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Background
According to the latest report of the International Diabetes 
Federation Diabetes Atlas, 415 million adults in the world have 
diabetes, corresponding to an overall incidence rate of 9.1%, and 
318 million adults have impaired glucose regulation with a high risk 
of developing diabetes in the future [1]. China is the country with 
the largest number of diabetic patients in the world. According to a 
published national survey, the prevalence of diabetes in China has 
increased dramatically over the past 30 years: from less than 1% 
in 1980, to 5.5% in 2001, and 9.7% in 2008. In the 2013 survey, it 
is estimated that the prevalence of prediabetes in China will reach 
35.7% [2]. 

Advanced glycation endproducts (AGEs) are a series of stable and 
irreversible covalent compounds (such as carboxymethyl lysine, 
3-deoxy glucosanoic acid, pentosidine, pyrroline, glyoxal) produced 
by the reaction of the aldehyde groups of the reducing sugars with 
the free amino groups of the macromolecules (proteins, lipids, or 
nucleic acids, etc.) in non-enzymatic conditions, involving processes 
of condensation, rearrangement, cleavage and oxidative modification 
[3]. 

Several studies have shown that AGEs are involved in the 
occurrence and development of chronic complications of diabetes, 
atherosclerosis, uremia, Alzheimer's disease, and cataracts [3-
7]. AGEs are important pathogenic factors in the pathogenesis 
of atherosclerosis, diabetes, diabetic nephropathy, cataract and 
neurodegenerative diseases (including Alzheimer's disease) [8-

12]. Unreasonable dietary structures, increased oxidative stress 
in the body, decreased deglycosylation ability, and long-term 
hyperglycemia can all lead to accelerated accumulation of AGEs. 
In the early stage of diabetes, excessive accumulation of AGEs 
in vivo and the interaction of AGE and its receptor RAGE can lead 
to apoptosis and necrosis of islet β cells, insulin resistance, and 
impaired glucose regulation [13]. In the middle and later stages of 
diabetes, the continuous increase in blood glucose can accelerate 
non-enzymatic chemical reactions in the body and produce more 
AGEs. Therefore, there is a higher level of serum AGEs in diabetic 
patients and this excess AGE will accumulate in the body and attach 
to cells. The level of diabetic AGEs in the vascular endothelial cells, 
nerve cells, kidney tissue, lens and other body tissues is also higher 
than that in the normal population [14-17]. AGEs can cause the 
development of diabetic complications through direct or indirect 
actions.

AGEs Mechanism of Action
Three Main Mechanisms for AGE-Mediated Tissue Effects
Cross-linking with extracellular (matrix) proteins affects the 
mechanical properties of tissues [18]. The formation and 
accumulation of cross-linked extracellular matrix proteins with 
AGE is a chronic process. Extracellular matrix proteins, especially 
the long-lived protein type IV collagens of basement membrane are 
more susceptible to glycosylation [19, 20]. Advanced glycosylation 
and cross-linking make other extracellular matrix proteins (such as 
collagen I and elastin) stiffer and less susceptible to degradation 
[18]. This mechanism may contribute to increased diabetes and 
vascular stiffness in the elderly [18, 19, 21]. The structure of low-
density lipoprotein (LDL) can also be altered by the glycation of 
AGE, preventing normal elimination pathways from removing 
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Abstract
Recent data showed that 9.1% of adults worldwide have diabetes, and 318 million adults have a high risk of developing 
diabetes in the future. Diabetes and its complications have serious impact on human health. In the early stages of diabetes, 
excessive advanced glycation endproducts (AGEs) accumulate in the body and bind to its receptor RAGE, which impairs 
glucose regulation. In the later stages of diabetes, increased blood glucose can accelerate the production of more AGEs. 
AGEs play a pivotal role in the development of diabetes and its complications. In recent years, AGEs have become one of 
the research hotspots. The search for potential drug targets that can block or reduce the accumulation of AGEs has attracted 
increasing attention. This review summarizes the role of AGEs and the effects of various hypoglycemic agents on AGEs 
from the perspective of mechanisms, in order to provide reference for the further search for targeted drugs against AGEs.
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them from the circulation. Instead, they are taken up by blood 
mononuclear cells to form foam cells, resulting in the development 
of atherosclerosis [5, 22]. 

Cross-linking with intracellular proteins, altering the physiological 
properties and functions of the cells [23, 24]. For example, AGEs 
cross-link the domains of Ryanodine receptor and SERCA2a in 
cardiomyocytes, leading to altered calcium homeostasis in diabetic 
cardiomyopathy [25, 26]. 

Binding to cell surface receptor RAGE to induce multiple 
intracellular signal transduction cascades [27]. It has been shown 
that there is a nuclear factor kappa B (NF-kappa B) binding site on 
the promoter of RAGE gene, thus linking RAGE expression with 
the inflammatory cascade [28]. 

RAGE
RAGE is a multi-ligand receptor for AGEs. RAGE is upregulated 
in a ligand-rich environment of diabetes or aging. The expression 
of RAGE is even more elevated in monocytes, smooth muscle, and 
endothelial cells at the diabetic vasculature [29]. It has been shown 
that circulating AGEs bind to endothelial RAGE and activate many 
signaling pathways, such as activation of nicotinamide adenine 
dinucleotide phosphate oxidase leading to increased reactive oxygen 
species (ROS) production and impaired endothelial function [30]. 
ROS have been shown to play a key role in causing significant 
cardiovascular damage in diabetes by altering the structure of 
cellular nucleic acids, proteins, and lipids, thereby altering their 
physiological function [31]. It has been reported that AGE-RAGE is 
involved in the process of increasing the phosphorylation of mitogen-
activated protein kinase, extracellular signal-regulated kinase 1/2 
and p21ras, p38, activating the GTPases Rac and Cdc42. These 
effects ultimately induce the activation and the nucleus translocation 
of NF-κB and subsequently initiate the transcription of cytokines 
and adhesion molecules that play a major role in inflammation 
and atherosclerosis (including intercellular adhesion molecule-1, 
vascular cell adhesion molecule-1, vascular endothelial growth factor 
(VEGF), endothelin-1, tissue factor, E-selectin, thrombomodulin, 
and proinflammatory cytokines, such as interleukin (IL)-1α, IL-6, 
and tumor necrosis factor-α.) [30, 32-35]. 

SRAGE
The interaction of AGEs-RAGE results in oxidative damage and 
the production of matrix metalloproteinases (MMPs), whereby 
cell-bound RAGE is cleaved to produce soluble RAGE (sRAGE) 
[36]. SRAGE competes with RAGE for RAGE ligands (AGEs, 
HMGB1, and S100b) through binding or trapping, thus reducing 
inflammation mediated by RAGE [36, 37]. Studies have shown that 
RAGE signaling pathway is blocked by sRAGE, suggesting sRAGE 
as a potential therapeutic agent for preventing atherosclerosis [38]. 
To support this idea, the decrease in plasma sRAGE concentrations is 
a predictor of cardiovascular events and it is speculated that sRAGE 
may be a potential protective agent against vascular complications 
[39]. 

AGEs and Diabetes
AGEs are considered to be the main cause of different diabetic 
complications [40]. AGEs accumulate in most sites of diabetic 
complications including atherosclerotic plaque, kidney, and retina 
[41]. 

AGEs and Diabetic Nephropathy
Diabetic nephropathy is characterized by the accumulation of ECM 
(extracellular matrix) proteins in the glomerular mesangium and 
tubulointerstitium. AGEs may induce imbalances in the metabolism 
of ECM components, resulting in increased accumulation of 
collagen, fibronectin, and laminin [42]. After AGE modification, the 
affinity of type IV collagen and heparan sulfate proteoglycans with 
laminin and fibronectin decreases [43]. The saccharification reaction 
inhibited the process of polymer self-assembly for collagen type 
IV and laminin [44]. Studies have shown that AGEs can stimulate 
angiotensin II (Ang II) type 1 receptor (AT1R) and induce DNA 
damage and partial detachment of podocyte [45]. These changes 
may be particularly pronounced in the glomerular basement 
membrane, where the induction of chemical cross-linking between 
amines leads to increased protein permeability [46]. In cultured 
human mesangial cells, it has been demonstrated that soluble AGE 
containing carboxymethyllysine induces the upregulation of CTGF 
(connective tissue growth factor; also known as IGFBP-2) and 
fibronectin, which may promote the occurrence of renal fibrosis 
[47, 48]. 

AGEs and Diabetic Peripheral Neuropathy
RAGE is expressed in endothelial cells and Schwann cells of the 
perimysial and endoneurial vessels in rat peripheral nerves. A study 
showed that AGEs could cause death of neuronal cells and Schwann 
cells in vitro, resulting in changes in the structure and function of 
peripheral nerves [49]. In addition, neurofilaments and tubulin 
are modified by AGEs, which may interfere with axonal transport 
and lead to the development of atrophy and degeneration of nerve 
fibers [50]. AGEs-modified P0 protein may induce demyelination of 
nerve fibers [51]. Moreover, glycosylation of collagen and laminin 
alters the charge of basement membrane and leads to an increase in 
the permeability of blood vessels and thickening of the basement 
membrane. It has also been reported that AGEs can quench the 
vasodilatory mediator nitric oxide (NO) and inhibit the expression 
of NO synthase, thereby reducing neuronal blood flow and inducing 
hypoxia in peripheral nerves. Furthermore, the interaction between 
AGEs and RAGE on the endothelial cells of the peripheral and 
intimal blood vessels promotes the development of peripheral 
neuropathy [53, 54]. 

AGEs and diabetic retinopathy, cataract
AGEs lead to various retinal cell dysfunction and death [55]. Some 
studies have shown that the accumulation of AGEs is associated 
with dysfunction of glial cells in rat diabetic retinal Müller cells 
[56]. RAGE up regulates the pro-inflammatory response of retinal 
Müller glial cells [57]. AGEs can induce increased expression of 
ICAM-1 (intercellular adhesion molecule-1) in cultured bovine 
retinal endothelial cells and promote the reduction of diabetic 
retinal microvascular leukocytes [58, 59]. Studies have shown an 
increase in AGEs formation in the vitreous in patients with diabetic 
retinopathy. AGEs induce the expression of VEGF (basic fibroblast 
growth factor) gene in retinal cells by stimulating IL-6 secretion in 
human retinal Müller cells, inducing local hypoxia and increasing 
reactive oxygen species [60, 61]. This leads to increased mitogen and 
increased vascular endothelial growth factor (VEGF), which in turn 
stimulates neovascularization and induces proliferative retinopathy 
[62]. Local increases in VEGF concentrations are associated with 
increased vascular permeability [63]. In addition, recent studies have 
shown that AGEs are key regulators of non-proliferative retinopathy 
in patients with type 2 diabetes mellitus [64]. Therefore, AGEs are 
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involved in the development of diabetic retinopathy.

The severity of diabetic cataracts is related to the rate of AGEs 
accumulation. Long-term hyperglycemia leads to progressive 
saccharification oxidation of lens proteins. The accumulation and 
cross-linking of AGEs with external capsules gradually nucleizes 
the lens and increases the thickness and stiffness, promoting the 
formation and development of cataracts. In the lens, AGEs induce 
the aggregation of lens proteins, forming high-molecular-weight 
aggregates that cause vision loss and astigmatism [65]. AGEs can 
also change the surface charge of proteins, resulting a conformational 
change that may subsequently affect the protein-water interaction 
and reduce the transparency of the lens [66, 67]. Saccharification 
of lens proteins may be induced by elevated levels of glucose in 
the aqueous humor, resulting in increased production of AGEs and 
superoxide radicals [11]. AGE-RAGE in the lens epithelium further 
increases the production of O2- and H2O2 [68]. In diabetic patients, 
reduced anti-oxidation capacity of the lens leads to increased level 
of free radicals and the sensitivity to oxidative stress [69].

AGEs and Diabetic Cardiomyopathy
Mitochondrial membrane depolarization is associated with AGE-
induced cardiomyocyte dysfunction [70]. AGEs increase the cross-
linking of matrix proteins such as collagen, laminin, vitronectin, 
and elastin [71]. As a result, matrix proteins have reduced pliable 
properties and become stiffer, which lead to decreased cardiac 
contractility and diastolic dysfunction. Increased cross-linking of 
collagen and elastin also leads to more ECM surface area, resulting in 
stiffer vasculature [19, 72]. Another pathway for diastolic dysfunction 
is activation of RAGE through AGEs [73]. In transgenic mouse 
models, over expression of human RAGE in the heart was found to 
reduce contractile and diastolic intracellular calcium concentrations 
[74]. AGEs may also promote the development of heart failure [75]. 

AGEs and Diabetes Proinflammatory State
AGEs have high affinity to cysteine in lysozyme and lactoferrin 
molecules, thereby reducing their antibacterial activity, which 
potentially contributes to the fact that the diabetic patients have 
declined anti-infectious abilities [76]. AGE-RAGE interaction 
inhibits phosphatidylinositol 3 (PI3) kinase activity, increases protein 
kinase C (PKC) activity and proinflammatory cytokine levels, and 
promotes diabetes mellitus inflammation state [77].

AGEs and diabetic Macroangiopathy
A large number of clinical studies have shown that AGEs are closely 
related to diabetic macroangiopathy. AGEs can impaire endothelial 
cell function and accelerate the progression of atherosclerosis [78]. 
AGEs reduce the release of vasoactive substances (such as NO, 
SDF-1, PGI2, TPA, etc.), promote apoptosis of late endothelial 
progenitor cells (EPCs) and inhibit their migration and adhesion 
[79]. Accumulated AGEs also accelerate atherosclerosis by cross-
linking endothelial matrix proteins leading to platelet aggregation 
and abnormal metabolism of lipoproteins [80-82]. Therefore, AGEs 
may be one of the pathological mechanisms of diabetic macro 
vascular complications. 

AGEs and Diabetic Bone Metabolism Abnormalities
Patients with poorly controlled diabetes have increased AGE-
modified collagen, affecting osteoblast differentiation and function 
in vitro, and leading to osteopenia [83]. Through the NF-κβ non-
dependent mechanism, AGEs promote the apoptosis of human 

osteoblasts and mesenchymal stem cells, which further reduces 
bone formation. 

Hypoglycemic Drugs and AGEs
Hypoglycemic agents can be broadly classified into oral 
hypoglycemic agents and injectable hypoglycemic agents. Current 
oral hypoglycemic drugs commonly used in China include insulin 
secretagogues, metformin, α-glycosidase inhibitors, thiazolidinedione 
derivatives, dipeptidyl peptidase 4 (DPP-4) enzyme inhibitors, 
and sodium-glucose cotransporter-2 (SGLT-2) inhibitors and the 
like. Among these drugs the insulin secretagogues are further 
classified into sulfonylureas and non-sulfoureas (glinides). Injectable 
antidiabetic drugs include insulin and similar drugs, and glucagon-
like peptide-1 (GLP-1) receptor agonists. They have different effects 
on AGEs in many ways. 

ɑ-Glucosidase Inhibitors
In diabetic animals, since acarbose reduces the mean blood glucose 
area under the curve, the non-enzymatically saccharified protein 
and the formation of AGEs are reduced [84, 85]. Patients with 
type 2 diabetes treated with acarbose have reduced serum levels 
of glyceraldehyde-derived AGEs [86]. Acarbose treatment can 
significantly reduce the level of some inflammatory factors that are 
present in higher levels in diabetes patients than healthy individuals 
including AGEs [87]. In addition, acarbose has been shown to inhibit 
the formation of aortic collagen glycosylation in diabetic rats [88]. 

Glinides
Glyceraldehyde reacts rapidly with the amino groups of proteins to 
form glyceraldehyde-derived AGEs, causing vascular inflammation 
and endothelial dysfunction, and accelerating the atherosclerotic 
process in diabetic patients. Studies have found that nateglinide 
reduces glyceraldehyde-derived AGE levels in GK (Goto-Kakizaki) 
rats after 6 weeks of treatment [89]. 

In ZF (Zucker fat) rats, an animal model of insulin resistance and 
obesity, studies have shown that combination therapy of nateglinide 
(NAT) and telmisartan (TEL) improves postprandial metabolic 
disturbances and mitigate insulin resistance, with reduced AGEs 
levels in serum, RAGE expression levels, and AGE-RAGE index, 
probably due to the suppression of the AGE-RAGE signal in the 
liver [90]. 

Thiazolidinedione insulin sensitizer
Since thiazolidinediones have PPARγ agonist activity, they have 
been shown to play a role in anti-AGE therapy by up regulating 
sRAGE expression and being inversely related to atherosclerosis 
[91]. Circulating soluble RAGE (sRAGE) and endocrine RAGE 
(eRAGE) compete with RAGE to bind AGEs. Binding of AGEs 
to their receptors (RAGE) results in the production of oxygen free 
radicals, nuclear factor kappa-beta, pro-inflammatory cytokines, and 
cell adhesion molecules that are involved in the pathophysiological 
process of triggering cardiovascular disease (CVD). Rosiglitazone 
has been used to increase sRAGE levels [92]. A randomized placebo-
controlled study of 111 patients with type 2 diabetes and high-risk 
coronary heart disease who had undergone rosiglitazone in the 
year of 2013 tested increased levels of sRAGE after 6 months of 
rosiglitazone treatment [93]. The PPARγ agonist rosiglitazone can 
reduce AGE levels, improve arterial injury, and mitigate AGEs-
induced EPCs dysfunction [94, 95]. In human neural stem cells 
(hNSCs) exposed to AGEs, two neuroprotective factors (Bcl-2 and 
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PGC1α) are down-regulated, and inflammatory response factors 
(TNF-α and IL-1β), NF-κB (p65) and inflammatory genes (iNOS and 
COX-2) are upregulated. Aosiglitazone can rescue these effects in 
hNSCs via activation of PPARγ and inhibits the activity of caspase 3, 
thereby increases the viability of hNSC. This neuroprotective effect 
of rosiglitazone can be effectively blocked by a PPARγ-specific 
antagonist (GW9662), indicating that the above-mentioned effects 
of rosiglitazone are mediated by the PPARγ-dependent pathway [96]. 

A study conducted in 2010 showed that pioglitazone significantly 
increased sRAGE levels in diabetic patients at 12 weeks of follow-up 
[97]. In the 24-week follow-up period of PioRAGE trial, pioglitazone 
inhibited RAGE expression and increased plasma sRAGE levels, 
independent of plasma glucose or insulin resistance levels. In patients 
with type 2 diabetes, pioglitazone treatment has a good overall 
efficacy by significantly affecting the level of serum adiponectin, 
AGEs, human normal T cells, and secreted factors RANTES, 
endothelin ET, and homocysteine Hcy [98, 99].

Sulfonylureas secretagogues
One of the sulfonylurea derivatives, GP, inhibits ATP-dependent K 
+ channels therefore can completely reverse the inhibitory effects 
of AGEs on ATP production and insulin secretion [100].

Gliclazide can reduce the expression of RAGE mRNA, which may 
have a protective effect on renal tissue damage in diabetic rats 
[101]. AGEs promote the binding of NF-κB to the motif at the 
VEGF promoter region in the bovine retinal capillary endothelial 
cells (BRECs), leading to the proliferation of these cells. Gliclazide 
blocks AGE-induced DNA binding activity of NF-κB and inhibits 
AGE-induced VEGF expression and PKC activation. Treatment with 
anti-VEGF antibodies or gliclazide inhibited the above-mentioned 
cell proliferation effects [102]. 

AGEs significantly inhibited the expression of megalin and cubic 
protein, cubulin, and the uptake of albumin by HK-2 cells in vitro. 
In glomerular cells of GK rats, Gliconeone can inhibit the expression 
of RAGE and PKC-β, upregulate the expression of PKA, megalin 
and cubilin, promote the secretion of C-peptide, and increase the 
albumin uptake. Treatment with gliquidone alleviated the injury 
of glomerular basement membrane and podocytes, promoted renal 
tubular reabsorption, and effectively reduced urinary protein and 
proteinuria in diabetic nephropathy GK rats [103, 104]. Gliquidone 
also inhibited AGEs-induced expression and secretion of RANTE 
(regulated on activation, normal T cell expressed and secreted) in 
human mesangial cell (HRMC) [105]. 

Glimepiride may reduce toxic glyceraldehyde-derived AGEs 
(glycerol-AGEs) levels and increase colony-stimulating factors to 
potentially repair tissue damage [106]. 

Metformin
MG (methylglyoxal) is the major precursor of AGE and is directly 
toxic to tissues. Metformin binds MG and inactivates it, reducing 
MG-related AGEs [107]. Metformin inhibits the production and 
accumulation of AGEs, thereby inhibiting the development of 
adverse myocardial structural and functional changes [108]. AGEs-
induced proliferation of VSMCs was inhibited by metformin [109, 
110]. Thiazolidine-derived metformin reduces AGE levels in patients 
with polycystic ovary syndrome and reduces arteriosclerosis in 
young women with polycystic ovary syndrome [111]. 

Metformin can reduce the accumulation of AGEs and down-
regulate the expression of RAGE in the kidney of diabetic rats 
[112]. Metformin inhibited AGEs-induced growth of SW-480 cells 
[113]. Metformin reduced the serum AGEs level in postmenopausal 
osteoporosis rats, which in turn improves bone metabolism [114]. 

Dipeptidyl peptidase-4 inhibitor
Sitagliptin reduced the levels of RAGE and angiotensin II type 
1 receptors in spontaneously hypertensive rats [115]. Sitagliptin 
significantly inhibited AGEs-induced viability of mesangial cells and 
downregulated the level of collagen IV (Col IV) in the supernatant, 
which may exert renal protective effects by causing autophagy of 
mesangial cells [116]. 

In db/db mice, cilizytin can downregulate serum AGEs, inhibit 
glycosylation in vivo and in cells cultured in vitro, and alleviate AGE-
related diabetic complications [117]. Treatment with vildagliptin can 
downregulate the levels of AGEs, RAGE and oxidative stress marker 
8-OHdG (8-hydroxydeoxyguanosine) in thoracic aorta of diabetic 
rats, and the above-mentioned increase in levels of substances with 
MCP-1 (mononuclear) Cell chemokine-1), VCAM-1, and PAI-
1 (type I plasminogen activator inhibitor) gene expression were 
associated with decreased expression [118]. Linagliptin significantly 
inhibited AGE-induced ROS production and downregulated the 
expression of RAGE, ICAM-1 and PAI-1 genes in HUVEC cells, 
and reduced AGEs, RAGE gene expression, and 8-OHdG levels in 
the kidneys of diabetic rats [119, 120]. Another study found that 
alogliptin can block the AGEs-RAGE axis in patients with type 2 
diabetes, thereby reducing proteinuria [121]. 

GLP-1 receptor agonist
GLP-1 inhibits AGEs-induced RAGE gene expression, protein 
arginine methyltransferase-1 (PRMT-1) gene expression and 
ROS production [122]. In addition, GLP-1 binds to RAGE and 
inhibits RAGE activation [123]. GLP-1 is also reported to inhibit 
AGEs-induced apoptosis of EC cells, increase the ratio of anti-
apoptosis Bcl-2/pro-apotosis Bax, downregulate cytochrome 
C levels, and inhibit caspase-3 and caspase-9 activities [124]. 
Moreover, recent studies have shown that GLP-1 can directly 
act on GLP-1R of ECs, which may play a role in anti-AGEs by 
reducing RAGE expression [125]. GLP-1 can reduce the levels of 
RAGE, ICAM-1 (intercellular adhesion molecule-1) and VCAM-
1 (vascular cell adhesion molecule-1) in human retinal pigment 
epithelial cells [126]. Continuous intraperitoneal injection of the 
GLP-1 analogue exendin-4 inhibits renal RAGE gene expression 
[122]. In rat mesangial cells RMC, PPARδ and GLP-1 receptor 
agonists significantly inhibited AGE-induced production of IL-6 
and TNF-α, down-regulated AGE-induced RAGE expression, and 
decreased mesangial cell death [127]. Liraglutide reduced aortic 
RAGE expression and atherosclerosis in a diabetic ApoE-/- mouse 
model [128, 129]. 

Sodium-glucose Cotransporter-2 (SGLT-2) Inhibitors
Treatment with SGLT-2 inhibitors down regulates increased AGE / 
RAGE signaling in ZDF rats (Zucker diabetic rats), animal models 
for type 2 diabetes. Serum level of AGE precursor methylglyoxal 
is reduced, thereby reducing AGE formation and RAGE-dependent 
signal transduction. In ZDF rats, treatment with engliflozin can 
prevent oxidative stress, AGE/RAGE signaling, and inflammation 
development by reducing glucose levels, restoring insulin sensitivity 
and signal transduction, increasing glucose utilization, and partially 
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improving endothelial function. In addition, improvement of the 
redox state contributes to decreased apoptosis of beta cells and 
increased insulin production [130]. Treatment with high-dose SGLT2 
inhibitors in STZ rats reduced both transcription and translation of 
RAGE gene, AGE-positive protein levels in the aorta, and serum 
level of AGE precursor methylglyoxal [131]. Furthermore, studies 
have shown that application of engliflozin for 4 weeks significantly 
reduced the expression of AGEs, RAGE, 8-OHdG, and F4/80 in 
kidneys of streptozotocin-induced diabetic rats. This suppression 
of AGE-RAGE axis partly inhibited the oxidation, inflammation 
and fibrosis in the kidneys of diabetic rats [132]. 

Insulin
Studies have confirmed that circulating levels of AGEs are associated 
with insulin resistance, indicating an association of RAGE gene 
polymorphisms and insulin resistance [133]. In addition, glycated 
albumin (a source of AGEs) may be involved in the regulation of 
insulin signaling. In adipose tissue of insulin-resistant rat models, 
an increase in methylglyoxal (a precursor of AGEs) impairs insulin 
signaling by reducing insulin-induced glucose uptake [134]. 
AGEs are involved in several mechanisms to contribute to insulin 
resistance. First, due to direct changes in insulin, glucose uptake 
is reduced; insulin clearance is suppressed; and insulin secretion is 
further increased. Second, AGE may increase RAGE expression 
and promote insulin resistance by decreasing the expression of 
AGER1 and an insulin receptor substrate—SIRT1—whose depletion 
leads to changes in insulin signaling and induction of inflammation. 
Third, AGEs affect insulin signaling and induce inflammation by 
stimulating PKCα and upregulating TNFα [135-141]. 

Conclusion and Future Expectations:
Diabetes is a common chronic disease that severely affects human 
health. AGEs promote the occurrence and development of diabetes 
and its complications through multiple mechanisms that involve 
many signaling pathways. In recent years, research on AGEs has 
become one of the hot spots. But research in this area is relatively 
few and not deep enough. Various hypoglycemic drugs, in addition to 
their role in hypoglycemia, hindered the production and accumulation 
of AGEs from many aspects, thereby reducing the adverse effects 
of AGEs on various tissues. This review may provide rationale for 
the research and development of specific drugs targeting AGEs in 
the future. 
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