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Abstract
The purpose of the investigation is to analyze the effect of fin length and position in terms of rotational angle on heat transmission 
and entropy generation. Different parameters such as Prandtl numbers, Hartmann numbers, Rayleigh numbers, and particle volume 
fractions are used to analyze nanofluid laminar flow behavior and temperature distribution. The fin has a significant impact on 
both the isotherm and the streamlines. Findings revealed that increasing the rotational angle of a spinning heat exchanger might 
result in more consistent temperature distribution along isotherms; larger fins, on the other hand, frequently provide greater heat 
dissipation due to increased surface area. Furthermore, when Rayleigh numbers increase, so does the temperature distribution 
between the fins and the surrounding fluid. The presence of a magnetic field affects fluid dynamics and contributes to the generation 
of entropy. Higher Prandtl numbers can result in the enhancement heat transfer phenomena and the generation of entropy.
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I. Introduction
TinyML1 community, started in 2019, quickly became a fast-
growing field of machine learning (ML) technologies and 
applications. It includes hardware, algorithms, end to end 
workflows and software capable of performing on-device sensor 
data analytics at extremely low power, typically in the mW range 
and below, and hence enabling a variety of always-on use-cases 
and targeting battery operated devices.

More and more practical applications were developed till nowadays 
with extensive adoption of ML models for operation in resource 
constrained context, such as the one defined by the TinyML 
community. However, a hand-crafted approach to the development 
of these applications is challenged by the need to increase the level 
of automation, productivity, and interoperability.
Focused on providing ground-breaking contributions to these 
needs, the Neuton.ai team has developed a fully automated 
toolchain to devise proprietary neural network (NN) architectures 

designed specifically for TinyML applications. Such a toolchain 
provides the grounds for productive and widespread adoption 
of intelligence on ultra-tiny edge processors, starting from the 
availability of a dataset. Such a model featuring a limited number 
of parameters makes it possible to inference the automatically 
devised model directly on the sensor. This paper refers to the latter 
as integrating in its package ML computing capabilities limiting 
or without having to rely on the host processors (e.g., such as a 
micro-controller MCU or multi-processor unit MPU).

 It's widely known that impressive developments had been 
achieved by the ML community with hand crafted NN models, 
however their extensive application in the upmost resource 
constrained devices is limited due to the nature of their underlying 
topologies and associated model sizes, specifically the fact, that an 
architecture of a conventional NN is predefined before the actual 
training process take place. Whether it will turn out to be accurate 
or not, its model footprint is already known at design time. This 
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requires several time-consuming iterations between model design 
and accuracy characterization before a deployable ML solution 
could be signed-off and embedded on a tiny device.

Quite differently, Neuton.ai workflow will automatically grow 
an ML topology starting from a single neuron. Through constant 
cross-validation, Neuton.ai tool automatically decides if additional 
nodes shall be added to the NN model during training. This allows 
the ML engineers to automatically build an optimal model with 
a single iteration (without adopting complex Neural Architecture 
Search (NAS) approaches) with each node providing upmost value 
for predicting the outcome.

The proposed Neuton.ai approach allows to train NNs without 
starting from a pre-cooked NN topology and thus without 
requiring either NAS or multi-year ML engineering know-how 
and experiences. Resulting models do not require compression 
and are on average an order of magnitude smaller in model size 
compared to hand-crafted NN models built with popular deep 
learning frameworks. Contrary to this traditional approach requires 
a machine learning engineer to define various neural network 
architectures, sets of hyperparameters and iterate over these 
settings with multiple runs. When a satisfactory result is achieved, 
final model undergoes compression procedures. After model 
compression additional validation is necessary to confirm that 
the model did not lose predictive power. Finally, the compressed 
model is ready to be deployed to the target edge device.

This significantly simplify the complexity to run experiments, 
increases the productivity, and make faster the time-to-market 
development of innovative solutions which enables developers of 
TinyML applications to: focus their best energy on creating break-
through applications and quickly test their application hypothesis 
to develop production-grade models at an unprecedented pace. 
The advantage in Neuton.ai generated NN’s footprint allows to 
inference the trained model directly using the very limited memory 
of single package sensor with built-in ML computing assets without 
having to utilize any resources of the host processor. This results 
in a significant energy efficiency (at µW level) because the host 
processor is woken up only if a more powerful task needs to be 
executed by leveraging its less limited assets in terms of memory 
and computational capabilities.

 Examining the achieved results by the challenge organized at 
the 2023 IEEE COINS conference, this paper encourages the 
Tiny ML engineers to continue research in NN architectures, 
their applications and optimization of inference workloads to let 
advance development of intelligence at the edge.
The paper is organized as follows: section II defines the problem 
behind the IEEE COINS challenge set among teams; section III 
introduces the case study; section IV provides an overview of the 
target hardware being used; section V provides an overview of the 
target software being used; section VI describes the protocol for 
data acquisition; section VII lists the competing teams; section 
VIII reports the results achieved by each competing team; section 

IX reports the final scores and discusses them; section X concludes 
the paper summarizing the essence of challenge.

II. Problem Definition
The core of the contest was to embed an advanced machine 
learning (ML) model (e.g., a neural network, NN) on the tiniest 
possible computing hardware, with reference to the ML built-in 
capabilities into the inertial (single package) sensor chip. 
To address this problem, STMicroelectronics (ST) in collaboration 
with Neuton.ai and IEEE COINS Conference chair, had organized 
a competition between applied teams and at the IEEE COINS 2023 
conference. 

This was meant to enable various engineers to compete among 
them in creating and proving that a ML model capable was able 
to recognize various human activities (HAR) by ingesting inertial 
sensor data and embedding the final NN model into the ST 6-axes 
inertia unit (IMU) sensor. The latter integrated an Intelligent Sensor 
Processing Unit (ISPU) with the following resource constraints:
1) Limited program memory (e.g. 32 KiB)
2) Limited data memory (e.g. 8 KiB)
3) Up to 10 MHz operating frequency 

 ST had provided sensor hardware and associated software 
while Neuton.ai provided access to its Automated Tiny ML 
creation and training Platform for data transformation and model 
training. Ultimately the teams were measured on if were able to 
take advantage of an end-to-end workflow that could make their 
operations more productive. If that could be proven by them, the 
main expectation of such a challenge would have been fulfilled at 
the sole benefit to the ML engineering community.

III. Case-Study Overview
The case study targeted the capability of recognizing various HAR 
by acquiring raw inertial sensor data and making them available to 
the inference running on the sensor.
The competing teams were required to identify several classes 
(known as activities). The number of them a single NN model 
had to recognize impacted the final teams’ score. The higher the 
number of classes & classification accuracy was – the higher the 
score was.
Teams were required to collect enough data representing each 
activity. The number and variability of subjects taking part in data 
collection had to be enough for creating diverse samples out of 
training data statistic to test model capability to generalize. 

The activities included Walking, Jumping, Exercises, Manual 
equipment operation, Daily routines, etc. Result assessment had 
been carried out by an ad-hoc committee set at IEEE COINS 2023 
conference and including representatives from ST and Neuton.ai. 
Final score was based on the following criteria:
1. Number of recognized classes (NCn)
2. Hold-out balanced accuracy (Ah)
3. Sensor inference latency (Ln)
4. Sensor data RAM occupation (Mdn)
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5. Sensor program RAM occupation (Mpn)
6. Realtime demo (RT)
The total score was defined in eq (1) as per the following criteria:
• Number of recognized classes (NCn)
• Neuton holdout balanced accuracy (Ah)
• ISPU inference latency (Ln)
• ISPU data RAM occupation (Mdn)
• ISPU program RAM occupation (Mpn)
• Realtime demo (RT)
Score = (200*NCn) + (100*Ah) + (80*Ln) + (100*Mdn) + 
(50*Mpn) + (100*RT) (eq. 1)

III. Hardware Overview
The hardware which was required to perform the challenge was 
composed of the following components:

• Nucleo STM32L476RG development board [1]
• X-NUCLEO-IKS01A3 sensor expansion board [2]
• STEVAL-MKI230KA adapter board of IMU sensor with 
embedded ISPU [3]
 The recommended sensors settings were defined as follows:
• Accelerometer: 8 g
• Gyroscope: 2000 dps
• Sampling rate: 25-100 Hz
The competing teams were free to experiment with various sensor 
settings and were expected to choose the appropriate ones based 
on the types of activities they were training to recognize. Figure 1 
and 2 depict the required sensor carry position to support the data 
acquisitions and inference.
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Fig 2. Example of sensor and development boards carry positions. 

V. SOFTWARE REQUIRED  

     To support the data collection X-CUBE-ISPU expansion 
software package for STM32Cube was used for flushing the 
STM32 MCU with ISPU Data Collection firmware [4]. 
Moreover the Unicleo-GUI graphical user interface was 
adopted for sensor setup and data collection [5]. 

     Neuton.ai platform [6] was used for data transformation, 
extraction of features from raw sensor datasets as well as 
model training and code generation to be compiled onto 
ISPU. The ML process was fully automated; the user was 
required to set up appropriate configurations for feature 
extraction pipeline, the remaining was handled by 
automated model training engine. Exemplary snaphosts of 
the tool used in different phases are shown in figures 3, 4, 5. 

VI. DATA COLLECTION PROTOCOL 

A. General recommendations 
Data collection procedure required the highest amount of 

effort and time. If performed wrongly, it could result in poor 
model quality. The teams were required to make sure to 
collect all the data with caution and accuracy. The following 
sections provided all the necessary guidelines to be carefully 
followed. 

B. Data volume  
For the proof-of-concept it was enough to collect data 

from a single person: 2-5 minutes of signal data for each 
activity. For a more robust model that was meant to be able 
to generalize more on the general population (who’s data had 
not been used for model training), it was required to collect 
data from several users: 3-5 people. A production grade 
model required from dozens to hundreds of unique users, 
depending on the classified activity and the number of 
classes. 
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Figure 1: Sensor orientation

Figure 2: Example of sensor and development boards carry positions.

V. Software Required
To support the data collection X-CUBE-ISPU expansion software 
package for STM32Cube was used for flushing the STM32 MCU 
with ISPU Data Collection firmware [4]. Moreover the Unicleo-
GUI graphical user interface was adopted for sensor setup and data 
collection [5].

 Neuton.ai platform [6] was used for data transformation, extraction 
of features from raw sensor datasets as well as model training 
and code generation to be compiled onto ISPU. The ML process 
was fully automated; the user was required to set up appropriate 
configurations for feature extraction pipeline, the remaining was 
handled by automated model training engine. Exemplary snaphosts 
of the tool used in different phases are shown in figures 3, 4, 5.

VI. Data Collection Protocol
A. General recommendations
Data collection procedure required the highest amount of effort 
and time. If performed wrongly, it could result in poor model 
quality. The teams were required to make sure to collect all the 
data with caution and accuracy. The following sections provided 
all the necessary guidelines to be carefully followed.
B. Data volume 
For the proof-of-concept it was enough to collect data from a 
single person: 2-5 minutes of signal data for each activity. For a 
more robust model that was meant to be able to generalize more 
on the general population (who’s data had not been used for 
model training), it was required to collect data from several users: 
3-5 people. A production grade model required from dozens to 
hundreds of unique users, depending on the classified activity and 
the number of classes.
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Figure 3: Signal processing options
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Figure 4: Feature extraction options
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Fig 5. Final model archive example (downloaded from Neuton.ai after 
model was trained) 

C. Data volume  
For the proof-of-concept it was enough to collect data 

from a single person: 2-5 minutes of signal data for each 
activity. For a more robust model that was meant to be able 
to generalize more on the general population (who’s data had 
not been used for model training), it was required to collect 
data from several users: 3-5 people. A production grade 
model required from dozens to hundreds of unique users, 
depending on the classified activity and the number of 
classes. 

D. Data variability 
It is advised to collect data for each activity in more than 

one session, preferably within two separate days, so that 
there will be slight differences in the collected data for each 
activity. When collecting data for same activity with multiple 
sessions, the teams had to make sure to label the files 
accordingly, so that the activity name and session number 
could later be extracted from the file name. 

E. Classes balance 
It was required to have a similar amount of training 

samples for each activity. For example, if a team had 5 
activities and decided to collect 2 sessions for each activity 2 
minutes each – the overall data then included 20 minutes of 
sensor readings with balanced number of each class. 

F. Idle/unknown class  
Regardless of the number of classes the teams were 

required to predict, the training data had to be examples of 
unknown activities. A NN inference, when the subject was 
doing anything else other than the classes trained, shall 
predict the ‘unknown’ class. 

G. Applicable sensors 
Typical human activities were best represented by 

accelerometer & gyroscope data. Even if no team anticipated 
the need of the gyro data, it was required to collect it anyway 
and discharge it later (if not needed). This is because if the 

model trained on accelerometer-only data achieved poor 
results, the team had the option to include the gyro data for 
new training iterations. From this point of view, it was clear 
that data collection was the most time-consuming task of the 
challenge. 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Example of data collection errors. X-axis – sensor readings 
sequential index, Y-axis – sensor readings values, legend colors represent 
three axis of accelerometer and three axis of gyroscope 

 

H. Data collection errors handling 
Irrelevant sensor readings (for example when the team 

had started recording but did not start the actual activity yet) 
could corrupt the training data and were removed from the 
collected data afterwards. Fig 6 demonstrates an example 
where part of collected sensors data has a gap which could be 
reasoned by the subject pausing activities without stopping 
the data collection process. 

VII. TEAMS’ OVERVIEW 
3 teams competed on the IEEE COINS 2023 contest and 
where from India, Tunisia, and Italy. 

VIII. TEAMS’ ACHIEVEMENTS  

A. Team 1 (Table 1) 
 

Table 1: number of predicted classes and class names for team 1 

Predicted classes were 11 
At rest standing Combing hair 
At rest sitting Table cleaning 
Washing hands Eating with spoon 
Brushing teeth Cleaning white board 
Shaving Typing 
Writing  
 
Signal interpretation window: 128 samples 
Model accuracy: Balanced accuracy: 0.896104 
Model memory required:  

Data RAM: 4,580 bytes;  
Program RAM: 26,860 bytes. 

Inference latency: 133 ms 
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C. Data volume 
For the proof-of-concept it was enough to collect data from a 
single person: 2-5 minutes of signal data for each activity. For a 
more robust model that was meant to be able to generalize more 
on the general population (who’s data had not been used for 
model training), it was required to collect data from several users: 
3-5 people. A production grade model required from dozens to 
hundreds of unique users, depending on the classified activity and 
the number of classes.
D. Data variability
It is advised to collect data for each activity in more than one 
session, preferably within two separate days, so that there will 
be slight differences in the collected data for each activity. When 
collecting data for same activity with multiple sessions, the teams 
had to make sure to label the files accordingly, so that the activity 
name and session number could later be extracted from the file 

name.
E. Classes balance
It was required to have a similar amount of training samples for 
each activity. For example, if a team had 5 activities and decided 
to collect 2 sessions for each activity 2 minutes each – the overall 
data then included 20 minutes of sensor readings with balanced 
number of each class.
F. Idle/unknown class 
Regardless of the number of classes the teams were required to 
predict, the training data had to be examples of unknown activities. 
A NN inference, when the subject was doing anything else other 
than the classes trained, shall predict the ‘unknown’ class.
G. Applicable sensors
Typical human activities were best represented by accelerometer 
& gyroscope data. Even if no team anticipated the need of the gyro 
data, it was required to collect it anyway and discharge it later (if 
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not needed). This is because if the model trained on accelerometer-
only data achieved poor results, the team had the option to include 
the gyro data for new training iterations. From this point of view, 

it was clear that data collection was the most time-consuming task 
of the challenge.
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sequential index, Y-axis – sensor readings values, legend colors represent 
three axis of accelerometer and three axis of gyroscope 

 

H. Data collection errors handling 
Irrelevant sensor readings (for example when the team 

had started recording but did not start the actual activity yet) 
could corrupt the training data and were removed from the 
collected data afterwards. Fig 6 demonstrates an example 
where part of collected sensors data has a gap which could be 
reasoned by the subject pausing activities without stopping 
the data collection process. 

VII. TEAMS’ OVERVIEW 
3 teams competed on the IEEE COINS 2023 contest and 
where from India, Tunisia, and Italy. 

VIII. TEAMS’ ACHIEVEMENTS  

A. Team 1 (Table 1) 
 

Table 1: number of predicted classes and class names for team 1 

Predicted classes were 11 
At rest standing Combing hair 
At rest sitting Table cleaning 
Washing hands Eating with spoon 
Brushing teeth Cleaning white board 
Shaving Typing 
Writing  
 
Signal interpretation window: 128 samples 
Model accuracy: Balanced accuracy: 0.896104 
Model memory required:  

Data RAM: 4,580 bytes;  
Program RAM: 26,860 bytes. 

Inference latency: 133 ms 
 

Formatted: English (U.S.)

Figure 6: Example of data collection errors. X-axis – sensor readings sequential index, Y-axis – sensor readings values, legend colors 
represent three axis of accelerometer and three axis of gyroscope

A. Data Collection Errors Handling
Irrelevant sensor readings (for example when the team had started 
recording but did not start the actual activity yet) could corrupt the 
training data and were removed from the collected data afterwards. 
Fig 6 demonstrates an example where part of collected sensors 
data has a gap which could be reasoned by the subject pausing 

activities without stopping the data collection process.

VI. Teams’ Overview
3 teams competed on the IEEE COINS 2023 contest and where 
from India, Tunisia, and Italy.

VII. Teams’ Achievements

Predicted classes were 11
At rest standing Combing hair
At rest sitting Table cleaning
Washing hands Eating with spoon
Brushing teeth Cleaning white board
Shaving Typing
Writing

Table 1: number of predicted classes and class names for team 1

Signal interpretation window: 128 samples
Model accuracy: Balanced accuracy: 0.896104
Model memory required: 
Data RAM: 4,580 bytes; 
Program RAM: 26,860 bytes.
Inference latency: 133 ms 

Predicted classes were 24
Shoveling Handshake Shaving with razor
Writing on board Hand still Washing face
Bolting a bolt Jogging Washing hands
Brushing hair Using mouse/keyboard Operating a wheelchair
Clapping Punching a boxing bag Wiping a table
Cutting vegetables Roping Wiping a board
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Making dough Cutting with saw Writing on paper
Hammering nails Using screwdriver Unclassified class

Table 2: number of predicted classes and class names for team 2

Signal interpretation window: 40 samples
Model accuracy: Balanced accuracy: 0.814272
Model memory required: 
Data RAM: 2,012 bytes, 
Program RAM: 17,492 bytes.
Inference latency: 152 ms.

Predicted classes were 21
Still Chest fly Dips
Walking Pull ups Triceps pushdown
Running Lats pulldown French press
Biking Pulley Shoulder warm-up
Rope jumping Squats Shoulder press
Push ups Bicep curl Shoulder lateral raises
Chest press Hammer curl Abs crunches

Table 3: number of predicted classes and class names for team 3
Signal interpretation window: 52 samples
Model accuracy: Balanced accuracy: 0.931678
Model memory required: 
Data RAM: 1,840 bytes, 
Program RAM: 12,532 bytes.
Inference latency: 21 ms.

The Team 2 and Team 3 models (as shown in table 2 and 3) were 
trained to predict more than 20 classes, and capable of achieving 
smaller memory footprint compared to the solution of Team 1 
model (which was trained to predict 11 classes as reported in table 
1).

IX. Final Scores and Discussions
As shown in table 4, Team 2 and Team 3 achieved very similar 
final scores. Team 2 won the challenge by a small margin of 7 
points.

Teams’ scores
Team name Score calculation formulae Total score

Team 1 (200 * 0.43) + (100 * 0.9) + (80 * 0.0) + 
(100 * 0.45) + (50 * 0.19) + (100 * 0.4)

271

Team 2 (200 * 1.0) + (100 * 0.81) + (80 * 0.0) + 
(100 * 0.76) + (50 * 0.48) + (100 * 1.0)

482

Team 3 (200 * 0.87) + (100 * 0.93) + (80 * 0.47) + 
(100 * 0.78) + (50 * 0.64) + (100 * 0.6)

475

Table 4

Team 2 produced the most robust NN model which could 
accurately identify 24 classes of very diversified activities blended 
in a single NN model. It had been operating on the sensor built-
in ML computing capabilities. The model had demonstrated high 
resilience to false positive predictions with consistent output 
of ‘Unclassified’ class prediction when the subject had been 
transitioning between activities.

X. Conclusions
This challenge was organized several months before the IEEE 
COINS 2023 conference in coordination with the conference 
chair, ST and Neuton.ai. It demonstrated that Tiny ML models 
were successfully deployed at the ‘cutting-edge’ level into the 
ISPU sensor. In addition, it revealed that the featured tools & 
technologies allow beginners engineers to device sophisticated 
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Tiny ML applications without having to write a single line of code. 
This opened a new perspective in terms of productivity for study 
and development of practical ML applications with previously 
unmatched power efficiency. Moreover, it has been proven that if 
more efforts are devoted into the creation phase of a project, its 
execution can be accelerated and guided by less expert engineers. 
This will help the process to widespread ML application at the 
deep edge with unprecedented productivity at a large scale.
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