
Volume 1 | Issue 4 | 236Eng OA, 2023

IEEE COINS 2023 Contest for In Sensor Machine Learning Computing
Research Article

Andrey Korobitsyn1, Danil Zherebtsov2*, Danilo Pau3, Marco Bianco4, Dmitriy Proshin5

1Neuton.ai San Jose, CA, USA

2Principal AI engineer, Neuton.ai Dubai, UAE

3System Research and Applications STMicroelectronics Agrate
Brianza, Italy

4MEMs Product Group STMicroelectronics Cornaredo, Italy

5Head of Machine Learning Neuton.ai Dubai, UAE

*Corresponding Author
Danil Zherebtsov, Principal AI engineer, Neuton.ai Dubai, UAE.

Submitted: 2023, Nov 01; Accepted: 2023, Dec 18; Published: 2023, Dec 20

Citation: Korobitsyn, A., Zherebtsov, D., Pau, D., Bianco, M., Proshin, D. (2023). IEEE COINS 2023 Contest for In
Sensor Machine Learning Computing. Eng OA, 1(4), 236-242.

Abstract
The purpose of the investigation is to analyze the effect of fin length and position in terms of rotational angle on heat transmission
and entropy generation. Different parameters such as Prandtl numbers, Hartmann numbers, Rayleigh numbers, and particle volume
fractions are used to analyze nanofluid laminar flow behavior and temperature distribution. The fin has a significant impact on
both the isotherm and the streamlines. Findings revealed that increasing the rotational angle of a spinning heat exchanger might
result in more consistent temperature distribution along isotherms; larger fins, on the other hand, frequently provide greater heat
dissipation due to increased surface area. Furthermore, when Rayleigh numbers increase, so does the temperature distribution
between the fins and the surrounding fluid. The presence of a magnetic field affects fluid dynamics and contributes to the generation
of entropy. Higher Prandtl numbers can result in the enhancement heat transfer phenomena and the generation of entropy.

Engineering: Open Access
ISSN: 2993-8643

Keywords: machine learning, intelligent sensor processing unit, neuton.ai, micro-controllers, neural network, digital signal processing,
footprint, human activity recognition.

I. Introduction
TinyML1 community, started in 2019, quickly became a fast-
growing field of machine learning (ML) technologies and
applications. It includes hardware, algorithms, end to end
workflows and software capable of performing on-device sensor
data analytics at extremely low power, typically in the mW range
and below, and hence enabling a variety of always-on use-cases
and targeting battery operated devices.

More and more practical applications were developed till nowadays
with extensive adoption of ML models for operation in resource
constrained context, such as the one defined by the TinyML
community. However, a hand-crafted approach to the development
of these applications is challenged by the need to increase the level
of automation, productivity, and interoperability.
Focused on providing ground-breaking contributions to these
needs, the Neuton.ai team has developed a fully automated
toolchain to devise proprietary neural network (NN) architectures

designed specifically for TinyML applications. Such a toolchain
provides the grounds for productive and widespread adoption
of intelligence on ultra-tiny edge processors, starting from the
availability of a dataset. Such a model featuring a limited number
of parameters makes it possible to inference the automatically
devised model directly on the sensor. This paper refers to the latter
as integrating in its package ML computing capabilities limiting
or without having to rely on the host processors (e.g., such as a
micro-controller MCU or multi-processor unit MPU).

 It's widely known that impressive developments had been
achieved by the ML community with hand crafted NN models,
however their extensive application in the upmost resource
constrained devices is limited due to the nature of their underlying
topologies and associated model sizes, specifically the fact, that an
architecture of a conventional NN is predefined before the actual
training process take place. Whether it will turn out to be accurate
or not, its model footprint is already known at design time. This

Volume 1 | Issue 4 | 237Eng OA, 2023

requires several time-consuming iterations between model design
and accuracy characterization before a deployable ML solution
could be signed-off and embedded on a tiny device.

Quite differently, Neuton.ai workflow will automatically grow
an ML topology starting from a single neuron. Through constant
cross-validation, Neuton.ai tool automatically decides if additional
nodes shall be added to the NN model during training. This allows
the ML engineers to automatically build an optimal model with
a single iteration (without adopting complex Neural Architecture
Search (NAS) approaches) with each node providing upmost value
for predicting the outcome.

The proposed Neuton.ai approach allows to train NNs without
starting from a pre-cooked NN topology and thus without
requiring either NAS or multi-year ML engineering know-how
and experiences. Resulting models do not require compression
and are on average an order of magnitude smaller in model size
compared to hand-crafted NN models built with popular deep
learning frameworks. Contrary to this traditional approach requires
a machine learning engineer to define various neural network
architectures, sets of hyperparameters and iterate over these
settings with multiple runs. When a satisfactory result is achieved,
final model undergoes compression procedures. After model
compression additional validation is necessary to confirm that
the model did not lose predictive power. Finally, the compressed
model is ready to be deployed to the target edge device.

This significantly simplify the complexity to run experiments,
increases the productivity, and make faster the time-to-market
development of innovative solutions which enables developers of
TinyML applications to: focus their best energy on creating break-
through applications and quickly test their application hypothesis
to develop production-grade models at an unprecedented pace.
The advantage in Neuton.ai generated NN’s footprint allows to
inference the trained model directly using the very limited memory
of single package sensor with built-in ML computing assets without
having to utilize any resources of the host processor. This results
in a significant energy efficiency (at µW level) because the host
processor is woken up only if a more powerful task needs to be
executed by leveraging its less limited assets in terms of memory
and computational capabilities.

 Examining the achieved results by the challenge organized at
the 2023 IEEE COINS conference, this paper encourages the
Tiny ML engineers to continue research in NN architectures,
their applications and optimization of inference workloads to let
advance development of intelligence at the edge.
The paper is organized as follows: section II defines the problem
behind the IEEE COINS challenge set among teams; section III
introduces the case study; section IV provides an overview of the
target hardware being used; section V provides an overview of the
target software being used; section VI describes the protocol for
data acquisition; section VII lists the competing teams; section
VIII reports the results achieved by each competing team; section

IX reports the final scores and discusses them; section X concludes
the paper summarizing the essence of challenge.

II. Problem Definition
The core of the contest was to embed an advanced machine
learning (ML) model (e.g., a neural network, NN) on the tiniest
possible computing hardware, with reference to the ML built-in
capabilities into the inertial (single package) sensor chip.
To address this problem, STMicroelectronics (ST) in collaboration
with Neuton.ai and IEEE COINS Conference chair, had organized
a competition between applied teams and at the IEEE COINS 2023
conference.

This was meant to enable various engineers to compete among
them in creating and proving that a ML model capable was able
to recognize various human activities (HAR) by ingesting inertial
sensor data and embedding the final NN model into the ST 6-axes
inertia unit (IMU) sensor. The latter integrated an Intelligent Sensor
Processing Unit (ISPU) with the following resource constraints:
1) Limited program memory (e.g. 32 KiB)
2) Limited data memory (e.g. 8 KiB)
3) Up to 10 MHz operating frequency

 ST had provided sensor hardware and associated software
while Neuton.ai provided access to its Automated Tiny ML
creation and training Platform for data transformation and model
training. Ultimately the teams were measured on if were able to
take advantage of an end-to-end workflow that could make their
operations more productive. If that could be proven by them, the
main expectation of such a challenge would have been fulfilled at
the sole benefit to the ML engineering community.

III. Case-Study Overview
The case study targeted the capability of recognizing various HAR
by acquiring raw inertial sensor data and making them available to
the inference running on the sensor.
The competing teams were required to identify several classes
(known as activities). The number of them a single NN model
had to recognize impacted the final teams’ score. The higher the
number of classes & classification accuracy was – the higher the
score was.
Teams were required to collect enough data representing each
activity. The number and variability of subjects taking part in data
collection had to be enough for creating diverse samples out of
training data statistic to test model capability to generalize.

The activities included Walking, Jumping, Exercises, Manual
equipment operation, Daily routines, etc. Result assessment had
been carried out by an ad-hoc committee set at IEEE COINS 2023
conference and including representatives from ST and Neuton.ai.
Final score was based on the following criteria:
1. Number of recognized classes (NCn)
2. Hold-out balanced accuracy (Ah)
3. Sensor inference latency (Ln)
4. Sensor data RAM occupation (Mdn)

Volume 1 | Issue 4 | 238Eng OA, 2023

5. Sensor program RAM occupation (Mpn)
6. Realtime demo (RT)
The total score was defined in eq (1) as per the following criteria:
• Number of recognized classes (NCn)
• Neuton holdout balanced accuracy (Ah)
• ISPU inference latency (Ln)
• ISPU data RAM occupation (Mdn)
• ISPU program RAM occupation (Mpn)
• Realtime demo (RT)
Score = (200*NCn) + (100*Ah) + (80*Ln) + (100*Mdn) +
(50*Mpn) + (100*RT) (eq. 1)

III. Hardware Overview
The hardware which was required to perform the challenge was
composed of the following components:

• Nucleo STM32L476RG development board [1]
• X-NUCLEO-IKS01A3 sensor expansion board [2]
• STEVAL-MKI230KA adapter board of IMU sensor with
embedded ISPU [3]
 The recommended sensors settings were defined as follows:
• Accelerometer: 8 g
• Gyroscope: 2000 dps
• Sampling rate: 25-100 Hz
The competing teams were free to experiment with various sensor
settings and were expected to choose the appropriate ones based
on the types of activities they were training to recognize. Figure 1
and 2 depict the required sensor carry position to support the data
acquisitions and inference.

• ISPU program RAM occupation (Mpn)

• Realtime demo (RT)

Score = (200*NCn) + (100*Ah) + (80*Ln) + (100*Mdn) +
(50*Mpn) + (100*RT) (eq. 1)

IV. HARDWARE OVERVIEW
 The hardware which was required to perform the
challenge was composed of the following components:
 Nucleo STM32L476RG development board [1]

 X-NUCLEO-IKS01A3 sensor expansion board [2]

 STEVAL-MKI230KA adapter board of IMU sensor with
embedded ISPU [3]

 The recommended sensors settings were defined as
follows:
 Accelerometer: 8 g

 Gyroscope: 2000 dps

 Sampling rate: 25-100 Hz

The competing teams were free to experiment with
various sensor settings and were expected to choose the
appropriate ones based on the types of activities they were
training to recognize. Figure 1 and 2 depict the required
sensor carry position to support the data acquisitions and
inference.

Fig 1. Sensor orientation

Fig 2. Example of sensor and development boards carry positions.

V. SOFTWARE REQUIRED

 To support the data collection X-CUBE-ISPU expansion
software package for STM32Cube was used for flushing the
STM32 MCU with ISPU Data Collection firmware [4].
Moreover the Unicleo-GUI graphical user interface was
adopted for sensor setup and data collection [5].

 Neuton.ai platform [6] was used for data transformation,
extraction of features from raw sensor datasets as well as
model training and code generation to be compiled onto
ISPU. The ML process was fully automated; the user was
required to set up appropriate configurations for feature
extraction pipeline, the remaining was handled by
automated model training engine. Exemplary snaphosts of
the tool used in different phases are shown in figures 3, 4, 5.

VI. DATA COLLECTION PROTOCOL

A. General recommendations
Data collection procedure required the highest amount of

effort and time. If performed wrongly, it could result in poor
model quality. The teams were required to make sure to
collect all the data with caution and accuracy. The following
sections provided all the necessary guidelines to be carefully
followed.

B. Data volume
For the proof-of-concept it was enough to collect data

from a single person: 2-5 minutes of signal data for each
activity. For a more robust model that was meant to be able
to generalize more on the general population (who’s data had
not been used for model training), it was required to collect
data from several users: 3-5 people. A production grade
model required from dozens to hundreds of unique users,
depending on the classified activity and the number of
classes.

Fig 3. Signal processing options

Formatted: Bulleted + Level: 1 +
Aligned at: 0.63 cm + Tab after: 1.27
cm + Indent at: 1.27 cm

Formatted: (none)

• ISPU program RAM occupation (Mpn)

• Realtime demo (RT)

Score = (200*NCn) + (100*Ah) + (80*Ln) + (100*Mdn) +
(50*Mpn) + (100*RT) (eq. 1)

IV. HARDWARE OVERVIEW
 The hardware which was required to perform the
challenge was composed of the following components:
 Nucleo STM32L476RG development board [1]

 X-NUCLEO-IKS01A3 sensor expansion board [2]

 STEVAL-MKI230KA adapter board of IMU sensor with
embedded ISPU [3]

 The recommended sensors settings were defined as
follows:
 Accelerometer: 8 g

 Gyroscope: 2000 dps

 Sampling rate: 25-100 Hz

The competing teams were free to experiment with
various sensor settings and were expected to choose the
appropriate ones based on the types of activities they were
training to recognize. Figure 1 and 2 depict the required
sensor carry position to support the data acquisitions and
inference.

Fig 1. Sensor orientation

Fig 2. Example of sensor and development boards carry positions.

V. SOFTWARE REQUIRED

 To support the data collection X-CUBE-ISPU expansion
software package for STM32Cube was used for flushing the
STM32 MCU with ISPU Data Collection firmware [4].
Moreover the Unicleo-GUI graphical user interface was
adopted for sensor setup and data collection [5].

 Neuton.ai platform [6] was used for data transformation,
extraction of features from raw sensor datasets as well as
model training and code generation to be compiled onto
ISPU. The ML process was fully automated; the user was
required to set up appropriate configurations for feature
extraction pipeline, the remaining was handled by
automated model training engine. Exemplary snaphosts of
the tool used in different phases are shown in figures 3, 4, 5.

VI. DATA COLLECTION PROTOCOL

A. General recommendations
Data collection procedure required the highest amount of

effort and time. If performed wrongly, it could result in poor
model quality. The teams were required to make sure to
collect all the data with caution and accuracy. The following
sections provided all the necessary guidelines to be carefully
followed.

B. Data volume
For the proof-of-concept it was enough to collect data

from a single person: 2-5 minutes of signal data for each
activity. For a more robust model that was meant to be able
to generalize more on the general population (who’s data had
not been used for model training), it was required to collect
data from several users: 3-5 people. A production grade
model required from dozens to hundreds of unique users,
depending on the classified activity and the number of
classes.

Fig 3. Signal processing options

Formatted: Bulleted + Level: 1 +
Aligned at: 0.63 cm + Tab after: 1.27
cm + Indent at: 1.27 cm

Formatted: (none)

Figure 1: Sensor orientation

Figure 2: Example of sensor and development boards carry positions.

V. Software Required
To support the data collection X-CUBE-ISPU expansion software
package for STM32Cube was used for flushing the STM32 MCU
with ISPU Data Collection firmware [4]. Moreover the Unicleo-
GUI graphical user interface was adopted for sensor setup and data
collection [5].

 Neuton.ai platform [6] was used for data transformation, extraction
of features from raw sensor datasets as well as model training
and code generation to be compiled onto ISPU. The ML process
was fully automated; the user was required to set up appropriate
configurations for feature extraction pipeline, the remaining was
handled by automated model training engine. Exemplary snaphosts
of the tool used in different phases are shown in figures 3, 4, 5.

VI. Data Collection Protocol
A. General recommendations
Data collection procedure required the highest amount of effort
and time. If performed wrongly, it could result in poor model
quality. The teams were required to make sure to collect all the
data with caution and accuracy. The following sections provided
all the necessary guidelines to be carefully followed.
B. Data volume
For the proof-of-concept it was enough to collect data from a
single person: 2-5 minutes of signal data for each activity. For a
more robust model that was meant to be able to generalize more
on the general population (who’s data had not been used for
model training), it was required to collect data from several users:
3-5 people. A production grade model required from dozens to
hundreds of unique users, depending on the classified activity and
the number of classes.

Volume 1 | Issue 4 | 239Eng OA, 2023

Figure 3: Signal processing options

• ISPU program RAM occupation (Mpn)

• Realtime demo (RT)

Score = (200*NCn) + (100*Ah) + (80*Ln) + (100*Mdn) +
(50*Mpn) + (100*RT) (eq. 1)

IV. HARDWARE OVERVIEW
 The hardware which was required to perform the
challenge was composed of the following components:
 Nucleo STM32L476RG development board [1]

 X-NUCLEO-IKS01A3 sensor expansion board [2]

 STEVAL-MKI230KA adapter board of IMU sensor with
embedded ISPU [3]

 The recommended sensors settings were defined as
follows:
 Accelerometer: 8 g

 Gyroscope: 2000 dps

 Sampling rate: 25-100 Hz

The competing teams were free to experiment with
various sensor settings and were expected to choose the
appropriate ones based on the types of activities they were
training to recognize. Figure 1 and 2 depict the required
sensor carry position to support the data acquisitions and
inference.

Fig 1. Sensor orientation

Fig 2. Example of sensor and development boards carry positions.

V. SOFTWARE REQUIRED

 To support the data collection X-CUBE-ISPU expansion
software package for STM32Cube was used for flushing the
STM32 MCU with ISPU Data Collection firmware [4].
Moreover the Unicleo-GUI graphical user interface was
adopted for sensor setup and data collection [5].

 Neuton.ai platform [6] was used for data transformation,
extraction of features from raw sensor datasets as well as
model training and code generation to be compiled onto
ISPU. The ML process was fully automated; the user was
required to set up appropriate configurations for feature
extraction pipeline, the remaining was handled by
automated model training engine. Exemplary snaphosts of
the tool used in different phases are shown in figures 3, 4, 5.

VI. DATA COLLECTION PROTOCOL

A. General recommendations
Data collection procedure required the highest amount of

effort and time. If performed wrongly, it could result in poor
model quality. The teams were required to make sure to
collect all the data with caution and accuracy. The following
sections provided all the necessary guidelines to be carefully
followed.

B. Data volume
For the proof-of-concept it was enough to collect data

from a single person: 2-5 minutes of signal data for each
activity. For a more robust model that was meant to be able
to generalize more on the general population (who’s data had
not been used for model training), it was required to collect
data from several users: 3-5 people. A production grade
model required from dozens to hundreds of unique users,
depending on the classified activity and the number of
classes.

Fig 3. Signal processing options

Formatted: Bulleted + Level: 1 +
Aligned at: 0.63 cm + Tab after: 1.27
cm + Indent at: 1.27 cm

Formatted: (none)

• ISPU program RAM occupation (Mpn)

• Realtime demo (RT)

Score = (200*NCn) + (100*Ah) + (80*Ln) + (100*Mdn) +
(50*Mpn) + (100*RT) (eq. 1)

IV. HARDWARE OVERVIEW
 The hardware which was required to perform the
challenge was composed of the following components:
 Nucleo STM32L476RG development board [1]

 X-NUCLEO-IKS01A3 sensor expansion board [2]

 STEVAL-MKI230KA adapter board of IMU sensor with
embedded ISPU [3]

 The recommended sensors settings were defined as
follows:
 Accelerometer: 8 g

 Gyroscope: 2000 dps

 Sampling rate: 25-100 Hz

The competing teams were free to experiment with
various sensor settings and were expected to choose the
appropriate ones based on the types of activities they were
training to recognize. Figure 1 and 2 depict the required
sensor carry position to support the data acquisitions and
inference.

Fig 1. Sensor orientation

Fig 2. Example of sensor and development boards carry positions.

V. SOFTWARE REQUIRED

 To support the data collection X-CUBE-ISPU expansion
software package for STM32Cube was used for flushing the
STM32 MCU with ISPU Data Collection firmware [4].
Moreover the Unicleo-GUI graphical user interface was
adopted for sensor setup and data collection [5].

 Neuton.ai platform [6] was used for data transformation,
extraction of features from raw sensor datasets as well as
model training and code generation to be compiled onto
ISPU. The ML process was fully automated; the user was
required to set up appropriate configurations for feature
extraction pipeline, the remaining was handled by
automated model training engine. Exemplary snaphosts of
the tool used in different phases are shown in figures 3, 4, 5.

VI. DATA COLLECTION PROTOCOL

A. General recommendations
Data collection procedure required the highest amount of

effort and time. If performed wrongly, it could result in poor
model quality. The teams were required to make sure to
collect all the data with caution and accuracy. The following
sections provided all the necessary guidelines to be carefully
followed.

B. Data volume
For the proof-of-concept it was enough to collect data

from a single person: 2-5 minutes of signal data for each
activity. For a more robust model that was meant to be able
to generalize more on the general population (who’s data had
not been used for model training), it was required to collect
data from several users: 3-5 people. A production grade
model required from dozens to hundreds of unique users,
depending on the classified activity and the number of
classes.

Fig 3. Signal processing options

Formatted: Bulleted + Level: 1 +
Aligned at: 0.63 cm + Tab after: 1.27
cm + Indent at: 1.27 cm

Formatted: (none)

Figure 4: Feature extraction options

Fig 4. Feature extraction options

Fig 5. Final model archive example (downloaded from Neuton.ai after
model was trained)

C. Data volume
For the proof-of-concept it was enough to collect data

from a single person: 2-5 minutes of signal data for each
activity. For a more robust model that was meant to be able
to generalize more on the general population (who’s data had
not been used for model training), it was required to collect
data from several users: 3-5 people. A production grade
model required from dozens to hundreds of unique users,
depending on the classified activity and the number of
classes.

D. Data variability
It is advised to collect data for each activity in more than

one session, preferably within two separate days, so that
there will be slight differences in the collected data for each
activity. When collecting data for same activity with multiple
sessions, the teams had to make sure to label the files
accordingly, so that the activity name and session number
could later be extracted from the file name.

E. Classes balance
It was required to have a similar amount of training

samples for each activity. For example, if a team had 5
activities and decided to collect 2 sessions for each activity 2
minutes each – the overall data then included 20 minutes of
sensor readings with balanced number of each class.

F. Idle/unknown class
Regardless of the number of classes the teams were

required to predict, the training data had to be examples of
unknown activities. A NN inference, when the subject was
doing anything else other than the classes trained, shall
predict the ‘unknown’ class.

G. Applicable sensors
Typical human activities were best represented by

accelerometer & gyroscope data. Even if no team anticipated
the need of the gyro data, it was required to collect it anyway
and discharge it later (if not needed). This is because if the

model trained on accelerometer-only data achieved poor
results, the team had the option to include the gyro data for
new training iterations. From this point of view, it was clear
that data collection was the most time-consuming task of the
challenge.

Fig 6. Example of data collection errors. X-axis – sensor readings
sequential index, Y-axis – sensor readings values, legend colors represent
three axis of accelerometer and three axis of gyroscope

H. Data collection errors handling
Irrelevant sensor readings (for example when the team

had started recording but did not start the actual activity yet)
could corrupt the training data and were removed from the
collected data afterwards. Fig 6 demonstrates an example
where part of collected sensors data has a gap which could be
reasoned by the subject pausing activities without stopping
the data collection process.

VII. TEAMS’ OVERVIEW
3 teams competed on the IEEE COINS 2023 contest and
where from India, Tunisia, and Italy.

VIII. TEAMS’ ACHIEVEMENTS

A. Team 1 (Table 1)

Table 1: number of predicted classes and class names for team 1

Predicted classes were 11
At rest standing Combing hair
At rest sitting Table cleaning
Washing hands Eating with spoon
Brushing teeth Cleaning white board
Shaving Typing
Writing

Signal interpretation window: 128 samples
Model accuracy: Balanced accuracy: 0.896104
Model memory required:

Data RAM: 4,580 bytes;
Program RAM: 26,860 bytes.

Inference latency: 133 ms

Formatted: English (U.S.)

Figure 5: Final model archive example (downloaded from Neuton.ai after model was trained)

C. Data volume
For the proof-of-concept it was enough to collect data from a
single person: 2-5 minutes of signal data for each activity. For a
more robust model that was meant to be able to generalize more
on the general population (who’s data had not been used for
model training), it was required to collect data from several users:
3-5 people. A production grade model required from dozens to
hundreds of unique users, depending on the classified activity and
the number of classes.
D. Data variability
It is advised to collect data for each activity in more than one
session, preferably within two separate days, so that there will
be slight differences in the collected data for each activity. When
collecting data for same activity with multiple sessions, the teams
had to make sure to label the files accordingly, so that the activity
name and session number could later be extracted from the file

name.
E. Classes balance
It was required to have a similar amount of training samples for
each activity. For example, if a team had 5 activities and decided
to collect 2 sessions for each activity 2 minutes each – the overall
data then included 20 minutes of sensor readings with balanced
number of each class.
F. Idle/unknown class
Regardless of the number of classes the teams were required to
predict, the training data had to be examples of unknown activities.
A NN inference, when the subject was doing anything else other
than the classes trained, shall predict the ‘unknown’ class.
G. Applicable sensors
Typical human activities were best represented by accelerometer
& gyroscope data. Even if no team anticipated the need of the gyro
data, it was required to collect it anyway and discharge it later (if

Volume 1 | Issue 4 | 240Eng OA, 2023

not needed). This is because if the model trained on accelerometer-
only data achieved poor results, the team had the option to include
the gyro data for new training iterations. From this point of view,

it was clear that data collection was the most time-consuming task
of the challenge.

Fig 4. Feature extraction options

Fig 5. Final model archive example (downloaded from Neuton.ai after
model was trained)

C. Data volume
For the proof-of-concept it was enough to collect data

from a single person: 2-5 minutes of signal data for each
activity. For a more robust model that was meant to be able
to generalize more on the general population (who’s data had
not been used for model training), it was required to collect
data from several users: 3-5 people. A production grade
model required from dozens to hundreds of unique users,
depending on the classified activity and the number of
classes.

D. Data variability
It is advised to collect data for each activity in more than

one session, preferably within two separate days, so that
there will be slight differences in the collected data for each
activity. When collecting data for same activity with multiple
sessions, the teams had to make sure to label the files
accordingly, so that the activity name and session number
could later be extracted from the file name.

E. Classes balance
It was required to have a similar amount of training

samples for each activity. For example, if a team had 5
activities and decided to collect 2 sessions for each activity 2
minutes each – the overall data then included 20 minutes of
sensor readings with balanced number of each class.

F. Idle/unknown class
Regardless of the number of classes the teams were

required to predict, the training data had to be examples of
unknown activities. A NN inference, when the subject was
doing anything else other than the classes trained, shall
predict the ‘unknown’ class.

G. Applicable sensors
Typical human activities were best represented by

accelerometer & gyroscope data. Even if no team anticipated
the need of the gyro data, it was required to collect it anyway
and discharge it later (if not needed). This is because if the

model trained on accelerometer-only data achieved poor
results, the team had the option to include the gyro data for
new training iterations. From this point of view, it was clear
that data collection was the most time-consuming task of the
challenge.

Fig 6. Example of data collection errors. X-axis – sensor readings
sequential index, Y-axis – sensor readings values, legend colors represent
three axis of accelerometer and three axis of gyroscope

H. Data collection errors handling
Irrelevant sensor readings (for example when the team

had started recording but did not start the actual activity yet)
could corrupt the training data and were removed from the
collected data afterwards. Fig 6 demonstrates an example
where part of collected sensors data has a gap which could be
reasoned by the subject pausing activities without stopping
the data collection process.

VII. TEAMS’ OVERVIEW
3 teams competed on the IEEE COINS 2023 contest and
where from India, Tunisia, and Italy.

VIII. TEAMS’ ACHIEVEMENTS

A. Team 1 (Table 1)

Table 1: number of predicted classes and class names for team 1

Predicted classes were 11
At rest standing Combing hair
At rest sitting Table cleaning
Washing hands Eating with spoon
Brushing teeth Cleaning white board
Shaving Typing
Writing

Signal interpretation window: 128 samples
Model accuracy: Balanced accuracy: 0.896104
Model memory required:

Data RAM: 4,580 bytes;
Program RAM: 26,860 bytes.

Inference latency: 133 ms

Formatted: English (U.S.)

Figure 6: Example of data collection errors. X-axis – sensor readings sequential index, Y-axis – sensor readings values, legend colors
represent three axis of accelerometer and three axis of gyroscope

A. Data Collection Errors Handling
Irrelevant sensor readings (for example when the team had started
recording but did not start the actual activity yet) could corrupt the
training data and were removed from the collected data afterwards.
Fig 6 demonstrates an example where part of collected sensors
data has a gap which could be reasoned by the subject pausing

activities without stopping the data collection process.

VI. Teams’ Overview
3 teams competed on the IEEE COINS 2023 contest and where
from India, Tunisia, and Italy.

VII. Teams’ Achievements

Predicted classes were 11
At rest standing Combing hair
At rest sitting Table cleaning
Washing hands Eating with spoon
Brushing teeth Cleaning white board
Shaving Typing
Writing

Table 1: number of predicted classes and class names for team 1

Signal interpretation window: 128 samples
Model accuracy: Balanced accuracy: 0.896104
Model memory required:
Data RAM: 4,580 bytes;
Program RAM: 26,860 bytes.
Inference latency: 133 ms

Predicted classes were 24
Shoveling Handshake Shaving with razor
Writing on board Hand still Washing face
Bolting a bolt Jogging Washing hands
Brushing hair Using mouse/keyboard Operating a wheelchair
Clapping Punching a boxing bag Wiping a table
Cutting vegetables Roping Wiping a board

Volume 1 | Issue 4 | 241Eng OA, 2023

Making dough Cutting with saw Writing on paper
Hammering nails Using screwdriver Unclassified class

Table 2: number of predicted classes and class names for team 2

Signal interpretation window: 40 samples
Model accuracy: Balanced accuracy: 0.814272
Model memory required:
Data RAM: 2,012 bytes,
Program RAM: 17,492 bytes.
Inference latency: 152 ms.

Predicted classes were 21
Still Chest fly Dips
Walking Pull ups Triceps pushdown
Running Lats pulldown French press
Biking Pulley Shoulder warm-up
Rope jumping Squats Shoulder press
Push ups Bicep curl Shoulder lateral raises
Chest press Hammer curl Abs crunches

Table 3: number of predicted classes and class names for team 3
Signal interpretation window: 52 samples
Model accuracy: Balanced accuracy: 0.931678
Model memory required:
Data RAM: 1,840 bytes,
Program RAM: 12,532 bytes.
Inference latency: 21 ms.

The Team 2 and Team 3 models (as shown in table 2 and 3) were
trained to predict more than 20 classes, and capable of achieving
smaller memory footprint compared to the solution of Team 1
model (which was trained to predict 11 classes as reported in table
1).

IX. Final Scores and Discussions
As shown in table 4, Team 2 and Team 3 achieved very similar
final scores. Team 2 won the challenge by a small margin of 7
points.

Teams’ scores
Team name Score calculation formulae Total score

Team 1 (200 * 0.43) + (100 * 0.9) + (80 * 0.0) +
(100 * 0.45) + (50 * 0.19) + (100 * 0.4)

271

Team 2 (200 * 1.0) + (100 * 0.81) + (80 * 0.0) +
(100 * 0.76) + (50 * 0.48) + (100 * 1.0)

482

Team 3 (200 * 0.87) + (100 * 0.93) + (80 * 0.47) +
(100 * 0.78) + (50 * 0.64) + (100 * 0.6)

475

Table 4

Team 2 produced the most robust NN model which could
accurately identify 24 classes of very diversified activities blended
in a single NN model. It had been operating on the sensor built-
in ML computing capabilities. The model had demonstrated high
resilience to false positive predictions with consistent output
of ‘Unclassified’ class prediction when the subject had been
transitioning between activities.

X. Conclusions
This challenge was organized several months before the IEEE
COINS 2023 conference in coordination with the conference
chair, ST and Neuton.ai. It demonstrated that Tiny ML models
were successfully deployed at the ‘cutting-edge’ level into the
ISPU sensor. In addition, it revealed that the featured tools &
technologies allow beginners engineers to device sophisticated

Volume 1 | Issue 4 | 242Eng OA, 2023

Tiny ML applications without having to write a single line of code.
This opened a new perspective in terms of productivity for study
and development of practical ML applications with previously
unmatched power efficiency. Moreover, it has been proven that if
more efforts are devoted into the creation phase of a project, its
execution can be accelerated and guided by less expert engineers.
This will help the process to widespread ML application at the
deep edge with unprecedented productivity at a large scale.

Acknowledgments
Special thanks go to teams 1, 2 and 3 participating in the
competition and a contribution to a very successful IEEE COINS
2023 contest. They were awarded with money prizes for their
efforts offered by ST.

Debt of gratitude goes to the IEEE COINS 2023 conference
chair Farshad Firouzi, Ph.D. [7] for his enthusiastic support in all
competition’s preparatory phases, the conference itself and during
the award ceremony.

References
1. Nucleo L476RG: dev board: https://www.st.com/en/

evaluation-tools/nucleo-l476rg.html
2. X-NUCLEO-IKS01A3: sensor expansion board: https://

www.st.com/en/ecosystems/x-nucleo-iks01a3.html
3. STEVAL-MKI230KA: adapter board of IMU sensor with

embedded ISPU: https://www.st.com/en/evaluation-tools/
steval-mki230ka.html

4. X-CUBE-ISPU: expansion software package for STM32Cube:
https://www.st.com/en/embedded-software/x-cube-ispu.html

5. Unicleo-GUI: graphical user interface: https://www.st.com/
en/development-tools/unicleo-gui.html

6. Neuton.ai platform: neuton.ai
7. Farshad Firouzi, Ph.D.: https://www.linkedin.com/in/

farshadfirouzi/

Copyright: ©2023 Danil Zherebtsov, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

https://www.st.com/en/evaluation-tools/nucleo-l476rg.html
https://www.st.com/en/evaluation-tools/nucleo-l476rg.html
https://www.st.com/en/ecosystems/x-nucleo-iks01a3.html
https://www.st.com/en/ecosystems/x-nucleo-iks01a3.html
https://www.st.com/en/ecosystems/x-nucleo-iks01a3.html
https://www.st.com/en/ecosystems/x-nucleo-iks01a3.html
https://www.st.com/en/ecosystems/x-nucleo-iks01a3.html
https://www.st.com/en/development-tools/unicleo-gui.htmlhttps://www.st.com/en/embedded-software/x-cube-ispu.htmlX-CUBE-ISPU: expansion software package for STM32Cube: https://www.st.com/en/embedded-software/x-cub
https://www.st.com/en/development-tools/unicleo-gui.htmlhttps://www.st.com/en/embedded-software/x-cube-ispu.htmlX-CUBE-ISPU: expansion software package for STM32Cube: https://www.st.com/en/embedded-software/x-cub
https://www.st.com/en/development-tools/unicleo-gui.html
https://www.st.com/en/development-tools/unicleo-gui.html

