exist for internal waves
Well-posedness of numerical solution equires that solution exists, is 
unique, and changes continuously with the initial condition(s) (stable 
and convergent if iteration applied) [22]. For stability

cΔt / Δs ≤ 1                                                                           (8)

Equation 8 shows that grid spacing should be proportional to 
time step for stability required for the well-posed solution, but 
is inversely proportional to time step in order to limit truncation 
error during computation of internal waves, as shown in Equation 
7. A contradiction exists for the grid spacing between maintaining 
stability and limiting truncation error.

A new attempt based on relationships of mathematics and physics
Classically, Newton Law was originally written in Lagrangian 
system, transferred into Eulerian system for continuous space, and 
then discretized with mixing terms added for sub-grid processes 
through parameterization with closures dependent of scales, based 
on speed gradients. Issues mainly come up during the discretization 
and parameterization.

Here, Newton Law was written in discrete space directly using 
conservations of momentum and mass, avoiding externally adding 
mixing terms, and without the parameterization. New discrete 
momentum and mass equations were established through “mass 
and momentum-covering relationships (MMCR)” (see Section 3 
for details).

Integration of Advection and Mixing Terms
Conservations of momentum and mass derived for discrete fluids
That the micro clusters are both microcosmically big enough and 
macroscopically small enough is required by the fluid mechanics. 
The time-step (dt) and size (dx, dy, dz) of fluid micro clusters should 
be greater than zero for integration. Given a local micro-cluster
 
                                                                                               (11)

The speed of the local micro-cluster L is V = ui+vj+wk (i, j, and k 
are the unit vector in x, y, and z direction respectively). The density 
of L is ρ at time t=0. Considering u ≥ 0, v ≥ 0, and w ≥ 0 at any 
time t ϵ (0, dt], the total momentum and mass provided to the local 
microcluster L by its neighbors (here, all A, B, C, D, E, F, and G 
were considered; but classically, only A, C and G micro clusters 
were considered) are respectively (Fig. 3)

                                                                                                 (12)

                                                                                                 (13) 

where, n can be A, B, C, D, E, F, or G, and

                                                                                                                                                                                                                                                                                                            
                     
                                                                                              

Covering volumes at time t of micro-clusters A to G are

                                                                                                (23)

                                                                                                (24)
                              
                                                                                          
                                                                                             

                                                                                               (25)

                                                                                               (26)
  

                                                                                               (27) 

                                                                                               (28)

                                                                                               (29)
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Figure 3: Diagrams for the coverage relationship among the fluid 
micro-clusters with the local one marked as L of size of dx, dy, and 
dz and its neighboring ones marked as A, B, C, D, E, F, G, and H, 
respectively.

Kinetic equations for discrete fluids
Defining the momentum-transporting compensative speed as

                                                                                               (30)

                                                                                               (31)

                                                                                               (32)

                                                                                               (33)

Eq. 30 represents the compensated momentum transport of the speed 
resulting from the spatially uneven distribution of density and speed.

Defining the momentum-transporting speed as

                                                                                               (34)   

Using Eq. 12, the total impulsive force per unit of volume of the 
local micro-cluster is

                                                                                               (35)

By applying Newton mechanics to an instantaneous covering fluid, 
I rewrote the fluid mechanics kinetic equations as following:

                                                                                               (36)

Advection terms become

                                                                                               

                                                                                               (37)

                                                                                              (38)

where, Go is the composite force of all the other forces except 
pressure gradient force, p is the classical pressure used in kinetic 
and state equations, also known as hydrostatic pressure.

(V ∙ ∇) V in Eq. 37 is the classical advection term, while (Vp ∙ ∇)
V in Eq. 38 is a higher-order spatial advection term and is induced 
from the spatial unevenness in both density and speed (e.g., drops 
carried by spatially uneven wind in density or speed will provide 
impulsive force to the neighboring air), and can be large for the 
fluids with slow speed and large momentum or density unevenness, 
e.g., in costal and tropical regions.

The force or transport from the higher-order spatial advection term is 
kind of “mixing”, proportional to speed gradients with coefficients of 
up, vp, and wp that are functions of density, grid spacing (clusters’ size 
will be set as grid spacing in x, y, and z directions, respectively), and 
the gradients of speed, density and momentum. No parameterization 
is required and grid effects will be automatically computed according 
to grid spacing and gradients during numerical modeling. Much 
higher resolutions will be required, which is being supported by 
today’s developed computation capacity.

Eq. 36 can be written into the classical form of momentum equation 
as

                                                                                              (39)

where,

                                                                                             (40)

Here, the higher-order spatial advection term become the “kinetic 
pressure” as defined in the on the right-hand side of Eq. 40, result 
from the uneven spatial distribution of fluid density and speed on 
basis of the relative motion, not from thermal motion of molecules or 
weight of fluids. Hence, pc is no longer just the classical hydrostatic 
pressure p unless fluid is even or at rest.

If continuous fluids are mathematically abstracted as dx=0, dy=0, 
and dz=0, the higher-order spatial derivative disappears. However, 
“micro-clusters” of zero volume cannot contribute to real fluid space. 
Therefore fluid mechanics requires that the micro-cluster should be 
both microcosmically big enough and macroscopically small enough.

Continuity equation for discrete fluids without mass source or 
sink
Using Eq. 13, omitting mass source or sink, omitting compressibility 
of fluids, the total rate of mass increase of the local micro-cluster is 
contributed from its neighbors for per unit of volume and is
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                                                                                               (41)

Or I wrote the continuation equation for fluids as

                                                                                              (42)

The impulsive force and mass provided to the local fluid micro-
cluster by its neighbors are result from both the relative motion 
and spatially uneven distribution of fluid density and speed. The 
momentum and mass covering relationships among fluid micro-
clusters of size (dx×dy×dz) are same as those among fluid clusters 
of size Δx×Δy×Δz.

Modification of kinetic equations for discrete fluids
In classical discrete fluid kinetic equations, ∆x, ∆y, ∆z, and ∆t 
represent the grid spacing and time step in x, y, z and directions, 
respectively. Such definitions, however, do not meet mathematical 
requirements, that are: ∆x = u∆t, ∆y = v∆t , ∆z = w∆t, and 
correspondingly ∆dE/∆d = дE/дd (the difference of element E, 
with E=u, v, w, or p, in d-direction, with d = x, y, z, or t. ∆d E is 
the increment of E in d-direction within ∆d). The changing speed 
and constant grid spacing make it impossible for the practical 
discretization to meet the mathematical requirements (see †3 for 
details).

The certainty for the MMCR physically requires time-steps that must 
be short enough to guarantee that the distance for fluids to move 
within one time-step is shorter than the grid spacing, i.e.

                                                                                               (43)

For the discrete fluid kinetic equations

                                                                                                        

                                                                                               

Marking each difference term of the main spatial derivative −(V ∙ 
∇)V at the local grid point as

                                                                                               (49) 

where, Lj = Δx, Δy, or Δz, qi or qj = u, v, or w.

For simplicity, let m be the grid coordinate in i-direction and n in 
j-direction. Fij is the i-direction force component contributed by 
the j-direction advection of qi to the local fluid block Fig. 4), which 
equals the one unit mass momentum-transporting rate of this block 
according to the momentum law. However, even if the speed at a 
grid point can represent the averaged speed within that grid box, the 
discrete fluid must cover a distance equal to the grid spacing within 
one time step in order to calculate the corresponding momentum, 
which works against the discretization precondition (Eq. 43). In this 
sense, momentum law was not calculated correctly in the classical 
discrete scheme.

To calculate the momentum law correctly and keep the discretization 
precondition (Eq. 4), the speed used to calculate momentum must be 
the speeds at the bordering walls (m±1/2, n±1/ 2) of the local block 
and the Fij should be calculated by application of the momentum-
covering relationship.

                                                                                             (50)

                                                                                              (51)

To calculate the mean speeds at the bordering walls of the local 
block without knowing its local change with time, two potential 
calculation schemes were suggested below.

One, simple arithmetical scheme: If within the distance the 
fluid covers within one time step, the speed change is very small 
(for instance, to calculate the slow-speed fluids with small spatial 
gradient), the mean speed at the bordering walls of the local block 
in i- and j-directions are given by

Two, time-step-dependent scheme: If within the distance the fluid 
covers within one time step, the speed change is not very small (for 
instance, to calculate the high-speed fluids and/or with big spatial 
gradient), the mean speed at the bordering walls of the local block 
in i- and jdirections can be calculated according to the real distance 
the fluid covers
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                                                                                               (55)

                                                                                              (56)             

                                                                                                (57)   

Figure 4: Diagram for the discrete grid scheme

Examination through Numerical experiments
Here the preliminary effect for using the MMCR was examined 
through the Lamont Ocean-AML (atmospheric mixed layer) 
Model (LOAM) with the time-step-dependent scheme. LOAM 
is developed from the original Gent-Cane model, using primitive 
equations [17]. At its core, LOAM uses: the hydrostatic balance, the 
rigid-lid approximation, the fourth-order centered differencing in 
the horizontal, fourth order temporal Lorenz cycle, and convective 
adjustment with wind stirring assuming a Richardson-number 
dependent mixing [23]. Model calculations are performed on 
stretched longitude/latitude A-grid with a 50~200km horizontal 
resolution covering a 20°S- 20°N latitude zone with 28 ocean depth 
(m) levels (5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 110, 130, 170, 220, 
300, 390, 490, 600, 800,1000,1500, 2000, 2500, 3000, 3500, 4000, 
4500, 5000) and a time step of 30 minutes. Experiments employed 
data of CMAP (CPC Merged Analysis of Precipitation) monthly 
precipitation, sea surface temperature from NCAR (National 

Center for Atmospheric Research), Levitus salinity, air temperature, 
moisture, wind, wind stress, geopotential height, and sea surface 
heat fluxes from the NCEP reanalysis (provided by NOAA CIRES 
Climate Diagnostics Center). The longwave, sensible, and latent heat 
fluxes were computed from LOAM, using formulation of Seager and 
Blumenthal  and the mixed layer formulation of Chen et al. [24-25].

For a preliminary examination of the MMCR, two experiments 
were conducted with (“new scheme”) and without (“old scheme”) 
the MMCR for calculating the advection and convection terms in 
the momentum equations and all the other parameters were kept 
intact. LOAM was optimized according to the old scheme and was 
run at large spatial scales, which minimizes the contribution of 
advection and convection, and will therefore restrict the effect of the 
new scheme. Even though the new scheme showed better skills in 
simulations of sea surface temperatures, especially within tropical 
oceans where the uneven ness of fluid momentum is larger (Fig. 5), 
based on modeling results for a period of 1979−2002.

Figure 5: Spatial unevenness expressed with surface horizontal 
momentum gradient (kgm-3s -1, A) and compensative speed (ms-1, 
B) in the tropical oceans, computed from the monthly output in 
May 2000 from Lamont Ocean-Atmosphere Model (50-200km 
resolution).

The correlation between the average observed and simulated sea 
surface temperatures increased by 6%, 18%, 14%, 22%, and 4% 
averaged in the equatorial (5°S-5°N) Niño3 (210°-270°E), warm 
pool (120°-160°E), Atlantic (320°-360°E), Indian (40° -100°E), 
and the entire region, respectively (Fig. 6). The 1979-2002 mean 
simulated sea surface temperatures were more closely matched to 
observations across our entire domain if using the new scheme than 
if using the old scheme (Fig. 7). The MMCR did improve modeling 
for the momentum-uneven fluids as it was supposed to be.

Figure 6: Correlations between NCAR-observed and LOAM-
simulated sea-surface temperatures for new scheme (A), old scheme 
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(B), and the difference with new minus old scheme (C).

Figure 7: Comparison of mean NCAR-observed sea-surface 
temperatures (A) and simulated sea-surface temperatures using 
old/new discretization scheme ( ) for period of 1979-2002.

Summary and Discussion
During the application of Newton Law for discrete fluids in 
Eulerian system, momentum-unevenness of fluids may cause 
modeling uncertainties due to mathematical discretization, improper 
resolutions, parameterized mixing, and other modeling processes such 
as smoothing and filtering. First, two mathematical preconditions for 
the discretization have not been met in modeling due to mathematical 
misrepresentations where the grid spacing has been automatically 
(wrongly) set as the distance for fluids to move within one time-step. 
Second, the lower resolutions have linearized, rather extensively, 
nonlinear motions and may have failed to forecast accelerations that 
can cause climate adjustments. Resolutions of large-scale numerical 
models are far from sufficiency to have accurate solutions for tide-
associated dynamics, because numerically solving internal waves or 
pinpointing accurate relative locations between fluids and the Sun 
or Moon for solving the nonlinear Sun-Moon driven fluid system 
requires much higher resolutions due to the fast wave speed or the 
fast rotation of Earth (e.g., grid spacing can be smaller than 3m). 
Well-posed contradiction for discrete fluids may be caused with 
improper (lower) resolutions. Third, local parameterizations for 
subscale behaviors with various closures may cause uncertainties 
in mixing.

In order to avoid mixing parameterizations that are locally dependent 
of modeling domains, grids, and processes, here I wrote Newton Law 
directly for discrete fluids under conservations of momentum and 
mass using “mass and momentum-covering relationships (MMCR)”. 
Accordingly, new discrete momentum and mass equations were 
established with new views and schemes. First, advection and mixing 
can be integrated together and mixing is the higher-order spatial 
advection term induced from speed gradients times coefficients that 
are functions of density, grid spacing, and the gradients of speed, 
density and momentum. Second, parameterization can be avoided, 
and no uncertain parameters need be involved in modeling. Third, 
the certain MMCR among fluid micro-clusters imply a precondition 
that the neighboring fluid micro-clusters should not pass over the 
local fluid micro-cluster within one time-step, as is required for 
classical discretization.

When applied over tropical oceans where momentum unevenness is 

larger, the discretization scheme derived from MMCR improved the 
modeling of sea surface temperatures by simply using this scheme 
to calculate the advection and convection terms in the momentum 
equations. However, more experiments need to be performed for 
multiple models using multiple resolutions without and with multiple 
mixings in order to fully evaluate and compare modeling effects 
and computing efficiencies. Unfortunately, there are no facility and 
funding available for me to perform this study further.
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