
 Volume 3 | Issue 1 | 1

Increased Resource Utilization Through Sharing as Analyzed Using a Random Walk
with an Absorbing Barrier

Research Article

Nicholas A. Strakhov*

*Corresponding Author
Nicholas A. Strakhov, Lexington, University of Kentucky, United States.

Submitted: 2023, Dec 26; Accepted: 2024, Jan 15; Published: 2024, Feb 05

J Curr Trends Comp Sci Res, 2024

Citation: Strakhov, N. A. (2024). Increased Resource Utilization Through Sharing as Analyzed Using a Random Walk with an
Absorbing Barrier. J Curr Trends Comp Sci Res, 3(1), 01-10.

Abstract
Intuition supports the idea that if multiple entities use items to service their clients, then sharing the items between the entities
will result in more provided services than if the items are pre-allocated to each entity. This idea is quantified by first creating
a grid of two to five dimensions (one dimension for each entity). The number of items in use is represented by a single point
whose projection on each axis is determined by the number of items in use by each entity. Moving from point to point on
this grid occurs as each entity needs an additional item or gives one up. This movement is similar to a Random Walk. The
probabilities of moving forward or backward are each independently chosen to represent customer usage. An absorbing
barrier enforces the finite number of items available. The results of a computer program simulating this model is presented
which shows improved resource utilization. Next, a detailed analysis is developed and the formula obtained is simple and
accurate in predicting the results.over the range computed by the simulation.

Lexington, University of Kentucky, United States

Journal of Current Trends in Computer Science Research
ISSN: 2836-8495

 Index Terms-Sharing resources, multi-dimensional random walk, trinomial expansion

1. Introduction
This paper studies the utilization of an inventory of items that
is to be shared by two or more entities (or servers). A basic
assumption is that the inventory is not consumed by the entity
but is returned to inventory after use. There are two possible
approaches to a system for implementing the
sharing process:
• The inventory is divided initially with each participating entity
receiving an inventory for its exclusive use. This approach can
result in some entities running out of inventory while others
have an excess. This approach will be called preallocated.
• Another approach is to maintain the inventory as one common
pool and allow each entity to use the next available item. This
will be called shared.

The analysis to be presented will demonstrate that the approach
to sharing the inventory utilizes the inventory better unless the
pre-allocated approach is divided accurately in proportion to the
demand.

1.1. Some Examples
Recently there was a strong demand for ventilators to treat
patients seriously ill with COVID-19. At times some medical
facilities were running out of ventilators while others had some
excess. Clearly a central stockpile of ventilators might have
helped provide ventilators to where they could be used more
effectively.

 Outdoor dining has become more popular in part by the need for
more ventilation in the era of COVID-19 and other pandemics.
In some cases, if restaurants have contiguous outdoor dining
areas, it might be possible to share the dining tables. More diners
could be served and fewer placed on a waiting list with shared
facility dining.

An example in an industrial setting might be that as transmission
network demands change, specialized equipment may be
temporarily required in different parts of the network. Again,
sharing may be an important consideration.

Notice that in all these cases the inventoried item is returned.
In the case of ventilators, when a patient is better or dies the
ventilator is available for use elsewhere. In the case of outdoor
dining, when the diners are done, the table is free for use by
another author. No Artificial Intelligence software was used
in any phase. Nicholas Strakhov is retired from Telcordia
Technologies. He was previously associated with Bell core and
Bell Telephone Laboratories. He may be reached at home at
nstrakho@alum.mit.edu. diners. Similarly, network equipment
can be reused when no longer needed in the current installation.

1.2. Background
There are a large number of studies focusing on sharing
resources. See, for example, [1-3]. One notable difference is
that these studies focus on consumable resources such as raw

 Volume 3 | Issue 1 | 2J Curr Trends Comp Sci Res, 2024

materials for several producers. Several interesting concepts
in linear algebra theory are applied to the solution. Another
approach is presented by which considers two servers sharing
an input stream and applying queuing theory to the service time
[4]. Again, this model does not address returning an item to a
common pool.

As will be presented shortly, the concept of Random Walks (RW)
will be utilized. There is an even larger body of knowledge applied
to random walks. See, for example, which are introductions to
the topic [5,6]. A major difference is the statistics in this study are

much different as will be seen. Yet another approach that might
be applied to this study is described by [7]. This analyzes how
plants compete for limited air, water and soil. Again, however,
the inventory is being consumed by the plants.

2. Simulation
2.1. Inventory Model
The first model of the pool will represent two entities and will
be displayed on a two- dimensional graph. The X axis represents
the number of items in use by server 2 and the Y axis represents
the same for server 1. See Figure 1. diners. Similarly, network equipment can be reused

when no longer needed in the current installation.

B. Background
There are a large number of studies focusing on
sharing resources. See, for example, [1] – [3]. One
notable difference is that these studies focus on
consumable resources such as raw materials for
several producers. Several interesting concepts in
linear algebra theory are applied to the solution.
Another approach is presented by [4] which considers
two servers sharing an input stream and applying
queuing theory to the service time. Again, this model
does not address returning an item to a common pool.

As will be presented shortly, the concept of Random
Walks (RW) will be utilized. There is an even larger
body of knowledge applied to random walks. See, for
example, [5] & [6] which are introductions to the
topic. A major difference is the statistics in this study
are much different as will be seen. Yet another
approach that might be applied to this study is
described by [7]. This analyzes how plants compete
for limited air, water and soil. Again, however, the
inventory is being consumed by the plants.

II. Simulation
A. Inventory Model
The first model of the pool will represent two entities
and will be displayed on a two- dimensional graph.
The X axis represents the number of items in use by
server 2 and the Y axis represents the same for server
1. See Figure 1.

This chart represents the condition where the
inventory has been divided between the two servers
(Cap1 for Server 1 and Cap2 for server 2). Cap1 plus
Cap2 cannot exceed the 45° line which represents the
total available inventory. The two black doughnuts
depict actual items in use. In effect this model creates
two independent RW.

The next chart shows how the points on the X and Y
axes move about.

Figure 2 Two One Dimensional Random Walks

Cap1

Cap 2

Available Pool

Total

Total

Items in Use by Server 2

Ite

m
s i

n
U

se
 b

y
Se

rv
er

 1

Figure 1 Pre-Allocated Inventory

If Server 2 requests an
item move 1 cell right

If Server 2 returns an
item move 1 cell left

If Server 1 returns an
item move 1 cell down

If Server 1 requests an
item move 1 cell up

diners. Similarly, network equipment can be reused
when no longer needed in the current installation.

B. Background
There are a large number of studies focusing on
sharing resources. See, for example, [1] – [3]. One
notable difference is that these studies focus on
consumable resources such as raw materials for
several producers. Several interesting concepts in
linear algebra theory are applied to the solution.
Another approach is presented by [4] which considers
two servers sharing an input stream and applying
queuing theory to the service time. Again, this model
does not address returning an item to a common pool.

As will be presented shortly, the concept of Random
Walks (RW) will be utilized. There is an even larger
body of knowledge applied to random walks. See, for
example, [5] & [6] which are introductions to the
topic. A major difference is the statistics in this study
are much different as will be seen. Yet another
approach that might be applied to this study is
described by [7]. This analyzes how plants compete
for limited air, water and soil. Again, however, the
inventory is being consumed by the plants.

II. Simulation
A. Inventory Model
The first model of the pool will represent two entities
and will be displayed on a two- dimensional graph.
The X axis represents the number of items in use by
server 2 and the Y axis represents the same for server
1. See Figure 1.

This chart represents the condition where the
inventory has been divided between the two servers
(Cap1 for Server 1 and Cap2 for server 2). Cap1 plus
Cap2 cannot exceed the 45° line which represents the
total available inventory. The two black doughnuts
depict actual items in use. In effect this model creates
two independent RW.

The next chart shows how the points on the X and Y
axes move about.

Figure 2 Two One Dimensional Random Walks

Cap1

Cap 2

Available Pool

Total

Total

Items in Use by Server 2

Ite

m
s i

n
U

se
 b

y
Se

rv
er

 1

Figure 1 Pre-Allocated Inventory

If Server 2 requests an
item move 1 cell right

If Server 2 returns an
item move 1 cell left

If Server 1 returns an
item move 1 cell down

If Server 1 requests an
item move 1 cell up

 Figure 1: Pre-Allocated Inventory
 This chart represents the condition where the inventory has
been divided between the two servers (Cap1 for Server 1 and
Cap2 for server 2). Cap1 plus Cap2 cannot exceed the 45° line
which represents the total available inventory. The two black
doughnuts depict actual items in use. In effect this model creates

two independent RW.

The next chart shows how the points on the X and Y axes move
about.

Figure 2: Two One Dimensional Random Walks

The two points (one on each axis) represent the amount of
inventory each Server is using. They are not allowed to go
beyond the capacity assigned to each one. As noted on Figure 2

this will be modeled with two independent random walks.

The foregoing described the basic model behind two servers that

 Volume 3 | Issue 1 | 3J Curr Trends Comp Sci Res, 2024

are using pre-allocated inventory. Next, the generalization of the
model to address two servers sharing the inventory is presented.
The model now becomes:

The two points (one on each axis) represent the
amount of inventory each Server is using. They are
not allowed to go beyond the capacity assigned to
each one. As noted on Figure 2 this will be modeled
with two independent random walks.

The foregoing described the basic model behind two
servers that are using pre-allocated inventory. Next,
the generalization of the model to address two servers
sharing the inventory is presented. The model now
becomes:

The Current Operating Point (black doughnut)
represent the number of items in use by each Server.
The next chart depicts how this point moves as
conditions change.

Creates Two-Dimensional Random Walk

Figure 4 RW Movement Rules

Extending this model to more servers is
straightforward: simply add a dimension for each
server in the collection. There is still only one point
in the multidimensional grid that represents the
number of customers being served.

B. Simulation Program
The probability of Server_i requiring an additional
item (moving to the next higher cell) is designated pi
and the probability of returning an item to its pool is
qi. (i = 1,2,..Number of servers)
In most random walk analyses, pi + qi = 1 and
furthermore pi = qi = ½. This latter requirement
assures that the operating point stays near the origin.
[5] & [8] Otherwise, the location of the operating
point will grow without limit.
In this analysis, pi is initially greater than qi but as
Server_i accumulates more items, pi decreases.
Also, if the number of items held by all Servers
attempts to increase above the sum of all capacities,
then no additional items can be assigned to any server
until the number held falls below the capacity sum.

The probabilities that will be used in this analysis are:

 The probability of moving to the next higher
cell will be given by
 pi = p0ie-(Mi/Ri) (Eq 1)

 where p0i is a constant between 0
and 1, Mi is the current item count
for server i, and Ri is a constant
that represents the demand for
service.

 qi is set to q0 where q0 is a constant between
0 and 1. Clearly there could be other choices
for pi and qi

 If pi is true and qi is false the cell advances.
If pi is false and qi is true the cell moves
back. Otherwise, the cell stays put but the
cycle is still counted.

The simulation program generates the following
output:

 Each server is evaluated separately with
their own pre-allocated pool of items.

 All servers are evaluated collectively with
the merged pool of items.

 The evaluation consists of the average
location of the items and the percent of
attempts to cross the boundary

 The number of repeated cycle is a program
input but is chosen to be 200,000 for the
examples presented.

Merged Pool

Total

Total
Items In Use by Server 2

Ite

m
s I

n
U

se
 b

y
Se

rv
er

 1

Figure 3 Two Dimensional RW

If Server 2 requests an
item move 1 cell right

If Server 1 requests an
item move 1 cell up

If Server 2 returns an
item move 1 cell left

If Server 1 returns an
item move 1 cell down

Figure 3: Two Dimensional RW

The Current Operating Point (black doughnut) represent the number of items in use by each Server. The next chart depicts how this
point moves as conditions change.

Figure 4: Walk RW Movement Rules

The two points (one on each axis) represent the
amount of inventory each Server is using. They are
not allowed to go beyond the capacity assigned to
each one. As noted on Figure 2 this will be modeled
with two independent random walks.

The foregoing described the basic model behind two
servers that are using pre-allocated inventory. Next,
the generalization of the model to address two servers
sharing the inventory is presented. The model now
becomes:

The Current Operating Point (black doughnut)
represent the number of items in use by each Server.
The next chart depicts how this point moves as
conditions change.

Creates Two-Dimensional Random Walk

Figure 4 RW Movement Rules

Extending this model to more servers is
straightforward: simply add a dimension for each
server in the collection. There is still only one point
in the multidimensional grid that represents the
number of customers being served.

B. Simulation Program
The probability of Server_i requiring an additional
item (moving to the next higher cell) is designated pi
and the probability of returning an item to its pool is
qi. (i = 1,2,..Number of servers)
In most random walk analyses, pi + qi = 1 and
furthermore pi = qi = ½. This latter requirement
assures that the operating point stays near the origin.
[5] & [8] Otherwise, the location of the operating
point will grow without limit.
In this analysis, pi is initially greater than qi but as
Server_i accumulates more items, pi decreases.
Also, if the number of items held by all Servers
attempts to increase above the sum of all capacities,
then no additional items can be assigned to any server
until the number held falls below the capacity sum.

The probabilities that will be used in this analysis are:

 The probability of moving to the next higher
cell will be given by
 pi = p0ie-(Mi/Ri) (Eq 1)

 where p0i is a constant between 0
and 1, Mi is the current item count
for server i, and Ri is a constant
that represents the demand for
service.

 qi is set to q0 where q0 is a constant between
0 and 1. Clearly there could be other choices
for pi and qi

 If pi is true and qi is false the cell advances.
If pi is false and qi is true the cell moves
back. Otherwise, the cell stays put but the
cycle is still counted.

The simulation program generates the following
output:

 Each server is evaluated separately with
their own pre-allocated pool of items.

 All servers are evaluated collectively with
the merged pool of items.

 The evaluation consists of the average
location of the items and the percent of
attempts to cross the boundary

 The number of repeated cycle is a program
input but is chosen to be 200,000 for the
examples presented.

Merged Pool

Total

Total
Items In Use by Server 2

Ite

m
s I

n
U

se
 b

y
Se

rv
er

 1

Figure 3 Two Dimensional RW

If Server 2 requests an
item move 1 cell right

If Server 1 requests an
item move 1 cell up

If Server 2 returns an
item move 1 cell left

If Server 1 returns an
item move 1 cell down

Extending this model to more servers is straightforward: simply
add a dimension for each server in the collection. There is still
only one point in the multidimensional grid that represents the
number of customers being served.

2.2. Simulation Program
The probability of Server_i requiring an additional item (moving
to the next higher cell) is designated pi and the probability of
returning an item to its pool is
 qi. (i = 1,2...Number of servers).

In most random walk analyses, pi + qi = 1 and furthermore pi =
qi = ½. This latter requirement assures that the operating point
stays near the origin. Otherwise, the location of the operating
point will grow without limit [5,8].

In this analysis, pi is initially greater than qi but as Server_i
accumulates more items, pi decreases. Also, if the number of
items held by all Servers attempts to increase above the sum of
all capacities, then no additional items can be assigned to any
server until the number held falls below the capacity sum.

The probabilities that will be used in this analysis are:
• The probability of moving to the next higher cell will be given
by pi = p0ie

-(Mi/Ri) (Eq 1)
where p0i is a constant between 0 and 1, Mi is the current item
count for server i, and Ri is a constant that represents the demand
for service.
• qi is set to q0 where q0 is a constant between 0 and 1. Clearly
there could be other choices for pi and qi
• If pi is true and qi is false the cell advances. If pi is false and qi
is true the cell moves back. Otherwise, the cell stays put but the

 Volume 3 | Issue 1 | 4J Curr Trends Comp Sci Res, 2024

cycle is still counted.
The simulation program generates the following output:
• Each server is evaluated separately with their own pre-allocated
pool of items.
• All servers are evaluated collectively with the merged pool of
items.
• The evaluation consists of the average location of the items and
the percent of attempts to cross the boundary
• The number of repeated cycles is a program input but is chosen
to be 200,000 for the examples presented.
• The evaluation uses a range of demand for service or a range of
capacity. In this study a range of demand is used.2
• Further analysis of the program’s output is achieved through a
download to an Excel spreadsheet. A key function is to combine
the pre-allocated overflow with the formula

where Ri is the demand for the i-th server, OFi is the corresponding
overflow and TD is the sum of all Ri’s.
Also, the number served by each preallocated server is combined
by adding the individual equilibrium values. These last two
steps allow for comparison of pre-allocated results with merged
results.

It turns out that some simplification in the number of variables
that need to be considered is achieved by dividing the Demand
(R) by the Capacity and also dividing the average location by
Capacity. All results will be presented in these terms.

2.3. Pre-Allocation to Merged Comparison
In this case three different values of demand and capacity with
the same R/Cap ratio are presented. In addition, pre-allocated
and merged results are presented with the same parameters. This
uses two servers.

 The evaluation uses a range of demand for
service or a range of capacity. In this study a
range of demand is used.2

 Further analysis of the program’s output is
achieved through a download to an Excel
spreadsheet. A key function is to combine
the pre-allocated overflow with the formula
�
��

∑ 𝑅𝑅𝑅𝑅 ∗ 𝑂𝑂𝑂𝑂𝑅𝑅�
���

where Ri is the demand for the i-th
server, OFi is the corresponding
overflow and TD is the sum of all
Ri’s.

Also, the number served by each pre-
allocated server is combined by adding the
individual equilibrium values.
These last two steps allow for comparison of
pre-allocated results with merged results.

It turns out that some simplification in the number of
variables that need to be considered is achieved by
dividing the Demand (R) by the Capacity and also
dividing the average location by Capacity. All results
will be presented in these terms.

C. Pre-Allocation to Merged Comparison

In this case three different values of demand and
capacity with the same R/Cap ratio are presented. In
addition, pre-allocated and merged results are
presented with the same parameters. This uses two
servers.

Figure 5 Percent Over - Balanced Inventory
Allocation at Three Scales

This chart behaves as expected. For small values of
demand, there is little to no overflow over capacity.
As the demand increases, the probability for the RW

2 A range of either Demand or Capacity is determined by starting
with the value provided and calculating five values equal to

to move forward increases, and more overflow is
experienced.

Figure 6 Number Served - Balanced Inventory
Allocation at Three Scales

All six cases plot over each other in this case as well.
The average position of the items used is taken to be
the number served.

This chart also behaves as expected. As the demand
increases from a small starting value, the number
served linearly increases. As the Capacity of the
inventory is reached, the number served/Capacity
approaches 1 as there is no additional inventory to
offer.

Two conclusions can be drawn from these results:

 Using the ratio of demand/capacity is a
useful procedure since the results are
insensitive to their absolute value.

 The pre-allocated and merged inventory
case provide equal results when the ratio of
demand to capacity is equally proportioned
and the pi and qi values are the same.

The next two charts show the effect of an imbalance.
In this case the capacity was equally divided but the
demand was not which resulted in a ratio of
Demand/Capacity of 74% for Server 1 and 97% for
Server 2

(starting value) - n*(starting value)/10 and five other values equal
to (starting value) + n*(starting value)/10 for n=1,2,…5.

0.00

5.00

10.00

15.00

20.00

0.00 0.50 1.00 1.50Pe
rc

en
t A

bo
ve

 T
ot

al

Ca
pa

ci
ty

Total Demand/Total Capacity

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity

Total Demand/Total Capacity

 The evaluation uses a range of demand for
service or a range of capacity. In this study a
range of demand is used.2

 Further analysis of the program’s output is
achieved through a download to an Excel
spreadsheet. A key function is to combine
the pre-allocated overflow with the formula
�
��

∑ 𝑅𝑅𝑅𝑅 ∗ 𝑂𝑂𝑂𝑂𝑅𝑅�
���

where Ri is the demand for the i-th
server, OFi is the corresponding
overflow and TD is the sum of all
Ri’s.

Also, the number served by each pre-
allocated server is combined by adding the
individual equilibrium values.
These last two steps allow for comparison of
pre-allocated results with merged results.

It turns out that some simplification in the number of
variables that need to be considered is achieved by
dividing the Demand (R) by the Capacity and also
dividing the average location by Capacity. All results
will be presented in these terms.

C. Pre-Allocation to Merged Comparison

In this case three different values of demand and
capacity with the same R/Cap ratio are presented. In
addition, pre-allocated and merged results are
presented with the same parameters. This uses two
servers.

Figure 5 Percent Over - Balanced Inventory
Allocation at Three Scales

This chart behaves as expected. For small values of
demand, there is little to no overflow over capacity.
As the demand increases, the probability for the RW

2 A range of either Demand or Capacity is determined by starting
with the value provided and calculating five values equal to

to move forward increases, and more overflow is
experienced.

Figure 6 Number Served - Balanced Inventory
Allocation at Three Scales

All six cases plot over each other in this case as well.
The average position of the items used is taken to be
the number served.

This chart also behaves as expected. As the demand
increases from a small starting value, the number
served linearly increases. As the Capacity of the
inventory is reached, the number served/Capacity
approaches 1 as there is no additional inventory to
offer.

Two conclusions can be drawn from these results:

 Using the ratio of demand/capacity is a
useful procedure since the results are
insensitive to their absolute value.

 The pre-allocated and merged inventory
case provide equal results when the ratio of
demand to capacity is equally proportioned
and the pi and qi values are the same.

The next two charts show the effect of an imbalance.
In this case the capacity was equally divided but the
demand was not which resulted in a ratio of
Demand/Capacity of 74% for Server 1 and 97% for
Server 2

(starting value) - n*(starting value)/10 and five other values equal
to (starting value) + n*(starting value)/10 for n=1,2,…5.

0.00

5.00

10.00

15.00

20.00

0.00 0.50 1.00 1.50Pe
rc

en
t A

bo
ve

 T
ot

al

Ca
pa

ci
ty

Total Demand/Total Capacity

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity

Total Demand/Total Capacity

 The evaluation uses a range of demand for
service or a range of capacity. In this study a
range of demand is used.2

 Further analysis of the program’s output is
achieved through a download to an Excel
spreadsheet. A key function is to combine
the pre-allocated overflow with the formula
�
��

∑ 𝑅𝑅𝑅𝑅 ∗ 𝑂𝑂𝑂𝑂𝑅𝑅�
���

where Ri is the demand for the i-th
server, OFi is the corresponding
overflow and TD is the sum of all
Ri’s.

Also, the number served by each pre-
allocated server is combined by adding the
individual equilibrium values.
These last two steps allow for comparison of
pre-allocated results with merged results.

It turns out that some simplification in the number of
variables that need to be considered is achieved by
dividing the Demand (R) by the Capacity and also
dividing the average location by Capacity. All results
will be presented in these terms.

C. Pre-Allocation to Merged Comparison

In this case three different values of demand and
capacity with the same R/Cap ratio are presented. In
addition, pre-allocated and merged results are
presented with the same parameters. This uses two
servers.

Figure 5 Percent Over - Balanced Inventory
Allocation at Three Scales

This chart behaves as expected. For small values of
demand, there is little to no overflow over capacity.
As the demand increases, the probability for the RW

2 A range of either Demand or Capacity is determined by starting
with the value provided and calculating five values equal to

to move forward increases, and more overflow is
experienced.

Figure 6 Number Served - Balanced Inventory
Allocation at Three Scales

All six cases plot over each other in this case as well.
The average position of the items used is taken to be
the number served.

This chart also behaves as expected. As the demand
increases from a small starting value, the number
served linearly increases. As the Capacity of the
inventory is reached, the number served/Capacity
approaches 1 as there is no additional inventory to
offer.

Two conclusions can be drawn from these results:

 Using the ratio of demand/capacity is a
useful procedure since the results are
insensitive to their absolute value.

 The pre-allocated and merged inventory
case provide equal results when the ratio of
demand to capacity is equally proportioned
and the pi and qi values are the same.

The next two charts show the effect of an imbalance.
In this case the capacity was equally divided but the
demand was not which resulted in a ratio of
Demand/Capacity of 74% for Server 1 and 97% for
Server 2

(starting value) - n*(starting value)/10 and five other values equal
to (starting value) + n*(starting value)/10 for n=1,2,…5.

0.00

5.00

10.00

15.00

20.00

0.00 0.50 1.00 1.50Pe
rc

en
t A

bo
ve

 T
ot

al

Ca
pa

ci
ty

Total Demand/Total Capacity

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity

Total Demand/Total Capacity

Figure 5: Percent Over - Balanced Inventory Allocation at Three Scales

This chart behaves as expected. For small values of demand, there is little to no overflow over capacity. As the demand increases,
the probability for the RW to move forward increases, and more overflow is experienced.

Figure 6: Number Served - Balanced Inventory Allocation at Three Scales

All six cases plot over each other in this case as well. The average
position of the items used is taken to be the number served.

This chart also behaves as expected. As the demand increases
from a small starting value, the number served linearly increases.
As the Capacity of the inventory is reached, the number served/
Capacity approaches 1 as there is no additional inventory to
offer.

Two conclusions can be drawn from these results:
• Using the ratio of demand/capacity is a useful procedure since
the results are insensitive to their absolute value.
• The pre-allocated and merged inventory case provide
equal results when the ratio of demand to capacity is equally
proportioned and the pi and qi values are the same.
The next two charts show the effect of an imbalance. In this case
the capacity was equally divided but the demand was not which

 Volume 3 | Issue 1 | 5J Curr Trends Comp Sci Res, 2024

resulted in a ratio of
Demand/Capacity of 74% for Server 1 and 97% for
Server 2

(starting value) - n*(starting value)/10 and five other values
equal
to (starting value) + n*(starting value)/10 for n=1,2…5.

Figure 7 Unbalanced Inventory Pre-allocation

Comparing the Balanced (Figure 5) to the
Unbalanced (Figure 7) percent overage at a
Demand/Capacity value of 0.77:

 In both cases the overage is about 2% for the
merged simulation.

 The balanced simulation (Figure 5) for the
pre-allocated is also 2% overage.

 The unbalanced simulation (Figure 7) for the
pre-allocated (dashed curve) is about 5%
overage.

Figure 8 Number Served - Unbalanced Inventory
Pre-Allocation

This chart shows the number served. Note that at a
Demand/Capacity level of 0.77 the unbalanced case
shows 10% fewer served (dashed curve) than the
merged case (solid curve).

The next chart shows the difference in number served
for this case.

Figure 9 Merged Minus Unbalanced Inventory Pre-
Allocation – Number Served

Note that for low levels of Total Demand/Total
Capacity (< 0.6), the difference is essentially zero.
This is because in both cases the numbers being
served are not affected by their respective capacities.
For large levels of TD/TC, the demand claims all
possible inventory so the difference is small (about
two extra served if merged). In between there are 50
to 150 extra served in the merged case.

Of course, there are many different ways to create an
unbalance. The probabilities poi and qi can be
changed for different servers. Also, the number of
servers can be increased. However, all results follow
the same pattern so they are not presented here.

III Theoretical Results

A. Number Served
When the random walk reaches equilibrium, it seems
reasonable to assume that this will occur when p1 =
q1. Accordingly, since p1e-(M1/R1) = q1, M1 =
R1ln(p1/q1) as long as M1 ≤ Cap1 as R1 increases. For
larger values of R1, M1 = Cap1.

A spread sheet can now be created to predict the
extra services provided by merging. Generalizing the
expression for M1 results in:

1. Mi = Ri ln(pi/qi) where i = 1,2,3,.. up to
number of servers

2. For the pre-allocated estimate calculate
∑ Mi��.�������
��� where Mi = R1ln(p1/q1) but if

Mi > Capi use Capi for Mi.
3. For the merged estimate calculate

∑ Mi��.������
��� where Mi = R1ln(p1/q1) but if

∑ 𝑀𝑀𝑀𝑀��.�������
��� >∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀��.�������

��� , then set
all Mi to Capi.

4. Subtract result obtained in step 2 from the
result of step 3.

0.00

5.00

10.00

15.00

20.00

0.
43

0.
51

0.
60

0.
68

0.
77

0.
85

0.
94

1.
02

1.
11

1.
19

1.
28

%
 A

bo
ve

 C
ap

ac
ity

Total Demand/Total Capacity

% Over-Merge % Over Pre-Allocated

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity

Total Demand/Total Capacity

No. Served Merge

No. Served Pre-
Allocated

-50.00

0.00

50.00

100.00

150.00

200.00

0.00 0.50 1.00 1.50

M
er

ge
 M

in
us

 P
re

-
Al

lo
ca

te
d

Total Demand/Total Capacity

Figure 7 Unbalanced Inventory Pre-allocation

Comparing the Balanced (Figure 5) to the
Unbalanced (Figure 7) percent overage at a
Demand/Capacity value of 0.77:

 In both cases the overage is about 2% for the
merged simulation.

 The balanced simulation (Figure 5) for the
pre-allocated is also 2% overage.

 The unbalanced simulation (Figure 7) for the
pre-allocated (dashed curve) is about 5%
overage.

Figure 8 Number Served - Unbalanced Inventory
Pre-Allocation

This chart shows the number served. Note that at a
Demand/Capacity level of 0.77 the unbalanced case
shows 10% fewer served (dashed curve) than the
merged case (solid curve).

The next chart shows the difference in number served
for this case.

Figure 9 Merged Minus Unbalanced Inventory Pre-
Allocation – Number Served

Note that for low levels of Total Demand/Total
Capacity (< 0.6), the difference is essentially zero.
This is because in both cases the numbers being
served are not affected by their respective capacities.
For large levels of TD/TC, the demand claims all
possible inventory so the difference is small (about
two extra served if merged). In between there are 50
to 150 extra served in the merged case.

Of course, there are many different ways to create an
unbalance. The probabilities poi and qi can be
changed for different servers. Also, the number of
servers can be increased. However, all results follow
the same pattern so they are not presented here.

III Theoretical Results

A. Number Served
When the random walk reaches equilibrium, it seems
reasonable to assume that this will occur when p1 =
q1. Accordingly, since p1e-(M1/R1) = q1, M1 =
R1ln(p1/q1) as long as M1 ≤ Cap1 as R1 increases. For
larger values of R1, M1 = Cap1.

A spread sheet can now be created to predict the
extra services provided by merging. Generalizing the
expression for M1 results in:

1. Mi = Ri ln(pi/qi) where i = 1,2,3,.. up to
number of servers

2. For the pre-allocated estimate calculate
∑ Mi��.�������
��� where Mi = R1ln(p1/q1) but if

Mi > Capi use Capi for Mi.
3. For the merged estimate calculate

∑ Mi��.������
��� where Mi = R1ln(p1/q1) but if

∑ 𝑀𝑀𝑀𝑀��.�������
��� >∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀��.�������

��� , then set
all Mi to Capi.

4. Subtract result obtained in step 2 from the
result of step 3.

0.00

5.00

10.00

15.00

20.00

0.
43

0.
51

0.
60

0.
68

0.
77

0.
85

0.
94

1.
02

1.
11

1.
19

1.
28

%
 A

bo
ve

 C
ap

ac
ity

Total Demand/Total Capacity

% Over-Merge % Over Pre-Allocated

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity

Total Demand/Total Capacity

No. Served Merge

No. Served Pre-
Allocated

-50.00

0.00

50.00

100.00

150.00

200.00

0.00 0.50 1.00 1.50

M
er

ge
 M

in
us

 P
re

-
Al

lo
ca

te
d

Total Demand/Total Capacity

Figure 7 Unbalanced Inventory Pre-allocation

Comparing the Balanced (Figure 5) to the
Unbalanced (Figure 7) percent overage at a
Demand/Capacity value of 0.77:

 In both cases the overage is about 2% for the
merged simulation.

 The balanced simulation (Figure 5) for the
pre-allocated is also 2% overage.

 The unbalanced simulation (Figure 7) for the
pre-allocated (dashed curve) is about 5%
overage.

Figure 8 Number Served - Unbalanced Inventory
Pre-Allocation

This chart shows the number served. Note that at a
Demand/Capacity level of 0.77 the unbalanced case
shows 10% fewer served (dashed curve) than the
merged case (solid curve).

The next chart shows the difference in number served
for this case.

Figure 9 Merged Minus Unbalanced Inventory Pre-
Allocation – Number Served

Note that for low levels of Total Demand/Total
Capacity (< 0.6), the difference is essentially zero.
This is because in both cases the numbers being
served are not affected by their respective capacities.
For large levels of TD/TC, the demand claims all
possible inventory so the difference is small (about
two extra served if merged). In between there are 50
to 150 extra served in the merged case.

Of course, there are many different ways to create an
unbalance. The probabilities poi and qi can be
changed for different servers. Also, the number of
servers can be increased. However, all results follow
the same pattern so they are not presented here.

III Theoretical Results

A. Number Served
When the random walk reaches equilibrium, it seems
reasonable to assume that this will occur when p1 =
q1. Accordingly, since p1e-(M1/R1) = q1, M1 =
R1ln(p1/q1) as long as M1 ≤ Cap1 as R1 increases. For
larger values of R1, M1 = Cap1.

A spread sheet can now be created to predict the
extra services provided by merging. Generalizing the
expression for M1 results in:

1. Mi = Ri ln(pi/qi) where i = 1,2,3,.. up to
number of servers

2. For the pre-allocated estimate calculate
∑ Mi��.�������
��� where Mi = R1ln(p1/q1) but if

Mi > Capi use Capi for Mi.
3. For the merged estimate calculate

∑ Mi��.������
��� where Mi = R1ln(p1/q1) but if

∑ 𝑀𝑀𝑀𝑀��.�������
��� >∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀��.�������

��� , then set
all Mi to Capi.

4. Subtract result obtained in step 2 from the
result of step 3.

0.00

5.00

10.00

15.00

20.00

0.
43

0.
51

0.
60

0.
68

0.
77

0.
85

0.
94

1.
02

1.
11

1.
19

1.
28

%
 A

bo
ve

 C
ap

ac
ity

Total Demand/Total Capacity

% Over-Merge % Over Pre-Allocated

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity

Total Demand/Total Capacity

No. Served Merge

No. Served Pre-
Allocated

-50.00

0.00

50.00

100.00

150.00

200.00

0.00 0.50 1.00 1.50

M
er

ge
 M

in
us

 P
re

-
Al

lo
ca

te
d

Total Demand/Total Capacity

Figure 7: Unbalanced Inventory Pre-allocation

Comparing the Balanced (Figure 5) to the Unbalanced (Figure 7) percent overage at a Demand/Capacity value of 0.77:
• In both cases the overage is about 2% for the merged simulation.
• The balanced simulation (Figure 5) for the pre-allocated is also 2% overage.
• The unbalanced simulation (Figure 7) for the pre-allocated (dashed curve) is about 5% overage.

Figure 8: Number Served - Unbalanced Inventory Pre-Allocation
This chart shows the number served. Note that at a Demand/Capacity level of 0.77 the unbalanced case shows 10% fewer served
(dashed curve) than the merged case (solid curve).
The next chart shows the difference in number served for this case.

Figure 9: Merged Minus Unbalanced Inventory PreAllocation – Number Served

 Volume 3 | Issue 1 | 6J Curr Trends Comp Sci Res, 2024

Note that for low levels of Total Demand/Total Capacity (< 0.6),
the difference is essentially zero. This is because in both cases
the numbers being served are not affected by their respective
capacities. For large levels of TD/TC, the demand claims all
possible inventory so the difference is small (about two extra
served if merged). In between there are 50 to 150 extra served in
the merged case.

Of course, there are many different ways to create an unbalance.
The probabilities poi and qi can be changed for different servers.
Also, the number of servers can be increased. However, all
results follow the same pattern so they are not presented here.

3. Theoretical Results
3.1. Number Served
When the random walk reaches equilibrium, it seems reasonable
to assume that this will occur when p1 = q1. Accordingly, since

p1e-(M1/R1) = q1, M1 = R1ln(p1/q1) as long as M1 ≤ Cap1 as R1
increases. For larger values of R1, M1 = Cap1.
A spread sheet can now be created to predict the extra services
provided by merging. Generalizing the expression for M1 results
in:

Figure 7 Unbalanced Inventory Pre-allocation

Comparing the Balanced (Figure 5) to the
Unbalanced (Figure 7) percent overage at a
Demand/Capacity value of 0.77:

 In both cases the overage is about 2% for the
merged simulation.

 The balanced simulation (Figure 5) for the
pre-allocated is also 2% overage.

 The unbalanced simulation (Figure 7) for the
pre-allocated (dashed curve) is about 5%
overage.

Figure 8 Number Served - Unbalanced Inventory
Pre-Allocation

This chart shows the number served. Note that at a
Demand/Capacity level of 0.77 the unbalanced case
shows 10% fewer served (dashed curve) than the
merged case (solid curve).

The next chart shows the difference in number served
for this case.

Figure 9 Merged Minus Unbalanced Inventory Pre-
Allocation – Number Served

Note that for low levels of Total Demand/Total
Capacity (< 0.6), the difference is essentially zero.
This is because in both cases the numbers being
served are not affected by their respective capacities.
For large levels of TD/TC, the demand claims all
possible inventory so the difference is small (about
two extra served if merged). In between there are 50
to 150 extra served in the merged case.

Of course, there are many different ways to create an
unbalance. The probabilities poi and qi can be
changed for different servers. Also, the number of
servers can be increased. However, all results follow
the same pattern so they are not presented here.

III Theoretical Results

A. Number Served
When the random walk reaches equilibrium, it seems
reasonable to assume that this will occur when p1 =
q1. Accordingly, since p1e-(M1/R1) = q1, M1 =
R1ln(p1/q1) as long as M1 ≤ Cap1 as R1 increases. For
larger values of R1, M1 = Cap1.

A spread sheet can now be created to predict the
extra services provided by merging. Generalizing the
expression for M1 results in:

1. Mi = Ri ln(pi/qi) where i = 1,2,3,.. up to
number of servers

2. For the pre-allocated estimate calculate
∑ Mi��.�������
��� where Mi = R1ln(p1/q1) but if

Mi > Capi use Capi for Mi.
3. For the merged estimate calculate

∑ Mi��.������
��� where Mi = R1ln(p1/q1) but if

∑ 𝑀𝑀𝑀𝑀��.�������
��� >∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀��.�������

��� , then set
all Mi to Capi.

4. Subtract result obtained in step 2 from the
result of step 3.

0.00

5.00

10.00

15.00

20.00

0.
43

0.
51

0.
60

0.
68

0.
77

0.
85

0.
94

1.
02

1.
11

1.
19

1.
28

%
 A

bo
ve

 C
ap

ac
ity

Total Demand/Total Capacity

% Over-Merge % Over Pre-Allocated

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.00 0.50 1.00 1.50

N
um

be
r S

er
ve

d/
To

ta
l C

ap
ac

ity
Total Demand/Total Capacity

No. Served Merge

No. Served Pre-
Allocated

-50.00

0.00

50.00

100.00

150.00

200.00

0.00 0.50 1.00 1.50

M
er

ge
 M

in
us

 P
re

-
Al

lo
ca

te
d

Total Demand/Total Capacity

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

Figure 10: Comparing Number Served: Simulation vs Theory

B. Overflow
The general approach employed to derive equations for the
overflow is as follows:
1. Let pi + qi + ni = 1 where ni is the probability that there will be
no change in location for Server_i
2. Calculate probability of all of the paths of length N for each
server (N >> 1).
3. To minimize the number of paths to consider, all paths start
at capacity in the calculation. For a large number of cycles this
should not be significant.
4. Note that a necessary condition for the RW to exceed capacity
is for the following steps to occur within one cycle: sum of all
forward steps across all servers minus the sum of all backward
steps across all servers where the first step is at capacity.
Whenever the RW exceeds capacity, its location is reset to be
on the capacity.
5.The calculation will compute the expected value of a long
string of steps along the barrier. The probability of each step is
governed by the three probabilities for each RW.
6. For a single server the expected value of a Random Variable
(RV) is given by

7. The starting point for this analysis is the trinomial expansion
given by (p + q + n)N = 1

8. Convert to expected value where (Th) stands for Threshold:
E(Th)=

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
9. Calculation of Th for each path becomes thenumber of p1’s
minus the number of q1’s.
For one Server this is i, (the number of p1’s), minus j, (the number
of q1’s), or (i - j).

Substituting that value into the expression for E(Th) results in

Simplifying the expression yields

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

 Volume 3 | Issue 1 | 7J Curr Trends Comp Sci Res, 2024

This summation is a well-known result [9,5,10]. For a single
server, the values for p and q are determined from prior
expressions (See Eq 1).

The next Figure shows the comparison between the formula and
the simulation.

Figure 10 Comparing Number Served: Simulation vs
Theory

B. Overflow
The general approach employed to derive equations
for the overflow is as follows:

 Let pi + qi + ni = 1 where ni is the probability
that there will be no change in location for
Server_i

 Calculate probability of all of the paths of
length N for each server (N >> 1).

 To minimize the number of paths to
consider, all paths start at capacity in the
calculation. For a large number of cycles
this should not be significant.

 Note that a necessary condition for the RW
to exceed capacity is for the following steps
to occur within one cycle: sum of all
forward steps across all servers minus the
sum of all backward steps across all servers
where the first step is at capacity. Whenever
the RW exceeds capacity, its location is
reset to be on the capacity.

 The calculation will compute the expected
value of a long string of steps along the
barrier. The probability of each step is
governed by the three probabilities for each
RW.

 For a single server the expected value of a
Random Variable (RV) is given by

 E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k)
 The starting point for this analysis is the

trinomial expansion [9] given by
(p + q + n)N = 1

 = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 Convert to expected value where (Th) stands
for Threshold:
E(Th)=

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
 Calculation of Th for each path becomes the

number of p1’s minus the number of q1’s.
For one Server this is i, (the number of p1’s),
minus j, (the number of q1’s), or (i - j).

Substituting that value into the expression for E(Th)
results in

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

Simplifying the expression yields

E(Th) = �
�

∑ (𝑖𝑖�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - �
�

 ∑ (𝑗𝑗�������) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 - 𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk

 = p - q (Eq 2)
This summation is a well-known result [5] & [10].
For a single server, the values for p and q are
determined from prior expressions (See Eq 1).

The next Figure shows the comparison between the
formula and the simulation.

Figure 11 Comparison of Theory with Simulation –
Single Server

As can be seen on this chart the calculated value for
E(Th) is almost identical with the simulation result.

Extending this result to more servers is
straightforward but the subscript notation becomes
unwieldy. For example, for three servers:

-20

0

20

40

60

80

100

120

0.00 0.50 1.00 1.50M
er

ge
 M

in
us

 P
re

-A
llo

ca
te

d

Total Demand/Total Capacity

Simulated Theory

0
2
4
6
8

10
12
14
16
18

0.000 0.500 1.000 1.500

Pe
rc

en
t O

ve
r

Demand/Capacity

Simulation Theory

Figure 11: Comparison of Theory with Simulation – Single Server

As can be seen on this chart the calculated value for E(Th) is
almost identical with the simulation result.
 Extending this result to more servers is straightforward but the

subscript notation becomes unwieldy. For example, for three
servers:

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

The expected value is now the number of p1’s minus the number
of q2’s minus the number of q3’s. To this add the number of p2’s

minus the number of q1’s minus the number of q3’s and so forth.
This table details all the cases:

 Volume 3 | Issue 1 | 8J Curr Trends Comp Sci Res, 2024

The values for pi and qi cannot be determined from the original
expressions (See Eq 1). This is because the values of Mi depend
on where along the capacity boundary the boundary is exceeded.
Returning to Figures 3 and 4, the emphasis here is to determine
the pairwise side-to-side position along the boundary by equating

the probability of moving to the upper left to the probability of
moving to the lower right. This results in : p1q3=p3q1 p1q2=p2q1
p3q2=p2q3
Substituting for pi and qi (See Eq 1) and solving for M2 and M3
gives:

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)
 (Eq 3)

Where the expression for C() is given by

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

and g = 1, 2 or 3 and ng = 1 – pg - qg

For g = 1, (,,) = (l,m,n)

For g = 2, (,,) = (i,j,k)

For g = 3, (,,) = (s,t,u)

The expected value is now the number of p1’s minus
the number of q2’s minus the number of q3’s. To this
add the number of p2’s minus the number of q1’s
minus the number of q3’s and so forth. This table
details all the cases:

Server Number of px’s Number of qx’s
1 l par(j) + par(t)
2 i par(m) + par(t)
3 s par(m) + par(j)

Where par() stands for partial and par(x) + par(x) = x
and x=j,m,t

The net positive minus negative result is
l - par(j) – par(t)

i – par(m) – par(t)

s – par(m) – par(j)

Summing these terms gives:

 TH(PathN,i,j,k,l,m,n,s,t,r) =l +i + s – j – t - m

And substituting this result into (Eq 3) results in

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3)
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3)

This process can be extended to more servers with
the following result:
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 +

… + qS) where S = No. of Servers (Eq 4)

3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.
Li,j can be viewed as the influence of server “j” on the
position of server “i”.

The values for pi and qi cannot be determined from
the original expressions (See Eq 1). This is because
the values of Mi depend on where along the capacity
boundary the boundary is exceeded.

Returning to Figures 3 and 4, the emphasis here is to
determine the pairwise side-to-side position along the
boundary by equating the probability of moving to
the upper left to the probability of moving to the
lower right. This results in
:
p1q3=p3q1 p1q2=p2q1 p3q2=p2q3

Substituting for pi and qi (See Eq 1) and solving for
M2 and M3 gives:

M3/R3 = L3,1 + M1/R1

M2/R2 = L2,3 + M3/R3

where Li,j = ln[(p0i/qi)*(qj/p0j)]3 (Eq 5)

Also defining TC and TD as:

M1+M2+M3=TC (total capacity)

R1+R2+R3 =TD (total demand)

Placing this in matrix notation results in:

 �
𝑇𝑇𝑇𝑇

L𝑇3,2)
L(1,3)

� = �
𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅
0 −𝑅 𝑅
𝑅 0 −𝑅

 � ∗ �
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

�

Solving for the vector Mi/Ri by inverting the matrix
[11] gives

�
𝑀𝑀𝑅𝑀𝑅𝑅𝑅
𝑀𝑀2𝑀𝑅𝑅2
𝑀𝑀𝑅𝑀𝑅𝑅𝑅

 � = �
��

*�
𝑅 𝑅𝑅2 𝑅𝑅2 𝑅 𝑅𝑅𝑅
𝑅 −𝑇𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅 −𝑅𝑅𝑅
𝑅 𝑅𝑅2 −𝑅𝑅𝑅

 � ∗

�
𝑇𝑇𝑇𝑇

L(3,2)
L(1,𝑅)

�

After multiplying and refactoring the following
formula is obtained:

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3)
L(2,1) L(2,2) L(2,3)
L(3,1) L(3,2) L(3,3)

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 (Eq 6)

Placing this in matrix notation results in:

Solving for the vector Mi/Ri by inverting the matrix [11] gives

After multiplying and refactoring the following formula is obtained:

Although this is the result for three servers, it is easily extended to more servers.
An Excel spread sheet was created to perform the following calculations in sequence:
• Expand Eq 6 to a 5 x 5 matrix
• Calculate the L(i,j) coefficients using Eq 5
• Calculate Mi/Ri from Ri/TD using Eq 6
• Determine pi = p0iexp(-Mi/Ri)
• Combine them using Eq 4 (with S=5)
 The largest number of servers in the simulation program was five so that is the basis of comparison.
The five servers have the following data

Although this is the result for three servers, it is
easily extended to more servers.

An Excel spread sheet was created to perform the
following calculations in sequence:

 Expand Eq 6 to a 5 x 5 matrix

 Calculate the L(i,j) coefficients using Eq 5

 Calculate Mi/Ri from Ri/TD using Eq 6

 Determine pi = p0iexp(-Mi/Ri)

 Combine them using Eq 4 (with S=5)

 The largest number of servers in the simulation
program was five so that is the basis of comparison.

The five servers have the following data

Server p0i qi Demand Capacity

1 0.8 0.3 550 645

2 0.8 0.3 900 1055

3 0.7 0.3 550 640

4 0.7 0.2 700 750

5 0.7 0.2 300 320

Figure 12 Comparing Theory with Simulation for
Five Servers

For completeness, the extra service provided
by using a merged pool is shown next:

Figure 13 Increased Resource Utilization Through
Sharing with Five Servers

IV. Summary
After establishing the idea of comparing shared
versus pre-allocated items (inventory) for multiple
entities (servers) that each assign a customer
temporary use of an item, a multi-dimensional grid
was established to depict the items in use by each
entity. Each axis of the grid is associated with an
entity and the entire collection of items in use is
represented by a single point on the grid. Forward
and reverse probabilities were specified to control the
random movement of the point. The probability of
moving ahead decreases with increasing distance
from the origin. Also, the probability of moving
forward increases with increasing demand which
makes intuitive sense. Since there is a finite number
of items available for use, an absorbing boundary is
provided which can be viewed as a multi-dimensional
plane on the grid.

Next, a computer program was presented that
simulates in one run both pre-allocated and shared
entities for given input parameters. The pre-allocated
cases are combined to allow comparison with the
merged case. In broad terms, the main result is if
each of the entities maintain the same
demand/capacity ratio, then there is no advantage to
sharing. But if not, sharing has a roughly 5 to 6%
improvement in item utilization for the case when
Total Demand/Total Capacity is approximately 0.8 to
1.0.

Finally, equations were derived for the number
served and for overflow which led to simple closed
form expressions. Comparing the equation to a five-
server simulation provided an excellent match.

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50Pe
rc

en
t O

ve
r

To
ta

l C
ap

ac
ity

Total Demand/Total Capacity

Simulation Theory

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 0.50 1.00 1.50N
um

be
r S

er
ve

d:
 M

er
ge

d
M

in
us

 P
re

-A
llo

c

Total Demand/Total Capacity

Simulation Theory

 Volume 3 | Issue 1 | 9J Curr Trends Comp Sci Res, 2024

Although this is the result for three servers, it is
easily extended to more servers.

An Excel spread sheet was created to perform the
following calculations in sequence:

 Expand Eq 6 to a 5 x 5 matrix

 Calculate the L(i,j) coefficients using Eq 5

 Calculate Mi/Ri from Ri/TD using Eq 6

 Determine pi = p0iexp(-Mi/Ri)

 Combine them using Eq 4 (with S=5)

 The largest number of servers in the simulation
program was five so that is the basis of comparison.

The five servers have the following data

Server p0i qi Demand Capacity

1 0.8 0.3 550 645

2 0.8 0.3 900 1055

3 0.7 0.3 550 640

4 0.7 0.2 700 750

5 0.7 0.2 300 320

Figure 12 Comparing Theory with Simulation for
Five Servers

For completeness, the extra service provided
by using a merged pool is shown next:

Figure 13 Increased Resource Utilization Through
Sharing with Five Servers

IV. Summary
After establishing the idea of comparing shared
versus pre-allocated items (inventory) for multiple
entities (servers) that each assign a customer
temporary use of an item, a multi-dimensional grid
was established to depict the items in use by each
entity. Each axis of the grid is associated with an
entity and the entire collection of items in use is
represented by a single point on the grid. Forward
and reverse probabilities were specified to control the
random movement of the point. The probability of
moving ahead decreases with increasing distance
from the origin. Also, the probability of moving
forward increases with increasing demand which
makes intuitive sense. Since there is a finite number
of items available for use, an absorbing boundary is
provided which can be viewed as a multi-dimensional
plane on the grid.

Next, a computer program was presented that
simulates in one run both pre-allocated and shared
entities for given input parameters. The pre-allocated
cases are combined to allow comparison with the
merged case. In broad terms, the main result is if
each of the entities maintain the same
demand/capacity ratio, then there is no advantage to
sharing. But if not, sharing has a roughly 5 to 6%
improvement in item utilization for the case when
Total Demand/Total Capacity is approximately 0.8 to
1.0.

Finally, equations were derived for the number
served and for overflow which led to simple closed
form expressions. Comparing the equation to a five-
server simulation provided an excellent match.

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50Pe
rc

en
t O

ve
r

To
ta

l C
ap

ac
ity

Total Demand/Total Capacity

Simulation Theory

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 0.50 1.00 1.50N
um

be
r S

er
ve

d:
 M

er
ge

d
M

in
us

 P
re

-A
llo

c

Total Demand/Total Capacity

Simulation Theory

Although this is the result for three servers, it is
easily extended to more servers.

An Excel spread sheet was created to perform the
following calculations in sequence:

 Expand Eq 6 to a 5 x 5 matrix

 Calculate the L(i,j) coefficients using Eq 5

 Calculate Mi/Ri from Ri/TD using Eq 6

 Determine pi = p0iexp(-Mi/Ri)

 Combine them using Eq 4 (with S=5)

 The largest number of servers in the simulation
program was five so that is the basis of comparison.

The five servers have the following data

Server p0i qi Demand Capacity

1 0.8 0.3 550 645

2 0.8 0.3 900 1055

3 0.7 0.3 550 640

4 0.7 0.2 700 750

5 0.7 0.2 300 320

Figure 12 Comparing Theory with Simulation for
Five Servers

For completeness, the extra service provided
by using a merged pool is shown next:

Figure 13 Increased Resource Utilization Through
Sharing with Five Servers

IV. Summary
After establishing the idea of comparing shared
versus pre-allocated items (inventory) for multiple
entities (servers) that each assign a customer
temporary use of an item, a multi-dimensional grid
was established to depict the items in use by each
entity. Each axis of the grid is associated with an
entity and the entire collection of items in use is
represented by a single point on the grid. Forward
and reverse probabilities were specified to control the
random movement of the point. The probability of
moving ahead decreases with increasing distance
from the origin. Also, the probability of moving
forward increases with increasing demand which
makes intuitive sense. Since there is a finite number
of items available for use, an absorbing boundary is
provided which can be viewed as a multi-dimensional
plane on the grid.

Next, a computer program was presented that
simulates in one run both pre-allocated and shared
entities for given input parameters. The pre-allocated
cases are combined to allow comparison with the
merged case. In broad terms, the main result is if
each of the entities maintain the same
demand/capacity ratio, then there is no advantage to
sharing. But if not, sharing has a roughly 5 to 6%
improvement in item utilization for the case when
Total Demand/Total Capacity is approximately 0.8 to
1.0.

Finally, equations were derived for the number
served and for overflow which led to simple closed
form expressions. Comparing the equation to a five-
server simulation provided an excellent match.

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50Pe
rc

en
t O

ve
r

To
ta

l C
ap

ac
ity

Total Demand/Total Capacity

Simulation Theory

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 0.50 1.00 1.50N
um

be
r S

er
ve

d:
 M

er
ge

d
M

in
us

 P
re

-A
llo

c

Total Demand/Total Capacity

Simulation Theory

Figure 12: Comparing Theory with Simulation for Five Servers
For completeness, the extra service provided by using a merged pool is shown next:

Figure 13: Increased Resource Utilization Through Sharing with Five Servers

4. Summary
After establishing the idea of comparing shared versus pre-
allocated items (inventory) for multiple entities (servers) that
each assign a customer temporary use of an item, a multi-
dimensional grid was established to depict the items in use by
each entity. Each axis of the grid is associated with an entity and
the entire collection of items in use is represented by a single point
on the grid. Forward and reverse probabilities were specified
to control the random movement of the point. The probability
of moving ahead decreases with increasing distance from the
origin. Also, the probability of moving forward increases with
increasing demand which makes intuitive sense. Since there is a
finite number of items available for use, an absorbing boundary
is provided which can be viewed as a multi-dimensional plane
on the grid.

Next, a computer program was presented that simulates in
one run both pre-allocated and shared entities for given input
parameters. The pre-allocated cases are combined to allow
comparison with the merged case. In broad terms, the main
result is if each of the entities maintain the same
 demand/capacity ratio, then there is no advantage to sharing.
But if not, sharing has a roughly 5 to 6% improvement in item
utilization for the case when Total Demand/Total Capacity is
approximately 0.8 to 1.0.

Finally, equations were derived for the number served and
for overflow which led to simple closed form expressions.

Comparing the equation to a fiveserver simulation provided an
excellent match.

5. Acknowledgements
The software for the simulation was developed using Visual
Studio Community 2017 Version 15.8.9. Visual Studio is
a product of © 2017 Microsoft Corporation. The code was
developed using the visual basic language.

The spread sheets mentioned in the article used Microsoft Excel.
All of the graphs were produced with Excel. This document was
created using Microsoft Word. Excel and Word are part of the
Microsoft Office package.

The computer used in this study was a Dell D3630
Processor containing an Intel(R) Core(TM) i5-8500 CPU @
3.00GHz 3.00 GHz.
The Installed RAM is 8.00 GB (7.84 GB usable).

References
1. He, L., Yabo, L., & Hong, L. (2009, October). Schedule

optimization for NC resource sharing based-on greed
algorithm and Tabu search. In 2009 Second International
Conference on Intelligent Computation Technology and
Automation (Vol. 3, pp. 282-285). IEEE.

2. Chen, Q., Xu, Q., & Wu, C. (2019, September). Optimal
sharing strategies of idle manufacturing resource
considering the effect of supply-demand matching. In 2019

https://doi.org/10.1109/ICICTA.2009.535
https://doi.org/10.1109/ICICTA.2009.535
https://doi.org/10.1109/ICICTA.2009.535
https://doi.org/10.1109/ICICTA.2009.535
https://doi.org/10.1109/ICICTA.2009.535
https://doi.org/10.1109/IESM45758.2019.8948199
https://doi.org/10.1109/IESM45758.2019.8948199
https://doi.org/10.1109/IESM45758.2019.8948199

 Volume 3 | Issue 1 | 10J Curr Trends Comp Sci Res, 2024

Copyright: ©2024 Nicholas A. Strakhov. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

https://opastpublishers.com

International Conference on Industrial Engineering and
Systems Management (IESM) (pp. 1-6). IEEE.

3. Gang, J., & Friderikos, V. (2018, April). Optimal resource
sharing in multi-tenant 5G networks. In 2018 IEEE Wireless
Communications and Networking Conference (WCNC) (pp.
1-6). IEEE.

4. Bell, S. L., & Williams, R. J. (2001). Dynamic scheduling
of a system with two parallel servers in heavy traffic with
resource pooling: Asymptotic optimality of a threshold
policy. The Annals of Applied Probability, 11(3), 608-649.

5. E. W. Weinstein “Random Walk—1Dimensional”
MathWorld—A Wolfram Web Resource.

6. Kalikow, S. A. (1981). Generalized random walk in a

random environment. The Annals of Probability, 9(5), 753-
768.

7. Tilman, D. (1986). Resource competition and the dynamics
of plant communities. Plant ecology, 51-75.

8. Papoulis, A., & Unnikrishna Pillai, S. (2002). Probability,
random variables and stochastic processes.

9. Wikipedia - https://en.wikipedia.org/wiki/Trinomial_exp
ansion

10. Chandrasekhar, S. (1943). Stochastic problems in physics
and astronomy. Reviews of modern physics, 15(1), 1.

11. Stover, Christopher and Weisstein, Eric W. "Matrix Inverse."

https://doi.org/10.1109/IESM45758.2019.8948199
https://doi.org/10.1109/IESM45758.2019.8948199
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://doi.org/10.1109/WCNC.2018.8377326
https://mathworld.wolfram.com/search/?q=Random+Wa+lk+1+Dimensional
https://mathworld.wolfram.com/search/?q=Random+Wa+lk+1+Dimensional
https://projecteuclid.org/journals/annals-of-probability/volume-9/issue-5/Generalized-Random-Walk-in-a-Random-Environment/10.1214/aop/1176994306.full
https://projecteuclid.org/journals/annals-of-probability/volume-9/issue-5/Generalized-Random-Walk-in-a-Random-Environment/10.1214/aop/1176994306.full
https://projecteuclid.org/journals/annals-of-probability/volume-9/issue-5/Generalized-Random-Walk-in-a-Random-Environment/10.1214/aop/1176994306.full
https://cir.nii.ac.jp/crid/1572824499572329728
https://cir.nii.ac.jp/crid/1572824499572329728
https://www.vliz.be/en?module=ref&refid=344900
https://www.vliz.be/en?module=ref&refid=344900
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.15.1
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.15.1
https://mathworld.wolfram.com/MatrixInverse.html

