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Abstract
Intuition supports the idea that if multiple entities use items to service their clients, then sharing the items between the entities 
will result in more provided services than if the items are pre-allocated to each entity. This idea is quantified by first creating 
a grid of two to five dimensions (one dimension for each entity). The number of items in use is represented by a single point 
whose projection on each axis is determined by the number of items in use by each entity. Moving from point to point on 
this grid occurs as each entity needs an additional item or gives one up. This movement is similar to a Random Walk. The 
probabilities of moving forward or backward are each independently chosen to represent customer usage. An absorbing 
barrier enforces the finite number of items available. The results of a computer program simulating this model is presented 
which shows improved resource utilization. Next, a detailed analysis is developed and the formula obtained is simple and 
accurate in predicting the results.over the range computed by the simulation.
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1. Introduction
This paper studies the utilization of an inventory of items that 
is to be shared by two or more entities (or servers). A basic 
assumption is that the inventory is not consumed by the entity 
but is returned to inventory after use. There are two possible 
approaches to a system for implementing the   
sharing process: 
• The inventory is divided initially with each participating entity 
receiving an inventory for its exclusive use. This approach can 
result in some entities running out of inventory while others 
have an excess. This approach will be called preallocated. 
• Another approach is to maintain the inventory as one common 
pool and allow each entity to use the next available item. This 
will be called shared. 
 
The analysis to be presented will demonstrate that the approach 
to sharing the inventory utilizes the inventory better unless the 
pre-allocated approach is divided accurately in proportion to the 
demand. 
 
1.1. Some Examples 
Recently there was a strong demand for ventilators to treat 
patients seriously ill with COVID-19. At times some medical 
facilities were running out of ventilators while others had some 
excess. Clearly a central stockpile of ventilators might have 
helped provide ventilators to where they could be used more 
effectively. 

 Outdoor dining has become more popular in part by the need for 
more ventilation in the era of COVID-19 and other pandemics. 
In some cases, if restaurants have contiguous outdoor dining 
areas, it might be possible to share the dining tables. More diners 
could be served and fewer placed on a waiting list with shared 
facility dining. 
 
An example in an industrial setting might be that as transmission 
network demands change, specialized equipment may be 
temporarily required in different parts of the network. Again, 
sharing may be an important consideration. 
 
Notice that in all these cases the inventoried item is returned. 
In the case of ventilators, when a patient is better or dies the 
ventilator is available for use elsewhere. In the case of outdoor 
dining, when the diners are done, the table is free for use by 
another author. No Artificial Intelligence software was used 
in any phase. Nicholas Strakhov is retired from Telcordia 
Technologies. He was previously associated with Bell core and 
Bell Telephone Laboratories. He may be reached at home at 
nstrakho@alum.mit.edu. diners. Similarly, network equipment 
can be reused when no longer needed in the current installation. 
 
1.2. Background 
There are a large number of studies focusing on sharing 
resources. See, for example, [1-3]. One notable difference is 
that these studies focus on consumable resources such as raw 
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materials for several producers. Several interesting concepts 
in linear algebra theory are applied to the solution. Another 
approach is presented by which considers two servers sharing 
an input stream and applying queuing theory to the service time 
[4]. Again, this model does not address returning an item to a 
common pool. 
 
As will be presented shortly, the concept of Random Walks (RW) 
will be utilized. There is an even larger body of knowledge applied 
to random walks. See, for example, which are introductions to 
the topic [5,6]. A major difference is the statistics in this study are 

much different as will be seen. Yet another approach that might 
be applied to this study is described by [7]. This analyzes how 
plants compete for limited air, water and soil. Again, however, 
the inventory is being consumed by the plants. 
  
2. Simulation 
2.1. Inventory Model 
The first model of the pool will represent two entities and will 
be displayed on a two- dimensional graph. The X axis represents 
the number of items in use by server 2 and the Y axis represents 
the same for server 1. See Figure 1. diners. Similarly, network equipment can be reused 

when no longer needed in the current installation. 
 
B. Background 
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sharing resources. See, for example, [1] – [3]. One 
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linear algebra theory are applied to the solution. 
Another approach is presented by [4] which considers 
two servers sharing an input stream and applying 
queuing theory to the service time. Again, this model 
does not address returning an item to a common pool.  
 
As will be presented shortly, the concept of Random 
Walks (RW) will be utilized. There is an even larger 
body of knowledge applied to random walks. See, for 
example, [5] & [6] which are introductions to the 
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are much different as will be seen. Yet another 
approach that might be applied to this study is 
described by [7]. This analyzes how plants compete 
for limited air, water and soil. Again, however, the 
inventory is being consumed by the plants. 
 
 
 

II. Simulation 
A. Inventory Model 
The first model of the pool will represent two entities 
and will be displayed on a two- dimensional graph. 
The X axis represents the number of items in use by 
server 2 and the Y axis represents the same for server 
1. See Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

This chart represents the condition where the 
inventory has been divided between the two servers 
(Cap1 for Server 1 and Cap2 for server 2). Cap1 plus 
Cap2 cannot exceed the 45° line which represents the 
total available inventory. The two black doughnuts 
depict actual items in use. In effect this model creates 
two independent RW. 

The next chart shows how the points on the X and Y 
axes move about.  
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 Figure 1: Pre-Allocated Inventory
 This chart represents the condition where the inventory has 
been divided between the two servers (Cap1 for Server 1 and 
Cap2 for server 2). Cap1 plus Cap2 cannot exceed the 45° line 
which represents the total available inventory. The two black 
doughnuts depict actual items in use. In effect this model creates 

two independent RW. 

The next chart shows how the points on the X and Y axes move 
about. 

Figure 2: Two One Dimensional Random Walks

The two points (one on each axis) represent the amount of 
inventory each Server is using. They are not allowed to go 
beyond the capacity assigned to each one. As noted on Figure 2 

this will be modeled with two independent random walks. 

The foregoing described the basic model behind two servers that 
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are using pre-allocated inventory. Next, the generalization of the 
model to address two servers sharing the inventory is presented. 
The model now becomes: 

The two points (one on each axis) represent the 
amount of inventory each Server is using. They are 
not allowed to go beyond the capacity assigned to 
each one. As noted on Figure 2 this will be modeled 
with two independent random walks. 

The foregoing described the basic model behind two 
servers that are using pre-allocated inventory. Next, 
the generalization of the model to address two servers 
sharing the inventory is presented. The model now 
becomes: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The Current Operating Point (black doughnut) 
represent the number of items in use by each Server. 
The next chart depicts how this point moves as 
conditions change. 

Creates Two-Dimensional Random Walk 

Figure 4 RW Movement Rules 

Extending this model to more servers is 
straightforward: simply add a dimension for each 
server in the collection. There is still only one point 
in the multidimensional grid that represents the 
number of customers being served. 
 
 
 
B. Simulation Program 
The probability of Server_i requiring an additional 
item (moving to the next higher cell) is designated pi 
and the probability of returning an item to its pool is 
qi. (i = 1,2,..Number of servers)  
In most random walk analyses, pi + qi = 1 and 
furthermore pi = qi = ½. This latter requirement 
assures that the operating point stays near the origin. 
[5] & [8] Otherwise, the location of the operating 
point will grow without limit. 
In this analysis, pi is initially greater than qi but as 
Server_i accumulates more items, pi decreases. 
Also, if the number of items held by all Servers 
attempts to increase above the sum of all capacities, 
then no additional items can be assigned to any server 
until the number held falls below the capacity sum. 
 
The probabilities that will be used in this analysis are: 

 The probability of moving to the next higher 
cell will be given by 
      pi = p0ie-(Mi/Ri)   (Eq 1) 

 where p0i is a constant between 0 
and 1, Mi is the current item count 
for server i, and Ri is a constant 
that represents the demand for 
service.  

 qi is set to q0 where q0 is a constant between 
0 and 1. Clearly there could be other choices 
for pi and qi 

 If pi is true and qi is false the cell advances. 
If pi is false and qi is true the cell moves 
back. Otherwise, the cell stays put but the 
cycle is still counted. 

The simulation program generates the following 
output: 

 Each server is evaluated separately with 
their own pre-allocated pool of items. 

 All servers are evaluated collectively with 
the merged pool of items. 

 The evaluation consists of the average 
location of the items and the percent of 
attempts to cross the boundary 

 The number of repeated cycle is a program 
input but is chosen to be 200,000 for the 
examples presented. 
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point moves as conditions change. 
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Extending this model to more servers is straightforward: simply 
add a dimension for each server in the collection. There is still 
only one point in the multidimensional grid that represents the 
number of customers being served. 
 
2.2. Simulation Program 
The probability of Server_i requiring an additional item (moving 
to the next higher cell) is designated pi and the probability of 
returning an item to its pool is
 qi. (i = 1,2...Number of servers).
 
In most random walk analyses, pi + qi = 1 and furthermore pi = 
qi = ½. This latter requirement assures that the operating point 
stays near the origin. Otherwise, the location of the operating 
point will grow without limit [5,8]. 

In this analysis, pi is initially greater than qi but as Server_i 
accumulates more items, pi decreases. Also, if the number of 
items held by all Servers attempts to increase above the sum of 
all capacities, then no additional items can be assigned to any 
server until the number held falls below the capacity sum. 
 
The probabilities that will be used in this analysis are: 
• The probability of moving to the next higher cell will be given 
by pi = p0ie

-(Mi/Ri)  (Eq 1) 
where p0i is a constant between 0 and 1, Mi is the current item 
count for server i, and Ri is a constant that represents the demand 
for service. 
• qi is set to q0 where q0 is a constant between 0 and 1. Clearly 
there could be other choices for pi and qi 
• If pi is true and qi is false the cell advances. If pi is false and qi 
is true the cell moves back. Otherwise, the cell stays put but the 
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cycle is still counted.
The simulation program generates the following output: 
• Each server is evaluated separately with their own pre-allocated 
pool of items. 
• All servers are evaluated collectively with the merged pool of 
items. 
• The evaluation consists of the average location of the items and 
the percent of attempts to cross the boundary 
• The number of repeated cycles is a program input but is chosen 
to be 200,000 for the examples presented. 
• The evaluation uses a range of demand for service or a range of 
capacity. In this study a range of demand is used.2 
• Further analysis of the program’s output is achieved through a 
download to an Excel spreadsheet. A key function is to combine 
the pre-allocated overflow with the formula 

where Ri is the demand for the i-th server, OFi is the corresponding 
overflow and TD is the sum of all Ri’s. 
Also, the number served by each preallocated server is combined 
by adding the individual equilibrium values. These last two 
steps allow for comparison of pre-allocated results with merged 
results. 
 
It turns out that some simplification in the number of variables 
that need to be considered is achieved by dividing the Demand 
(R) by the Capacity and also dividing the average location by 
Capacity. All results will be presented in these terms. 

2.3. Pre-Allocation to Merged Comparison 
In this case three different values of demand and capacity with 
the same R/Cap ratio are presented. In addition, pre-allocated 
and merged results are presented with the same parameters. This 
uses two servers. 

 The evaluation uses a range of demand for 
service or a range of capacity. In this study a 
range of demand is used.2 

 Further analysis of the program’s output is 
achieved through a download to an Excel 
spreadsheet. A key function is to combine 
the pre-allocated overflow with the formula 
�
��

∑ 𝑅𝑅𝑅𝑅 ∗ 𝑂𝑂𝑂𝑂𝑅𝑅�
���  

where Ri is the demand for the i-th 
server, OFi is the corresponding 
overflow and TD is the sum of all 
Ri’s. 

Also, the number served by each pre-
allocated server is combined by adding the 
individual equilibrium values. 
These last two steps allow for comparison of 
pre-allocated results with merged results. 
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Figure 5 Percent Over - Balanced Inventory 
Allocation at Three Scales 
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2 A range of either Demand or Capacity is determined by starting 
with the value provided and calculating five values equal to 

to move forward increases, and more overflow is 
experienced. 

 

Figure 6 Number Served - Balanced Inventory 
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Two conclusions can be drawn from these results: 
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useful procedure since the results are 
insensitive to their absolute value. 
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In this case the capacity was equally divided but the 
demand was not which resulted in a ratio of 
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Figure 5: Percent Over - Balanced Inventory Allocation at Three Scales

This chart behaves as expected. For small values of demand, there is little to no overflow over capacity. As the demand increases, 
the probability for the RW to move forward increases, and more overflow is experienced.

Figure 6: Number Served - Balanced Inventory Allocation at Three Scales

All six cases plot over each other in this case as well. The average 
position of the items used is taken to be the number served. 

This chart also behaves as expected. As the demand increases 
from a small starting value, the number served linearly increases. 
As the Capacity of the inventory is reached, the number served/
Capacity approaches 1 as there is no additional inventory to 
offer. 

Two conclusions can be drawn from these results: 
• Using the ratio of demand/capacity is a useful procedure since 
the results are insensitive to their absolute value. 
• The pre-allocated and merged inventory case provide 
equal results when the ratio of demand to capacity is equally 
proportioned and the pi and qi values are the same. 
The next two charts show the effect of an imbalance. In this case 
the capacity was equally divided but the demand was not which 



 Volume 3 | Issue 1 | 5J Curr Trends Comp Sci Res, 2024

resulted in a ratio of 
Demand/Capacity of 74% for Server 1 and 97% for 
Server 2 

(starting value) - n*(starting value)/10 and five other values 
equal
to (starting value) + n*(starting value)/10 for n=1,2…5.
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Comparing the Balanced (Figure 5) to the 
Unbalanced (Figure 7) percent overage at a 
Demand/Capacity value of 0.77: 

 In both cases the overage is about 2% for the 
merged simulation. 

 The balanced simulation (Figure 5) for the 
pre-allocated is also 2% overage. 

 The unbalanced simulation (Figure 7) for the 
pre-allocated (dashed curve) is about 5% 
overage. 

 

Figure 8 Number Served - Unbalanced Inventory 
Pre-Allocation 

This chart shows the number served. Note that at a 
Demand/Capacity level of 0.77 the unbalanced case 
shows 10% fewer served (dashed curve) than the 
merged case (solid curve). 

The next chart shows the difference in number served 
for this case. 

 

Figure 9 Merged Minus Unbalanced Inventory Pre-
Allocation – Number Served 

Note that for low levels of Total Demand/Total 
Capacity (< 0.6), the difference is essentially zero. 
This is because in both cases the numbers being 
served are not affected by their respective capacities. 
For large levels of TD/TC, the demand claims all 
possible inventory so the difference is small (about 
two extra served if merged). In between there are 50 
to 150 extra served in the merged case. 

Of course, there are many different ways to create an 
unbalance. The probabilities poi and qi can be 
changed for different servers. Also, the number of 
servers can be increased. However, all results follow 
the same pattern so they are not presented here. 

 

III Theoretical Results 
 
A. Number Served 
When the random walk reaches equilibrium, it seems 
reasonable to assume that this will occur when p1 = 
q1. Accordingly, since p1e-(M1/R1) = q1, M1 = 
R1ln(p1/q1) as long as M1 ≤ Cap1 as R1 increases. For 
larger values of R1, M1 = Cap1.  

A spread sheet can now be created to predict the 
extra services provided by merging. Generalizing the 
expression for M1 results in: 

1. Mi = Ri ln(pi/qi) where i = 1,2,3,.. up to 
number of servers 

2. For the pre-allocated estimate calculate 
∑ Mi��.�������
���   where Mi = R1ln(p1/q1) but if 

Mi > Capi use Capi for Mi. 
3. For the merged estimate calculate 

∑ Mi��.������
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���  >∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀��.�������

��� , then set 
all Mi to Capi. 

4. Subtract result obtained in step 2 from the 
result of step 3. 
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Comparing the Balanced (Figure 5) to the 
Unbalanced (Figure 7) percent overage at a 
Demand/Capacity value of 0.77: 

 In both cases the overage is about 2% for the 
merged simulation. 
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pre-allocated is also 2% overage. 

 The unbalanced simulation (Figure 7) for the 
pre-allocated (dashed curve) is about 5% 
overage. 
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This chart shows the number served. Note that at a 
Demand/Capacity level of 0.77 the unbalanced case 
shows 10% fewer served (dashed curve) than the 
merged case (solid curve). 

The next chart shows the difference in number served 
for this case. 
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Note that for low levels of Total Demand/Total 
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possible inventory so the difference is small (about 
two extra served if merged). In between there are 50 
to 150 extra served in the merged case. 

Of course, there are many different ways to create an 
unbalance. The probabilities poi and qi can be 
changed for different servers. Also, the number of 
servers can be increased. However, all results follow 
the same pattern so they are not presented here. 
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Comparing the Balanced (Figure 5) to the 
Unbalanced (Figure 7) percent overage at a 
Demand/Capacity value of 0.77: 

 In both cases the overage is about 2% for the 
merged simulation. 

 The balanced simulation (Figure 5) for the 
pre-allocated is also 2% overage. 

 The unbalanced simulation (Figure 7) for the 
pre-allocated (dashed curve) is about 5% 
overage. 
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This chart shows the number served. Note that at a 
Demand/Capacity level of 0.77 the unbalanced case 
shows 10% fewer served (dashed curve) than the 
merged case (solid curve). 

The next chart shows the difference in number served 
for this case. 
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Figure 7: Unbalanced Inventory Pre-allocation

Comparing the Balanced (Figure 5) to the Unbalanced (Figure 7) percent overage at a Demand/Capacity value of 0.77: 
• In both cases the overage is about 2% for the merged simulation. 
• The balanced simulation (Figure 5) for the pre-allocated is also 2% overage. 
• The unbalanced simulation (Figure 7) for the pre-allocated (dashed curve) is about 5% overage. 

Figure 8: Number Served - Unbalanced Inventory Pre-Allocation
This chart shows the number served. Note that at a Demand/Capacity level of 0.77 the unbalanced case shows 10% fewer served 
(dashed curve) than the merged case (solid curve). 
The next chart shows the difference in number served for this case. 

Figure 9: Merged Minus Unbalanced Inventory PreAllocation – Number Served
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Note that for low levels of Total Demand/Total Capacity (< 0.6), 
the difference is essentially zero. This is because in both cases 
the numbers being served are not affected by their respective 
capacities. For large levels of TD/TC, the demand claims all 
possible inventory so the difference is small (about two extra 
served if merged). In between there are 50 to 150 extra served in 
the merged case. 

Of course, there are many different ways to create an unbalance. 
The probabilities poi and qi can be changed for different servers. 
Also, the number of servers can be increased. However, all 
results follow the same pattern so they are not presented here. 

3. Theoretical Results 
3.1. Number Served 
When the random walk reaches equilibrium, it seems reasonable 
to assume that this will occur when p1 = q1. Accordingly, since 

p1e-(M1/R1) = q1, M1 = R1ln(p1/q1) as long as M1 ≤ Cap1 as R1 
increases. For larger values of R1, M1 = Cap1. 
A spread sheet can now be created to predict the extra services 
provided by merging. Generalizing the expression for M1 results 
in: 
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Figure 10 Comparing Number Served: Simulation vs 
Theory 

B. Overflow 
The general approach employed to derive equations 
for the overflow is as follows: 

 Let pi + qi + ni = 1 where ni is the probability 
that there will be no change in location for 
Server_i 

 Calculate probability of all of the paths of 
length N for each server (N >> 1). 

 To minimize the number of paths to 
consider, all paths start at capacity in the 
calculation. For a large number of cycles 
this should not be significant. 

 Note that a necessary condition for the RW 
to exceed capacity is for the following steps 
to occur within one cycle: sum of all 
forward steps across all servers minus the 
sum of all backward steps across all servers 
where the first step is at capacity. Whenever 
the RW exceeds capacity, its location is 
reset to be on the capacity. 

 The calculation will compute the expected 
value of a long string of steps along the 
barrier. The probability of each step is 
governed by the three probabilities for each 
RW. 

 For a single server the expected value of a 
Random Variable (RV) is given by 

               E(RV) = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖,j,k)𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖,j,k)𝑃𝑃(𝑥𝑥𝑖𝑖,j,k) 
 The starting point for this analysis is the 

trinomial expansion [9] given by  
(p + q + n)N = 1  

    = ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk 

 Convert to expected value where (Th) stands 
for Threshold: 
E(Th)= 

�
�

∑ 𝑇𝑇ℎ(������� PathN,i,j,k)�
𝑁𝑁!

𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk 

where Th(pathN,i,j,k) is the value of  pathN,i,j,k. 
 Calculation of Th for each path becomes the 

number of p1’s minus the number of q1’s. 
For one Server this is i, (the number of p1’s), 
minus j, (the number of q1’s), or (i - j). 

  
Substituting that value into the expression for E(Th) 
results in 

E(Th)=�
�

∑ (𝑖𝑖 − 𝑗𝑗������� ) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk 

Simplifying the expression yields 
 

E(Th) = �
�

∑ (𝑖𝑖������� ) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk  

             - �
�

 ∑ (𝑗𝑗������� ) � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk 

          = 𝑝𝑝 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk 

            -  𝑞𝑞 ∑������� � 𝑁𝑁!
𝑖𝑖! 𝑗𝑗! 𝑘𝑘!�pi qj nk  

        = p - q     (Eq 2) 
This summation is a well-known result [5] & [10]. 
For a single server, the values for p and q are 
determined from prior expressions (See Eq 1). 
 
The next Figure shows the comparison between the 
formula and the simulation. 
 

 
Figure 11 Comparison of Theory with Simulation – 
Single Server 
 
As can be seen on this chart the calculated value for 
E(Th) is almost identical with the simulation result. 
 
Extending this result to more servers is 
straightforward but the subscript notation becomes 
unwieldy. For example, for three servers: 
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Figure 10: Comparing Number Served: Simulation vs Theory

B. Overflow 
The general approach employed to derive equations for the 
overflow is as follows: 
1. Let pi + qi + ni = 1 where ni is the probability that there will be 
no change in location for Server_i 
2. Calculate probability of all of the paths of length N for each 
server (N >> 1). 
3. To minimize the number of paths to consider, all paths start 
at capacity in the calculation. For a large number of cycles this 
should not be significant. 
4. Note that a necessary condition for the RW to exceed capacity 
is for the following steps to occur within one cycle: sum of all 
forward steps across all servers minus the sum of all backward 
steps across all servers where the first step is at capacity. 
Whenever the RW exceeds capacity, its location is reset to be 
on the capacity. 
5.The calculation will compute the expected value of a long 
string of steps along the barrier. The probability of each step is 
governed by the three probabilities for each RW. 
6. For a single server the expected value of a Random Variable 
(RV) is given by 

7. The starting point for this analysis is the trinomial expansion 
given by (p + q + n)N = 1

8. Convert to expected value where (Th) stands for Threshold: 
E(Th)=

where Th(pathN,i,j,k) is the value of pathN,i,j,k.
9. Calculation of Th for each path becomes thenumber of p1’s 
minus the number of q1’s.
For one Server this is i, (the number of p1’s), minus j, (the number 
of q1’s), or (i - j).

Substituting that value into the expression for E(Th) results in

Simplifying the expression yields
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B. Overflow 
The general approach employed to derive equations 
for the overflow is as follows: 
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B. Overflow 
The general approach employed to derive equations 
for the overflow is as follows: 

 Let pi + qi + ni = 1 where ni is the probability 
that there will be no change in location for 
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 Calculate probability of all of the paths of 
length N for each server (N >> 1). 

 To minimize the number of paths to 
consider, all paths start at capacity in the 
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this should not be significant. 

 Note that a necessary condition for the RW 
to exceed capacity is for the following steps 
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forward steps across all servers minus the 
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B. Overflow 
The general approach employed to derive equations 
for the overflow is as follows: 

 Let pi + qi + ni = 1 where ni is the probability 
that there will be no change in location for 
Server_i 

 Calculate probability of all of the paths of 
length N for each server (N >> 1). 

 To minimize the number of paths to 
consider, all paths start at capacity in the 
calculation. For a large number of cycles 
this should not be significant. 

 Note that a necessary condition for the RW 
to exceed capacity is for the following steps 
to occur within one cycle: sum of all 
forward steps across all servers minus the 
sum of all backward steps across all servers 
where the first step is at capacity. Whenever 
the RW exceeds capacity, its location is 
reset to be on the capacity. 

 The calculation will compute the expected 
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governed by the three probabilities for each 
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where Th(pathN,i,j,k) is the value of  pathN,i,j,k. 
 Calculation of Th for each path becomes the 

number of p1’s minus the number of q1’s. 
For one Server this is i, (the number of p1’s), 
minus j, (the number of q1’s), or (i - j). 

  
Substituting that value into the expression for E(Th) 
results in 
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This summation is a well-known result [5] & [10]. 
For a single server, the values for p and q are 
determined from prior expressions (See Eq 1). 
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formula and the simulation. 
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B. Overflow 
The general approach employed to derive equations 
for the overflow is as follows: 

 Let pi + qi + ni = 1 where ni is the probability 
that there will be no change in location for 
Server_i 

 Calculate probability of all of the paths of 
length N for each server (N >> 1). 

 To minimize the number of paths to 
consider, all paths start at capacity in the 
calculation. For a large number of cycles 
this should not be significant. 

 Note that a necessary condition for the RW 
to exceed capacity is for the following steps 
to occur within one cycle: sum of all 
forward steps across all servers minus the 
sum of all backward steps across all servers 
where the first step is at capacity. Whenever 
the RW exceeds capacity, its location is 
reset to be on the capacity. 

 The calculation will compute the expected 
value of a long string of steps along the 
barrier. The probability of each step is 
governed by the three probabilities for each 
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 For a single server the expected value of a 
Random Variable (RV) is given by 
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where Th(pathN,i,j,k) is the value of  pathN,i,j,k. 
 Calculation of Th for each path becomes the 

number of p1’s minus the number of q1’s. 
For one Server this is i, (the number of p1’s), 
minus j, (the number of q1’s), or (i - j). 

  
Substituting that value into the expression for E(Th) 
results in 
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This summation is a well-known result [9,5,10]. For a single 
server, the values for p and q are determined from prior 
expressions (See Eq 1).
 

The next Figure shows the comparison between the formula and 
the simulation. 
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Figure 11: Comparison of Theory with Simulation – Single Server

As can be seen on this chart the calculated value for E(Th) is 
almost identical with the simulation result. 
 Extending this result to more servers is straightforward but the 

subscript notation becomes unwieldy. For example, for three 
servers: 

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)  
  (Eq 3) 

Where the expression for C() is given by 

C(N,pg,qg) = � 𝑁𝑁𝑁
𝑁 𝑁𝑁�pg

 qg
 ng

 

and g = 1, 2 or 3 and ng = 1 – pg - qg 

For g = 1, (,,) = (l,m,n) 

For g = 2, (,,) = (i,j,k) 

For g = 3, (,,) = (s,t,u) 

The expected value is now the number of p1’s minus 
the number of q2’s minus the number of q3’s. To this 
add the number of p2’s minus the number of q1’s 
minus the number of q3’s and so forth. This table 
details all the cases: 

Server Number of px’s Number of qx’s 
1 l par(j) + par(t) 
2 i par(m) + par(t) 
3 s par(m) + par(j) 

 

Where par() stands for partial and par(x) + par(x) = x 
and x=j,m,t 

The net positive minus negative result is 
l - par(j) – par(t) 

i – par(m) – par(t) 

s – par(m) – par(j) 

Summing these terms gives: 

      TH(PathN,i,j,k,l,m,n,s,t,r)  =l +i + s – j – t - m 

And substituting this result into (Eq 3) results in 

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3) 
E(Th) per server = �

�
(p1 + p2 + p3) - �

�
(q1 + q2 + q3) 

 
This process can be extended to more servers with 
the following result: 
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 + 

… + qS)   where S = No. of Servers  (Eq 4) 

 
3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.     
Li,j can be viewed as the influence of server “j” on the 
position of server “i”. 

The values for pi and qi cannot be determined from 
the original expressions (See Eq 1). This is because 
the values of Mi depend on where along the capacity 
boundary the boundary is exceeded. 

Returning to Figures 3 and 4, the emphasis here is to 
determine the pairwise side-to-side position along the 
boundary by equating the probability of moving to 
the upper left to the probability of moving to the 
lower right. This results in 
: 
p1q3=p3q1   p1q2=p2q1   p3q2=p2q3 

Substituting for pi and qi (See Eq 1) and solving for 
M2 and M3 gives: 

M3/R3 = L3,1 + M1/R1 

M2/R2 = L2,3 + M3/R3 

where Li,j = ln[(p0i/qi)*(qj/p0j)]3  (Eq 5) 

Also defining TC and TD as: 
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R1+R2+R3 =TD (total demand) 

Placing this in matrix notation results in:   
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formula is obtained: 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝑅
𝑅𝑅𝑅
𝑀𝑀2
𝑅𝑅2
𝑀𝑀𝑅
𝑅𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 𝑅 �
L(1,1) L(1,2) L(1,3) 
L(2,1) L(2,2) L(2,3) 
L(3,1) L(3,2) L(3,3) 

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇
𝑅𝑅2
𝑇𝑇𝑇𝑇
𝑅𝑅𝑅
𝑇𝑇𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

 

             (Eq 6) 

E(Th)=�
�

∑ ∑ ∑������� 𝑇𝑇𝑇𝑇�������������� PathN,i

,j,k,l,m,n,s,t,r) C(N,p1,q1) C(N,p2,q2) C(N,p3,q3)  
  (Eq 3) 
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and g = 1, 2 or 3 and ng = 1 – pg - qg 

For g = 1, (,,) = (l,m,n) 

For g = 2, (,,) = (i,j,k) 

For g = 3, (,,) = (s,t,u) 

The expected value is now the number of p1’s minus 
the number of q2’s minus the number of q3’s. To this 
add the number of p2’s minus the number of q1’s 
minus the number of q3’s and so forth. This table 
details all the cases: 

Server Number of px’s Number of qx’s 
1 l par(j) + par(t) 
2 i par(m) + par(t) 
3 s par(m) + par(j) 

 

Where par() stands for partial and par(x) + par(x) = x 
and x=j,m,t 

The net positive minus negative result is 
l - par(j) – par(t) 

i – par(m) – par(t) 

s – par(m) – par(j) 

Summing these terms gives: 

      TH(PathN,i,j,k,l,m,n,s,t,r)  =l +i + s – j – t - m 

And substituting this result into (Eq 3) results in 
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(p1 + p2 + … + pS) - �

�
(q1 + q2 + 

… + qS)   where S = No. of Servers  (Eq 4) 

 
3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.     
Li,j can be viewed as the influence of server “j” on the 
position of server “i”. 

The values for pi and qi cannot be determined from 
the original expressions (See Eq 1). This is because 
the values of Mi depend on where along the capacity 
boundary the boundary is exceeded. 

Returning to Figures 3 and 4, the emphasis here is to 
determine the pairwise side-to-side position along the 
boundary by equating the probability of moving to 
the upper left to the probability of moving to the 
lower right. This results in 
: 
p1q3=p3q1   p1q2=p2q1   p3q2=p2q3 

Substituting for pi and qi (See Eq 1) and solving for 
M2 and M3 gives: 
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where Li,j = ln[(p0i/qi)*(qj/p0j)]3  (Eq 5) 

Also defining TC and TD as: 
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and g = 1, 2 or 3 and ng = 1 – pg - qg 

For g = 1, (,,) = (l,m,n) 

For g = 2, (,,) = (i,j,k) 

For g = 3, (,,) = (s,t,u) 

The expected value is now the number of p1’s minus 
the number of q2’s minus the number of q3’s. To this 
add the number of p2’s minus the number of q1’s 
minus the number of q3’s and so forth. This table 
details all the cases: 

Server Number of px’s Number of qx’s 
1 l par(j) + par(t) 
2 i par(m) + par(t) 
3 s par(m) + par(j) 

 

Where par() stands for partial and par(x) + par(x) = x 
and x=j,m,t 

The net positive minus negative result is 
l - par(j) – par(t) 

i – par(m) – par(t) 

s – par(m) – par(j) 

Summing these terms gives: 

      TH(PathN,i,j,k,l,m,n,s,t,r)  =l +i + s – j – t - m 

And substituting this result into (Eq 3) results in 

E(Th) = (p1 + p2 + p3) - (q1 + q2 + q3) 
E(Th) per server = �

�
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This process can be extended to more servers with 
the following result: 
E(Th) per server = �

�
(p1 + p2 + … + pS) - �

�
(q1 + q2 + 

… + qS)   where S = No. of Servers  (Eq 4) 

 
3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.     
Li,j can be viewed as the influence of server “j” on the 
position of server “i”. 

The values for pi and qi cannot be determined from 
the original expressions (See Eq 1). This is because 
the values of Mi depend on where along the capacity 
boundary the boundary is exceeded. 

Returning to Figures 3 and 4, the emphasis here is to 
determine the pairwise side-to-side position along the 
boundary by equating the probability of moving to 
the upper left to the probability of moving to the 
lower right. This results in 
: 
p1q3=p3q1   p1q2=p2q1   p3q2=p2q3 

Substituting for pi and qi (See Eq 1) and solving for 
M2 and M3 gives: 

M3/R3 = L3,1 + M1/R1 

M2/R2 = L2,3 + M3/R3 

where Li,j = ln[(p0i/qi)*(qj/p0j)]3  (Eq 5) 

Also defining TC and TD as: 
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and g = 1, 2 or 3 and ng = 1 – pg - qg 

For g = 1, (,,) = (l,m,n) 

For g = 2, (,,) = (i,j,k) 

For g = 3, (,,) = (s,t,u) 

The expected value is now the number of p1’s minus 
the number of q2’s minus the number of q3’s. To this 
add the number of p2’s minus the number of q1’s 
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details all the cases: 
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2 i par(m) + par(t) 
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Where par() stands for partial and par(x) + par(x) = x 
and x=j,m,t 
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i – par(m) – par(t) 
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3 Note that Li,i = 0, Li,j= - Lj,i and Li,j + Lj,k = Li,k.     
Li,j can be viewed as the influence of server “j” on the 
position of server “i”. 

The values for pi and qi cannot be determined from 
the original expressions (See Eq 1). This is because 
the values of Mi depend on where along the capacity 
boundary the boundary is exceeded. 

Returning to Figures 3 and 4, the emphasis here is to 
determine the pairwise side-to-side position along the 
boundary by equating the probability of moving to 
the upper left to the probability of moving to the 
lower right. This results in 
: 
p1q3=p3q1   p1q2=p2q1   p3q2=p2q3 

Substituting for pi and qi (See Eq 1) and solving for 
M2 and M3 gives: 

M3/R3 = L3,1 + M1/R1 

M2/R2 = L2,3 + M3/R3 

where Li,j = ln[(p0i/qi)*(qj/p0j)]3  (Eq 5) 

Also defining TC and TD as: 
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             (Eq 6) 

The expected value is now the number of p1’s minus the number 
of q2’s minus the number of q3’s. To this add the number of p2’s 

minus the number of q1’s minus the number of q3’s and so forth. 
This table details all the cases:
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The values for pi and qi cannot be determined from the original 
expressions (See Eq 1). This is because the values of Mi depend 
on where along the capacity boundary the boundary is exceeded. 
Returning to Figures 3 and 4, the emphasis here is to determine 
the pairwise side-to-side position along the boundary by equating 

the probability of moving to the upper left to the probability of 
moving to the lower right. This results in : p1q3=p3q1 p1q2=p2q1 
p3q2=p2q3 
Substituting for pi and qi (See Eq 1) and solving for M2 and M3 
gives: 
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𝑁 𝑁𝑁�pg

 qg
 ng

 

and g = 1, 2 or 3 and ng = 1 – pg - qg 
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After multiplying and refactoring the following formula is obtained:

Although this is the result for three servers, it is easily extended to more servers. 
An Excel spread sheet was created to perform the following calculations in sequence: 
• Expand Eq 6 to a 5 x 5 matrix 
• Calculate the L(i,j) coefficients using Eq 5 
• Calculate Mi/Ri from Ri/TD using Eq 6 
• Determine pi = p0iexp(-Mi/Ri) 
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forward increases with increasing demand which 
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Total Demand/Total Capacity is approximately 0.8 to 
1.0. 

Finally, equations were derived for the number 
served and for overflow which led to simple closed 
form expressions. Comparing the equation to a five-
server simulation provided an excellent match. 

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50Pe
rc

en
t O

ve
r 

To
ta

l C
ap

ac
ity

Total Demand/Total Capacity

Simulation Theory

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 0.50 1.00 1.50N
um

be
r S

er
ve

d:
 M

er
ge

d 
M

in
us

 P
re

-A
llo

c

Total Demand/Total Capacity

Simulation Theory



 Volume 3 | Issue 1 | 9J Curr Trends Comp Sci Res, 2024

Although this is the result for three servers, it is 
easily extended to more servers.  

An Excel spread sheet was created to perform the 
following calculations in sequence: 

 Expand Eq 6 to a 5 x 5 matrix 

 Calculate the L(i,j) coefficients using Eq 5 

 Calculate Mi/Ri from Ri/TD using Eq 6 

 Determine pi = p0iexp(-Mi/Ri) 

 Combine them using Eq 4 (with S=5) 

 The largest number of servers in the simulation 
program was five so that is the basis of comparison. 

The five servers have the following data 

Server p0i qi Demand Capacity 

1 0.8 0.3 550 645 

2 0.8 0.3 900 1055 

3 0.7 0.3 550 640 

4 0.7 0.2 700 750 

5 0.7 0.2 300 320 

 

 

Figure 12 Comparing Theory with Simulation for 
Five Servers 

For completeness, the extra service provided 
by using a merged pool is shown next: 

 

 

 

 
Figure 13 Increased Resource Utilization Through 
Sharing with Five Servers 

 

IV. Summary 
After establishing the idea of comparing shared 
versus pre-allocated items (inventory) for multiple 
entities (servers) that each assign a customer 
temporary use of an item, a multi-dimensional grid 
was established to depict the items in use by each 
entity. Each axis of the grid is associated with an 
entity and the entire collection of items in use is 
represented by a single point on the grid. Forward 
and reverse probabilities were specified to control the 
random movement of the point. The probability of 
moving ahead decreases with increasing distance 
from the origin. Also, the probability of moving 
forward increases with increasing demand which 
makes intuitive sense. Since there is a finite number 
of items available for use, an absorbing boundary is 
provided which can be viewed as a multi-dimensional 
plane on the grid. 

Next, a computer program was presented that 
simulates in one run both pre-allocated and shared 
entities for given input parameters. The pre-allocated 
cases are combined to allow comparison with the 
merged case. In broad terms, the main result is if 
each of the entities maintain the same 
demand/capacity ratio, then there is no advantage to 
sharing. But if not, sharing has a roughly 5 to 6% 
improvement in item utilization for the case when 
Total Demand/Total Capacity is approximately 0.8 to 
1.0. 

Finally, equations were derived for the number 
served and for overflow which led to simple closed 
form expressions. Comparing the equation to a five-
server simulation provided an excellent match. 

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50Pe
rc

en
t O

ve
r 

To
ta

l C
ap

ac
ity

Total Demand/Total Capacity

Simulation Theory

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 0.50 1.00 1.50N
um

be
r S

er
ve

d:
 M

er
ge

d 
M

in
us

 P
re

-A
llo

c

Total Demand/Total Capacity

Simulation Theory

Although this is the result for three servers, it is 
easily extended to more servers.  

An Excel spread sheet was created to perform the 
following calculations in sequence: 

 Expand Eq 6 to a 5 x 5 matrix 

 Calculate the L(i,j) coefficients using Eq 5 

 Calculate Mi/Ri from Ri/TD using Eq 6 

 Determine pi = p0iexp(-Mi/Ri) 

 Combine them using Eq 4 (with S=5) 

 The largest number of servers in the simulation 
program was five so that is the basis of comparison. 

The five servers have the following data 

Server p0i qi Demand Capacity 

1 0.8 0.3 550 645 

2 0.8 0.3 900 1055 

3 0.7 0.3 550 640 

4 0.7 0.2 700 750 

5 0.7 0.2 300 320 

 

 

Figure 12 Comparing Theory with Simulation for 
Five Servers 

For completeness, the extra service provided 
by using a merged pool is shown next: 

 

 

 

 
Figure 13 Increased Resource Utilization Through 
Sharing with Five Servers 

 

IV. Summary 
After establishing the idea of comparing shared 
versus pre-allocated items (inventory) for multiple 
entities (servers) that each assign a customer 
temporary use of an item, a multi-dimensional grid 
was established to depict the items in use by each 
entity. Each axis of the grid is associated with an 
entity and the entire collection of items in use is 
represented by a single point on the grid. Forward 
and reverse probabilities were specified to control the 
random movement of the point. The probability of 
moving ahead decreases with increasing distance 
from the origin. Also, the probability of moving 
forward increases with increasing demand which 
makes intuitive sense. Since there is a finite number 
of items available for use, an absorbing boundary is 
provided which can be viewed as a multi-dimensional 
plane on the grid. 

Next, a computer program was presented that 
simulates in one run both pre-allocated and shared 
entities for given input parameters. The pre-allocated 
cases are combined to allow comparison with the 
merged case. In broad terms, the main result is if 
each of the entities maintain the same 
demand/capacity ratio, then there is no advantage to 
sharing. But if not, sharing has a roughly 5 to 6% 
improvement in item utilization for the case when 
Total Demand/Total Capacity is approximately 0.8 to 
1.0. 

Finally, equations were derived for the number 
served and for overflow which led to simple closed 
form expressions. Comparing the equation to a five-
server simulation provided an excellent match. 

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50Pe
rc

en
t O

ve
r 

To
ta

l C
ap

ac
ity

Total Demand/Total Capacity

Simulation Theory

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 0.50 1.00 1.50N
um

be
r S

er
ve

d:
 M

er
ge

d 
M

in
us

 P
re

-A
llo

c

Total Demand/Total Capacity

Simulation Theory

Figure 12: Comparing Theory with Simulation for Five Servers
For completeness, the extra service provided by using a merged pool is shown next:

Figure 13: Increased Resource Utilization Through Sharing with Five Servers

4. Summary 
After establishing the idea of comparing shared versus pre-
allocated items (inventory) for multiple entities (servers) that 
each assign a customer temporary use of an item, a multi-
dimensional grid was established to depict the items in use by 
each entity. Each axis of the grid is associated with an entity and 
the entire collection of items in use is represented by a single point 
on the grid. Forward and reverse probabilities were specified 
to control the random movement of the point. The probability 
of moving ahead decreases with increasing distance from the 
origin. Also, the probability of moving forward increases with 
increasing demand which makes intuitive sense. Since there is a 
finite number of items available for use, an absorbing boundary 
is provided which can be viewed as a multi-dimensional plane 
on the grid. 

Next, a computer program was presented that simulates in 
one run both pre-allocated and shared entities for given input 
parameters. The pre-allocated cases are combined to allow 
comparison with the merged case. In broad terms, the main 
result is if each of the entities maintain the same 
 demand/capacity ratio, then there is no advantage to sharing. 
But if not, sharing has a roughly 5 to 6% improvement in item 
utilization for the case when Total Demand/Total Capacity is 
approximately 0.8 to 1.0. 

Finally, equations were derived for the number served and 
for overflow which led to simple closed form expressions. 

Comparing the equation to a fiveserver simulation provided an 
excellent match. 
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