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Abstract 
In order to get desirable flexible conductive and stretchable materials used as future conductive Devices It should 
find a pathway or create a new composite that is thermally stable, non-toxic, environmentally inexpensive, easier 
carrier, and highly efficient. The composite chip is composed of metals nanoparticles (MN, Ag), assembled on a thin 
layer of Nano Graphene impregnated inside the polyethylene glycol (PEG) matrix. Various characterization had been 
conducted to demonstrate the physical feature of the new composite, like UV, CVT, TEM, XRD, and TGA.  
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Introduction 
Nobody can deny nanocomposite materials has superb perfor-
mance in different aspect of field life applications especially at-
tention to the industrial part. Like its ability to be permeable and 
selective for gas/liquid separation, engineering resins, mechanical 
toughness, and photoconductivity for electronics [1-3]. There is 
the great compatibility between inorganic nanoparticles Nano fill-
er and the polymer as a matrix to form nanocomposite materials 
[4].  Many investigated and studies have been conducted on dif-
ferent types of organic polymers that created as matrices to form 
nanocomposites with many nanoparticles such as titanium, silica, 
carbon nanotubes, zirconia, and graphene [5-10]. By taking a look 
at ethylene glycol that has numerous properties such as it is a po-
larity, economic value, non-expensive, non-toxic high chemical, 
and thermal stability whatever the useful time is long and no super 
cooling [11, 12]. Nanoparticles provide us with different Appli-
cations and effective ways for improving characteristics of fluid 
pneumonia [13, 14]. As innovation research graphene and nitro-
gen-doped has appeared as an attractive applicant for energy trans-
port due to their distinctive structure and properties [15-18].

Referring to covalent functionalization’s, whilst Paredes et al [19]. 
Reveal a good dispersal of graphene oxide (GO) can be acquired 
not only in water but also in different organic solvents like eth-
ylene glycol, by using an acid treatment which leads to the for-
mation of disorder sites inside the systematically arranged Nano 

sheets conjugated graphene [20-21].

One of the studies worked on, CuO Nano fluids by the prepared 
physical [22]. Nonmetal CuO nanoparticles were produced by a 
physical vapor synthesis method. The CuO powders were then 
distributed in ethylene glycol base fluid. by measuring the size of 
CuO particle was 29 nm. Another MWNTs Nano fluids [23]. 

The relationship between electrical conductivity and the degree of 
dispersion of Nano fluid approached in previous literature through 
their experiments, for instance, Ganguly et al [25, 26]. Determined 
the dynamic electrical conductivity of aqueous Al2O3 and show 
the variation relation between that properties and temperature with 
volume fraction. Konakanchi et al [27]. Confirmed the relationship 
between conductivity on temperature and volumetric concentra-
tion by preparing solution from   Al2O3, SiO2, and ZnO nanopar-
ticles dissipated in propylene glycol/water solution. several exper-
iments and research uses metals oxides nanoparticles in different 
base fluids e.g. graphene, Pd in water, Pd/Ag in ethylene glycol 
and distilled water, and TiO2 in ethylene glycol [28-32].

There is another way to increase the ionic conductivity of polymer 
electrolytes. This is to focus on increasing ionic dissociation by 
placing polar subunits, such as acrylamide, acrylonitrile, maleic 
anhydride, and carbonate, along the chains to increase the poly-
mer host dielectric constant. The polar subunits also help reduce 
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the crystallinity. The most recent example of this approach is that 
of Forsyth et al [14]. Who introduced single carbonate groups 
-[O-C(dO)-O]- into the polyether chain.

In that case, we add some surfactant emulsifier which decreases 
the surface tension interactions between graphene nanostructures 
and aqueous/organic solvents addition also using a hydrophilic 
agent that works on energy features such as edges of graphene 
Nano sheets) functionalization’s [32]. many previous kinds of lit-
erature approached water/ ethylene glycol-based Nano fluids, the 
surfactants. For non-covalent options are sodium dodecyl benzene 
sulphonate (SDBS), gum Arabic [33, 37], and polyvinyl alcohol 
(PVA) [38]. The most common methods by using the Hummers 
method or modifications dependable on the oxidation process and 
covalent functionalization’s [39-42].

Malavasi et al. mentioned that nanoscale material shows important 
side effects in their reaction mechanism because it has a short dif-
fusion length and large density of molecule interfaces, Eventually, 
it is considered good evidence to justify the effective nanomaterial 
commended and the grain boundary interfaces [44, 45]

Experimental Section
2.1. Materials.
Metals Oxides and organic solvents were purchased from Sigma 
–Aldrich (Toronto, Canada), Graphene Nano powders (purity > 
99%, 300 mesh) were bought from Sigma –Aldrich Co. Ltd. (Can-
ada). Most of the Nano metals and other salts (Magnesium oxide, 
silver acetate, and silver nitrate (purity > 99%,)) were delivered 
by a scientific fisher, Canada used, n-Hexane, THF was purchased 
from Sigma Aldrich, Canada.  

2.2 Methods 
2.2.2 XRD analysis
The MnO2 filter is transferred to RETSCH Planetary Ball Mills 
Type PM 400, then crushed using the ball mill at speed 150 rpm 
for 5 h to get Nano size structure, then prepared samples were 
carried out using X-ray diffraction patterns. It’s a Pan Analytical 
Model X' Pert Pro, which was outfit with CuK α works at radiation 
(λ = 0.1542 nm), Ni-filter associated with the detector. The diffract 
grams were investigated at a 2θ range of 0.5°–90° and size of 0.02 
Å. All measurements were conducted at All test has been carried 
out ETS, Montreal.

2.2.3 TEM characterize
All samples characterized were carried out using Transmission 
electron microscopy (TEM) Model: JEOL JEM-1230 operating at 
120 kV associated specifically a CCD camera. All test has been 
carried out Nano-QAM, Montreal Canada. Measurements of sam-
ples conducts were done using a convenient method of prepared 
samples to get good results throughout the TEM image utilizing 
copper grids on an amorphous carbon film.

2.2.4 Particle Size Analyzer
Particle analysis has been investigated at Cairo university using 
Zetasizer Nano S90 (Malvern) modal Nano S90. It is run by Red 
laser as a Zetasizer instrument at a 90° angle. The test has been 
carried out in Nano-QAM, Montreal. 

2.2.5 Prepared samples of suspended Nanoparticles had been char-
acterized using   Ultraviolet-visible (model UV-1800 Shimadzu 
UV spectrophotometer). The spectral analysis for silver and Man-
ganese samples is investigated around a wavelength of 150 e was 
1000 nm.  

Results and Discussion.
3.1 Physical properties of composite constituents 
Crystalline graphic structure of both Prepared MnO2 and Ag NPs 
have been investigated by X-ray diffraction, as reported in Fig. 1. 
This figure illustrates ranges of diffracted intensities registered at 
20 matches to planes of (1 1 1), (2 0 0), (2 2 0), and (3 1 1) respec-
tively. These clear out the cubic crystal structure of silver, whose 
corresponding (d calculated) values are 2.336, 1.955, 1.436, and 
1.224 Å for (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes respectively, 
as seen below in the same figure Moreover, they coincide with 
standard silver values using the Debye–Scherrer formula: [1]

The silver nanoparticles crystallite calculated is ~25 nm, con-
firmed by using the TEM characterize in Fig. 3. On the other hand, 
the recorded peak positions (2θ, degree) of Mn-NPS are 18.18, 
37.48, 42.82, 58.81, 6.21, 74.58, and 78.43 respectively. The av-
erage crystalline size calculated using the Debye-Scherer formula 
is about 25–30 nm.

Figure 1: XRD patterns of Mn and Ag nanoparticles.

The TEM image (Figs. 3a, b) shows the average size of both Man-
ganese and Silver particles is 25–30 nm. The Graphene surface 
sheet contains spread large numbers of Mn nanoparticles demon-
strated in Fig 2a, which is based on electronic configuration half 
fill d-orbitals. These facilitate electron transfer related to oxida-
tion-reduction on the surface of graphene. Another observation is 
the presence of some floccules and aggregates that appear in Fig. 
2a. These could be the immobilization and deposition of Manga-
nese oxide on Graphene surface, or metallic conjugated bonds be-
tween Mn+//Mn+2 and Ag+// Ag-, as shown in Fig. 2d. 

Suspended graphene particles disperse in polyethylene Glycol as 
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demonstrated in Fig. 2c. The average size of a particle is 110 to 
440 nm. Variety of particle size is due to the aggregation and floc-
culation of the same units of the same graphene. Furthermore, the 
viscosity of polyethylene Glycol affected particles volume. With 
regard to Fig. 2d describes surface morphology of novel compos-
ite; there is a complete distribution of numerous of nanoparticles 

(Mn, Ag, and Graphene) inside PEG matrix of different sizes 
around 10–30 nm-1, in addition to the flocculation and deposition 
of particles on the surface of PEG. Particles deposition is the return 
of interaction forces, spaceman spherical, and viscous nature of a 
solution. [46]

Figure 2: TEM images of: (a) graphene with Mn NPs, (b) Ag NPs in PEG, (c) graphene inside PEG, and (d) PEG–NPs–graphene com-
posite.

3.2 Composite Thermal analysis. 
Figure 4a illustrates HDPE decomposition at a flow rate of 10°C/
min. A PEHD sample was carried out using a thermal gravimetric 
analyzer (TGA). Fig. 3b points out the change in the mass fraction 
of the sample with a function of temperature at different heating 
rates. Heating rates range from 400 to 520ºC, which shows how 

similar behavior can be within a single mass loss zone. The deg-
radation zone is approximately centered at 425, 450, and 460ºC 
at a heating rate of 10°C/min. The temperature reforming zone of 
HDPE ranges between 380–510ºC. Major mass loss in that stage 
relates to the elements of CO2, water, H2, and light components 
molecules breakdown of the polymeric chain.
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Figure 3: TGA curves for (a) HDPE and (b) composite structure.

On the other hand, though PEG thermal degradation starts low, 
from 100 to 390°C, losing some molecules like CO2 or water 
causes only a slight change in its appearance. But in the case of 
PEG-graphene, the TGA has become higher and requires more 
heat to dissociate and reach 410°C. This is lower compared with 
PEG-NPS in Fig. 3b, whose degradation point is 425°C. In conse-
quence, we prepared composites with degradation at 460°C. Also, 
it is confirmed that Nano metals (Ag and Mn) filled out interspace 
and irregularly distributed voids of PEG. This leads to a decreased 
molecular weight and an increased melting point of composites. 
Furthermore, the TGA of the prepared composite is closer to the 
temperature of the fixed bed reactor, which was confirmed by an-
other characterization such as EDX and TEM.

Figure 4: Particle size distributions for (1) suspension of (Mn, 
Ag) NPs, (2) (Ag, Mn)NPs in PEG, and (3) PEG–(Ag, Mn) NPs–
graphene colloid.

Figure 4 illustrates the suspended particles in liquid phases. That 
technique shows the qualities and quantitative analysis used 
to investigate particle size and shape. The same figure explains 
different size particles for different prepared solutions. We have 
three solutions containing (Magnesium, and sliver) nanoparticles 
solution, graphene suspended in (Ag, MN) nanoparticles solution, 
and a mixture of composites (Ag, MN, Graphene, and PEG). We 
recorded a strong peak in a nanoparticles solution that appears at 
110 nm, which is lower than in PEG solution, and composite 220, 
and 590, 890 d nm respectively. Our interpretation is that the force 
interaction (shear strength results from PEG apparent viscosity, 
coated the entire Nano metals particles and different conjugated 
bonds between nanoparticles together cause massive particles. 
PEG viscosity has an effecting factor on particle movement and 
increasing enhancement cross-linked inside a matrix, due to the 
stability of the composite during thermal degradation. 

Absorption spectra 
We used UV to illustrate the different signals and spectra of pre-
pared samples. We have three samples: solution of PEG/Metals 
NPS, PEG/Graphene, and matrix of their solution prepared as 
shown in Fig. 5. Comparing different curves, we found specific 
spectra characterizing Ag, whose absorbance slightly shifted at 
430 nm due to cross-links with polyethylene glycol through a hy-
drogen bond. Besides, the graphene in the second curve, which is 
also shifted, could be the resonance of bi bonds in addition to the 
contact with polyethylene glycol. The UV-Vis spectrum for this 
(PEG/graphene /Metals NPS) composite disappeared with the ex-
istence of a wide board peak, it could be surface Plasmon reso-
nance of spherical nanoparticles nature, or metallic bonds created 
between Mn-Ag. That shift is represented in Fig. 5 at 410 and 450 
nm. That is good evidence that indicates all nanoparticles (Mn, Ag, 
and graphene) assembled and impregnated inside the PEG matrix 
[47,48]. 
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Figure 5. Absorption spectra of (1) suspension of Mn NPs, (2) 
suspension of Ag NPs, and (3) Graphene.\

3.3. Electrochemical analysis 
Cyclic voltammetry (CV) is one of the most important techniques 
used to measure the rate of oxidation and reduction reaction spe-
cies in the prepared solution. To conduct that experiment, we need 
to set up three cell electrodes, and reference, working, and counter 
electrodes to measure variation change between current and volts. 
We found a difference in current based on the change of reaction 
metals (Sliver and Manganese metals). Figure 6 shows different 
potential states released from the electrochemical series of metals 
nanoparticles. A slight peak appears at cycle voltammetry curve 
(-V) 1.2, and (+V) 1.2; it is due to reversible reaction occurred: 
according to the previous equation Mn+2, oxidase to be Mn0 to 
give a pair of electrons, on the other side and Ag is gain an electron 
to be a reducing agent (reversible reaction). That appears in Fig. 
6 at electrochemical potential equal (+1.6) V. In conclusion, there 
are Nemours ions charge transfer through a solution, but on the 
other hand, the transfer is demolished due to high viscosity of the 
polymer, which restricts that ions transfer, although it is a protonic 
solution, and many interface interactions dependable on and van 
der Waals force mechanism.

Figure  6: Reaction mechanism as estimated using CVT

Throughout the Cyclic voltammetry (CV) analysis, we concluded 

that there are various electrochemical reactions occurring between 
different species of chemical reactions. For instance, Mn has a dif-
ferent (+2, +3, and + 5) valence oxidation state to reach a stable 
(half or empty) state in the electronic configuration of (d-orbital); 
therefore, it has a tendency to lose pairs of electrons, which reduc-
es sliver metals and creates serious electrochemical reaction mech-
anisms. Graphene works as a bridge to transfer the charge between 
both metal’s sides. Due to π-π bonds of graphene structure, which 
lead to electron resonance and reaction stability, our investigation 
follows Eq. (1): 

Standard cell potential for an electrochemical cell with the follow-
ing reactions 
 
Eo

cell = Eo
red + Eoox                 (2) 

Half-reaction mechanism for each process

Mn(s) → Mn2+(aq) + 2e–       E° = +0.8 V

Ag +(aq) + e– → Ag(s)           E° = +0.8 V

Mn2+(aq) + 2e– → Mn(s)     E° = –1.18

Ag(s) + Mn2+(aq) ↔ Ag+(aq) + Mn(s)

Ag(s) is formed at the cathode while Mn2+(aq), at the anode.
In the latter reaction, Graphene acts as a bridge (electrolyte mem-
brane) [49]. 

The storage charge is based either on the adsorption of cations 
at the surface of the electrode material or on the intercalation of 
cations in their bulk. One of the important values to using Ag as 
a supported catalyst is its nature and activity as a reducing agent. 
It has a great effect on free energy according to equation ΔG = 
ΔH – TΔS, then that reaction will shift to products and become 
the exothermal reaction. Moreover, it employs an accelerator for 
the reaction (between graphene surface assembled Mn NPS as the 
active species and plastic PE). It is due to the down heating rate 
of reaction during the decomposition process. On the other hand, 
the average size of Mn and Ag NPs is down 30 nm. The tiny size 
of Nano metals causes the disorder dispersal on the Graphene sur-
face to make chelating complex then immersed inside PEG matrix. 
Thus there were created many active sites were, which accelerated 
the reaction (reducing both reaction time and heating rate of the 
cracking process). Complete cracking was performed at 600°С in-
stead of 750°С without the catalyst additive. 

Conclusion 
Organic and inorganic nanocomposite materials play important 
roles in modern life. For example, nanoparticles or nanowires are 
mostly used in biological sensors to magnify their applications 
through nanowire electrical conductivity, electronic configuration, 
or modified way of nature. Nanoparticle complexes interact with 
matter. In that paper we reach out to create a novel composite that 
will be future applicable, that composite has been evaluated and 
estimated using different characterization to get desirable picking 
chap [50].
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