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The method using repetitive integrals
The Hyper exponential functions of n-order can be generated using
repetitive integrals.
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Uniform convergence in the wider sence
The following is the proof of uniform convergence in the wider
sence of the Hyper exponential functions of n-order:
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In general,
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We thus obtain the following results:
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This proof is based on the majorant theorem of Weierstrass

The following is a sample of the program using mathematica

n=14;
seed = k(0) = x;
f=—.\3:

I)n(l{i‘+ nzfrnm dxdx, (i U.nl]

exph2(x )= Z‘(D:
i=0
Print(exph2(x_));

Plot(exph2(x), (x, =1.5x, 1.5x], PlotRange - {—x, x])
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linear independence
The following is the proof that the Hyper exponential functions of
n-order are linearly independent one another:

pj(x) = Exph}(x; f(x)) (j =0,1,2..n—- 1),
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H (x) is constant

The first term of all functions of the diagonal element of the matrix
H is 1. And the other elements of the determinant //, do not have
constants. Therefore, H (0)=1.

Thus we see that the Wronskian of the Hyperexponential functions
of n-order is 1.

Therefore,we obtain the conclusion that the Hyper exponential
functions of n-order are linearly independent one another.
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