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Abstract
Confronted with recent microwave background observations by WMAP and with puzzling supernovae locations in the 
magnitude - redshift m-z-diagram the present-day cosmology seems to call for cosmic vacuum energy as a necessary, 
unavoidable cosmological ingredient to get a rhyme for the disjunctive cosmological facts. Most often nowadays this 
vacuum energy is associated with Einstein‘s cosmological constant Λ or with the so-called: ”dark energy” paradigm, 
both of which are conceptually not well determined or physically clearly handable. Hereby, a positive value of Λ describes 
an inflationary action on cosmic scale dynamics which in view of recent cosmological data appears as an absolute need.

In this article, however, we shall at least question the hypothesis of a constant vacuum energy density, since it is not 
justifyable on physical grounds and inconsistent with the energy conservation principle. Instead we show here that 
changes in gravitational binding energy of cosmic matter - connected with structure formation during the cosmic 
expansion -mathematically acts in a way very similar to vacuum energy, since it reduces the effective proper mass density 
and thus reduces the net cosmological gravitational attraction. Thus one may feel encouraged to believe that actions 
of cosmic vacuum energy, gravitational binding energy and effective mass reduction - taken by their pure cosmological 
effects - are closely related to each other, perhaps in some respects even have identical cosmological roots.

Based on the results presented here we propose that the action of vacuum energy on cosmic spacetime dynamics 
inevitably leads to a decay of vacuum energy density. Connected with this decay is an increase of negative cosmic 
binding energy and the diminution of effective mass in the universe. If this all is adequately taken into account by the 
energy-momentum tensor of the GR field equations, one is then led to non-standard cosmologies which for the first time 
at least can guarantee the conservation of the total, global energy, both in static and expanding universes showing that 
the action of so-called vacuum energy is nothing else but the increase of gravitational binding energy in an evolved 
self-structured universe with a correlation coefficient of α ≥  1. 5.

Introduction
Why Should Vacuum Energy Induce Antigravitation?
For fundamental conceptual reasons it may be necessary to first 
explore why at all a vacuum should gravitate, since, when really - 
as the word implies: representing “nothing”-, then it should most 
likely also not do anything, e.g. not induce gravitational actions. 
Atleast based on an understanding that the ancient greek atomists 
like Leukipos or Democritos had, the vacuum is a complete emp-
tiness simply offering disposable places, and thereby allowing the 
possibility for atoms to freely move from one place to others. One 
should then really in fact not expect any gravitational action from 
such a "place-holder"- vacuum.

The Greek philosopher Aristotle, however, brought into this con-
ceptual view his principle of nature‘s objection against emptiness 
(“horror vacui”). This is a new aspect realizing that "empty space 

around matter particles" is not as "empty" as it would be without 
those particles, but vacuum when surrounding matter is polarized 
by the existence or presence of this real matter. This idea did fur-
theron very much complicate the concept of vacuum making it 
nowadays a rather lengthy and even not yet finished story (e.g. 
see Blome and Priester, 1984, Fahr, 1989, 2004, Genz, 1996, Wes-
son, 1999, Barrow, 2000, Overduin and Wesson, 2002, Fahr, 2003, 
Peebles and Ratra, 2003, Kragh and Overduin, 2014). In the recent 
decades it became evident that vacuum must be energy-loaded (see 
e.g. Steeruwitz, 1975, Zel‘dovich, 1981, Birrell and Davies, 1982, 
Lamoreaux, 1997, Rafelsky and Müller, 1985, Blome et al., 2001) 
and by its energy it should hence , according to general-relativistic 
doctrines, also somehow influence or induce gravitational fields, 
- even, if it is not yet clear till today in which specific form that 
should take place.
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Nowadays the GRT action of the vacuum is taken into account by 
an appropriately formulated, hydrodynamical energy-momentum 
tensor Tμv

vac, formulating the metrical source of the energy sitting 
in the vacuum as described by a special, hydrodynamic-like fluid 
with vacuum pressure Pvac and with an equivalent vacuum mass 
energy density ρvac. Consequently with its constant vacuum energy 
density ϵvac=ρvacc

2, as assumed in the present-day standard cosmol-
ogy (see Bennet et al., 2003), one logically would obtain this ten-
sor in the form (see e.g. Overduin and Fahr, 2001)

where Uλ = 0 are the 4-vector components of the vacuum fluid ve-
locity vector which vanish when the system of the vacuum defines 
the rest frame. 

Thus this term, taken together with Einstein‘s cosmological con-
stant term Λ (Einstein, 1917), and placed on the right-hand side of 
the GRT field equations then leads to an "effective cosmological 
constant" given in the form:

The first problem - always seen after Einstein‘s introduction (1917) 
of his integration constant - is connected with the free choice con-
cerning the numerical value of Einstein‘s constant Λ , by its nature: 
an integration constant! One way to obtain a first answer to that 
question, at least for the completely empty, i.e. matter-free space, 
is a rationally pragmatic and aprioristic definition, - namely an an-
swer coming up from an apriori definition of how? empty space 
should be constituted and should physically manifest itself.

If it was always postulated as an "apriori" that the "completely 
empty space" should be free of any spacetime-curving sources, 
and thus free of local or global curvatures.

Consequently one has to require that selfparallelity of 4-vectors 
at parallel transports along closed wordlines in this empty space 
should be guaranteed, and that no action of empty space on freely 
propagating test photons occurs. Then as shown by Overduin and 
Fahr (2001) or Fahr (2004) the only viable solution is: Λeff,0 = 0! 
meaning that the cosmological constant should be fixed such that 

where ρvac,0 denotes the equivalent mass density of the vacuum of 
empty, i.e. matter-free space. Once fixed in this above form, the 
cosmological constant cannot be different from this value Λ0 in a 
matter-filled universe, simply meaning that in a matter-filled uni-
verse the effective quantity representing the action of the vacuum 
energy density is given by:

This, however, expresses the interesting fact that in a matter-filled 
universe only the difference between the values of the vacuum en-
ergy densities ρvac,0 of empty space and of matter-polarized space 
ρvac induces gravitational effects, i.e. influences the spacetime ge-
ometry. That at least could give the ardently looked-for explana-
tion, why obviously that vacuum energy calculated by field the-
oreticians (see e.g. Goenner, 1994) turns out to be 120 orders of 

magnitudes too large compared to what is needed and cosmologi-
cally admitted. - Obviously not the full magnitude of this vacuum 
energy gravitates!

This also points to the perhaps most astonishing fact that the geo-
metrically-, i.e. curvature-relevant vacuum energy density also 
depends on the matter distributed in space, and in a homogeneous 
universe this can only mean that: ρvac = ρvac (ρ), an idea that deeply 
reminds one to the views already developed by Aristotle at around 
400 bC. Though this idea of the vacuum state being influenced by 
the presence of matter in space appears to be reasonable in view 
of the analogue of real field sources polarizing space around them 
by acting on sporadic quantum fluctuations and partly screening 
off the strength of real field sources (see e.g. Rafelsky and Müller, 
1997), it nevertheless, however, remains hard to draw any quanti-
tative conclusions from that context. Amongst others, just for that 
reason we here shall try another way to find the unknown function:  
ρvac = ρvac (ρ).

What is Comologically to Expect from an Absolutely 
Empty Space?
The question what means "empty space", or synonymous for that - 
"vacuum" -, in fact is a very fundamental one and has already been 
put by mankind since the epoch of the greek natural philosophers 
till the present epoch of modern quantum field theoreticians. The 
changing opinions given in answers to this fundamental question 
over the changing epochs have been reviewed for example by 
Overduin and Fahr (2001), but we here do not want to repeat all of 
these different answers that have been given in the past, but only 
at the begin of this article we want to emphasize a few fundamen-
tal aspects of present-day thinking of the physical constitution of 
empty space. Especially challenging in this respect is the possibil-
ity that empty space could nevertheless be "energy-charged". This 
strange and controversial aspect we shall investigate further below 
in this article.

In our brief and first definition we want to denote empty space as 
a spacetime without any topified or localized energy representa-
tions, i.e. without energy singularities in form of point masses like 
baryons, leptons, darkions (i.e. dark matter particles) or photons, 
even without point-like quantum mechanical vacuum fluctuations. 
If then nevertheless it should be needed to discuss that such emp-
ty spaces could be still energy-loaded, then this energy of empty 
space has to be seen as a pure volume-energy, somehow connected 
with the magnitude of the volume or perhaps with a scalar quan-
tity of spacetime metrics, like for instance the global curvature of 
this space. In a completely empty space of this virtue of course no 
spacepoints can be distinguished from any others, and thus vol-
ume-energy or curvature, if existent, are numerically identical at 
all space coordinates.

Under these prerequisites it nevertheless would not be the most 
reasonable assumption, as many people believe, that vacuum ener-
gy density ϵvac = ρvacc

2 needs to be considered as a constant quantity 
whatever spacetime does or is forced to do, i.e. whether it expands, 
collapses or stagnates. This is simply true because the unit of vol-
ume is no cosmologically relevant quantity - and consequently 
vacuum energy density ρvac neither is. If at all, it would probably 
appear more reasonable to assume that the energy loading of a 
homologously comoving proper volume does not by its magnitude 
reflect the time that has passed in the cosmic evolution, i.e. perhaps 
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least based on an understanding that the ancient greek atomists like Leukipos or
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should hence , according to general-relativistic doctrines, also somehow influence or
induce gravitational fields, - even, if it is not yet clear till today in which specific form that
should take place.

Nowadays the GRT action of the vacuum is taken into account by an appropriately
formulated, hydrodynamical energy-momentum tensor T

vac, formulating the metrical
source of the energy sitting in the vacuum as described by a special, hydrodynamic-like
fluid with vacuum pressure pvac and with an equivalent vacuum mass energy density vac.
Consequently with its constant vacuum energy density vac  vacc2, as assumed in the
present-day standard cosmology (see Bennet et al., 2003), one logically would obtain
this tensor in the form (see e.g. Overduin and Fahr, 2001)

T
vac  vacc2  pvacUU  pvacg  vacc2g   #   

where U  0 are the 4-vector components of the vacuum fluid velocity vector which
vanish when the system of the vacuum defines the rest frame.

Thus this term, taken together with Einstein‘s cosmological constant term  (Einstein,
1917), and placed on the right-hand side of the GRT field equations then leads to an
"effective cosmological constant" given in the form:

eff  8G
c2 vac     #   

The first problem - always seen after Einstein‘s introduction (1917) of his integration
constant - is connected with the free choice concerning the numerical value of Einstein‘s
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free of any spacetime-curving sources, and thus free of local or global curvatures.
Consequently one has to require that selfparallelity of 4-vectors at parallel transports
along closed wordlines in this empty space should be guaranteed, and that no action of
empty space on freely propagating test photons occurs. Then as shown by Overduin and
Fahr (2001) or Fahr (2004) the only viable solution is: eff,0  0! , meaning that the
cosmological constant should be fixed such that
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where vac,0 denotes the equivalent mass density of the vacuum of empty, i.e.
matter-free space. Once fixed in this above form, the cosmological constant cannot be
different from this value 0 in a matter-filled universe, simply meaning that in a
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geometry. That at least could give the ardently looked-for explanation, why obviously
that vacuum energy calculated by field theoreticians (see e.g. Goenner, 1994) turns out
to be 120 orders of magnitudes too large compared to what is needed and
cosmologically admitted. - Obviously not the full magnitude of this vacuum energy
gravitates!

This also points to the perhaps most astonishing fact that the geometrically-, i.e.
curvature-relevant vacuum energy density also depends on the matter distributed in
space, and in a homogeneous universe this can only mean that: vac  vac , an idea
that deeply reminds one to the views already developed by Aristotle at around 400 bC.
Though this idea of the vacuum state being influenced by the presence of matter in
space appears to be reasonable in view of the analogue of real field sources polarizing
space around them by acting on sporadic quantum fluctuations and partly screening off
the strength of real field sources (see e.g. Rafelsky and Müller, 1997), it nevertheless,
however, remains hard to draw any quantitative conclusions from that context. Amongst
others, just for that reason we here shall try another way to find the unknown function:
vac  vac.

2. What is comologically to expect from an absolutely
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one should conclude that this specific quantity has to be a constant. 
But this then, surprisingly enough, would logically mean that the 
relevant quantity, instead of the vacuum energy density ϵvac, rather 
is 

where g3 is the determinant of the 3d-space metric which in case of 
a Robertson-Walker geometry is given by

with K denoting the curvature parameter, the function R = R (t) 
determines the time-dependent scale of the universe, and the dif-
ferential 3d-space volume element in normalized polar coordinates 
is given by

This finally then leads to the following relation

which then shows that a postulated invariance of evac consequent-
ly and logically would lead to a variability of the vacuum energy 
density in the form

which for instance would already exclude that Einstein‘s cosmo-
logical constant could ever be treated as an equivalent to a vacuum 
energy density, since requiring the identity Λ = 8πGρvac/c

2.

On the other hand the invariance of the vacuum energy per co-mov-
ing proper volume, evac, can of course only be expected with some 
physical sense, if this quantity does not do any work on the dynam-
ics of the cosmic geometry, especially by physically or causally 
influencing the evolution of the scale factor R (t) of the universe.

If, on the other hand, such a work is done and vacuum energy 
influences the dynamics of the cosmic spacetime (either by infla-
tion or deflation), as in case of a non-vanishing energy momentum 
tensor, then automatically thermodynamic requirements need to be 
fulfilled, for example relating vacuum energy density and vacuum 
pressure by the standard thermodynamic relation (see Goenner, 
1996)

This equation is shown to be fulfilled by an expression of the form

if the vacuum energy density itself is represented by a scale-de-
pendence ϵvac ⁓ Rn. Then, however, it turns out that the above ther-
modynamic condition, besides for the trivial case n = 3 when the 
vacuum does not at all act as a pressure (since pvac(n = 3) = 0) , is 
only non-trivially fulfilled for exponents , thus allowing for n = 0 , 
i.e. a constant vacuum energy density ϵvac ⁓ R0 = const.

A more rigorous and highly interesting restriction for n is obtained 
when one recognizes that the above thermodynamic expression (9) 
under cosmic conditions needs to be enlarged by a term represent-
ing the work that the expanding volume does against the internal 
gravitational binding of this volume. For mesoscale gas dynamics 
(aerodynamics, meteorology etc.) this term does usually not play 
any role, however, on cosmic scales there is a need to take into 
account this term. Under cosmic perspectives binding energy is an 
absolutely necessary quantity to be brought into the gravodynam-
ical or thermodynamical energy balance. As worked out in quan-
titative terms by Fahr and Heyl (2007a/b) this then leads to the 
following completed relation

where the last term accounts for internal gravitational binding en-
ergy.

This completed equation, as one can easily show, is also solved by 
the relation of the form                                  leading to the requirement

which, however, now is fulfilled only by: n = 2! meaning that the 
corresponding cosmic vacuum energy density must vary like

ϵvac ⁓ R-2

This consequently means that, if it has to be taken into account 
that vacuum energy acts upon spacetime in a thermodynamical 
sense, then the most reasonable assumption for the vacuum energy 
density would be to assume that it drops off with the expansion 
inversely proportional to the square of the cosmic scale - instead 
of being a constant.

Does Progress in Cosmologic Structure Formation Accel-
erate Cosmic Expansion?
Cosmic structure formation denotes the phenomenon of grow-
ing clumpiness of the cosmic matter distribution in cosmic space 
during the ongoing evolution of the expanding universe, i.e. the 
origin of larger and larger mass structures like galaxies, clusters 
or super-clusters of galaxies. Usually one does start cosmology 
with the assumption that at the beginning of cosmic time and the 
evolution of the universe cosmic space has a uniform deposition 
with matter and energy, justifying the use of the famous Robert-
son-Walker geometry. The question then may arise whether or 
not the later cosmic expansion dynamics and the scale evolution                   
.                may then be influenced by an ongoing structure for-
mation, as it has to happen in order to create the hierarchically 
structured present-day universe from its earlier uniformity? May 
this process of an upcoming structuration perhaps influence the 
ongoing Hubble expansion of the universe, either accelerating or 
perhaps decelerating its expansion with respect to the solutions 
of a normal Friedmann universe (e.g. see Goenner, 1996)? - This, 

The question what means "empty space" , or synonymous for that - "vacuum" - , in
fact is a very fundamental one and has already been put by mankind since the epoch of
the greek natural philosophers till the present epoch of modern quantum field
theoreticians. The changing opinions given in answers to this fundamental question over
the changing epochs have been reviewed for example by Overduin and Fahr (2001), but
we here do not want to repeat all of these different answers that have been given in the
past, but only at the begin of this article we want to emphasize a few fundamental
aspects of present-day thinking of the physical constitution of empty space. Especially
challenging in this respect is the possibility that empty space could nevertheless be
"energy-charged". This strange and controversial aspect we shall investigate further
below in this article.

In our brief and first definition we want to denote empty space as a spacetime without
any topified or localized energy representations, i.e.without energy singularities in form
of point masses like baryons, leptons, darkions (i.e. dark matter particles) or photons,
even without point-like quantum mechanical vacuum fluctuations. If then nevertheless it
should be needed to discuss that such empty spaces could be still energy-loaded, then
this energy of empty space has to be seen as a pure volume-energy, somehow
connected with the magnitude of the volume or perhaps with a scalar quantity of
spacetime metrics, like for instance the global curvature of this space. In a completely
empty space of this virtue of course no spacepoints can be distinguished from any
others, and thus volume-energy or curvature, if existent, are numerically identical at all
space coordinates.
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assumption, as many people believe, that vacuum energy density vac  vacc2 needs to
be considered as a constant quantity whatever spacetime does or is forced to do, i.e.
whether it expands, collapses or stagnates. This is simply true because the unit of
volume is no cosmologically relevant quantity - and consequently vacuum energy density
vac neither is. If at all, it would probably appear more reasonable to assume that the
energy loading of a homologously comoving proper volume does not by its magnitude
reflect the time that has passed in the cosmic evolution, i.e. perhaps one should
conclude that this specific quantity has to be a constant. But this then, surprisingly
enough, would logically mean that the relevant quantity, instead of the vacuum energy
density vac, rather is

evac  vac g3 d3V   #   

where g3 is the determinant of the 3d-space metric which in case of a
Robertson-Walker geometry is given by

g3  g11g22g33   1
1  Kr2

R6r4 sin2   #   

with K denoting the curvature parameter, the function R  Rt determines the
time-dependent scale of the universe, and the differential 3d-space volume element in
normalized polar coordinates is given by

d3V  drdd   #   
This finally then leads to the following relation

evac  vac R6r4 sin2/1  Kr2 drdd  vac R3

1  Kr2
r2 sindrdd
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challenging in this respect is the possibility that empty space could nevertheless be
"energy-charged". This strange and controversial aspect we shall investigate further
below in this article.

In our brief and first definition we want to denote empty space as a spacetime without
any topified or localized energy representations, i.e.without energy singularities in form
of point masses like baryons, leptons, darkions (i.e. dark matter particles) or photons,
even without point-like quantum mechanical vacuum fluctuations. If then nevertheless it
should be needed to discuss that such empty spaces could be still energy-loaded, then
this energy of empty space has to be seen as a pure volume-energy, somehow
connected with the magnitude of the volume or perhaps with a scalar quantity of
spacetime metrics, like for instance the global curvature of this space. In a completely
empty space of this virtue of course no spacepoints can be distinguished from any
others, and thus volume-energy or curvature, if existent, are numerically identical at all
space coordinates.

Under these prerequisites it nevertheless would not be the most reasonable
assumption, as many people believe, that vacuum energy density vac  vacc2 needs to
be considered as a constant quantity whatever spacetime does or is forced to do, i.e.
whether it expands, collapses or stagnates. This is simply true because the unit of
volume is no cosmologically relevant quantity - and consequently vacuum energy density
vac neither is. If at all, it would probably appear more reasonable to assume that the
energy loading of a homologously comoving proper volume does not by its magnitude
reflect the time that has passed in the cosmic evolution, i.e. perhaps one should
conclude that this specific quantity has to be a constant. But this then, surprisingly
enough, would logically mean that the relevant quantity, instead of the vacuum energy
density vac, rather is

evac  vac g3 d3V   #   

where g3 is the determinant of the 3d-space metric which in case of a
Robertson-Walker geometry is given by

g3  g11g22g33   1
1  Kr2

R6r4 sin2   #   

with K denoting the curvature parameter, the function R  Rt determines the
time-dependent scale of the universe, and the differential 3d-space volume element in
normalized polar coordinates is given by

d3V  drdd   #   
This finally then leads to the following relation

evac  vac R6r4 sin2/1  Kr2 drdd  vac R3
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which then shows that a postulated invariance of evac consequently and logically would
lead to a variability of the vacuum energy density in the form

vac  vacc2  Rt3   #   
which for instance would already exclude that Einstein‘s cosmological constant could

ever be treated as an equivalent to a vacuum energy density, since requiring the identity
  8Gvac/c2.

On the other hand the invariance of the vacuum energy per co-moving proper volume,
evac, can of course only be expected with some physical sense, if this quantity does not
do any work on the dynamics of the cosmic geometry, especially by physically or
causally influencing the evolution of the scale factor Rt of the universe.

If , on the other hand, such a work is done and vacuum energy influences the
dynamics of the cosmic spacetime (either by inflation or deflation), as in case of a
non-vanishing energy-momentum tensor, then automatically thermodynamic
requirements need to be fulfilled, for example relating vacuum energy density and
vacuum pressure by the standard thermodynamic relation (see Goenner, 1996)

d
dR vacR3  pvac d

dR R3   #   

This equation is shown to be fulfilled by an expression of the form

pvac   3  n
3 vac   #   

if the vacuum energy density itself is represented by a scale-dependence vac  Rn.
Then, however, it turns out that the above thermodynamic condition, besides for the
trivial case n  3 when the vacuum does not at all act as a pressure (since
pvacn  3  0) , is only non-trivially fulfilled for exponents n  3 , thus allowing for n  0
, i.e. a constant vacuum energy density vac  R0  const.

A more rigorous and highly interesting restriction for n is obtained when one
recognizes that the above thermodynamic expression 9 under cosmic conditions needs
to be enlarged by a term representing the work that the expanding volume does against
the internal gravitational binding of this volume. For mesoscale gas dynamics
(aerodynamics, meteorology etc.) this term does usually not play any role, however, on
cosmic scales there is a need to take into account this term. Under cosmic perspectives
binding energy is an absolutely necessary quantity to be brought into the
gravodynamical or thermodynamical energy balance. As worked out in quantitative
terms by Fahr and Heyl ( 2007a/b) this then leads to the following completed relation

d
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dR R3  82G
15c4

d
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where the last term accounts for internal gravitational binding energy.
This completed equation, as one can easily show, is also solved by the relation of the

form pvac   3n
3 vac leading to the requirement
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which, however, now is fulfilled only by: n  2 !, meaning that the corresponding
cosmic vacuum energy density must vary like
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which, however, now is fulfilled only by: n  2 !, meaning that the corresponding
cosmic vacuum energy density must vary like

vac  R2   #   
This consequently means that, if it has to be taken into account that vacuum energy

acts upon spacetime in a thermodynamical sense, then the most reasonable assumption
for the vacuum energy density would be to assume that it drops off with the expansion
inversely proportional to the square of the cosmic scale - instead of being a constant.

3. Does progress in cosmologic structure formation
accelerate cosmic expansion?

Cosmic structure formation denotes the phenomenon of growing clumpiness of the
cosmic matter distribution in cosmic space during the ongoing evolution of the expanding
universe, i.e. the origin of larger and larger mass structures like galaxies, clusters or
super-clusters of galaxies. Usually one does start cosmology with the assumption that at
the beginning of cosmic time and the evolution of the universe cosmic space has a
uniform deposition with matter and energy, justifying the use of the famous
Robertson-Walker geometry. The question then may arise whether or not the later
cosmic expansion dynamics and the scale evolution R  dR/dt may then be influenced
by an ongoing structure formation, as it has to happen in order to create the hierachically
structured present-day universe from its earlier uniformity? May this process of an
upcoming structuration perhaps influence the ongoing Hubble expansion of the universe,
either accelerating or perhaps decelerating its expansion with respect to the solutions of
a normal Friedmann universe (e.g. see Goenner, 1996)? - This, however, could simply
be due to the fact that under the new conditions of selfstructuring matter the effective
mass density eff  efft of the universe is not behaving, like it normally does in a
Friedmann universe as   0  R0/R3, but rather as eff  eff,0tR0/R3.

First we start an easy-minded exercise showing that gravitational structure formation
in the universe may in fact have the quite unexpected tendency to accelerate, like a
force would do, the Hubble flow velocity, - a virtue that is nowadays all over in the
modern cosmological literature ascribed to the action of a vacuum pressure pvac (see
e.g. Peebles and Ratra, 2003, Perlmutter et al., 1999, Perlmuttter, 2003, Riess et al.,
1998, Schmidt et al., 1998). We shall start assuming that cosmic structure formation has
started to develop at some past epoch of cosmic evolution reaching nowadays some
organized state of matter distribution, such that not anymore a homogeneous matter
density distribution prevails, but instead a point-related, homogeneous distribution,
however, of a hierarchically organized matter distribution. In fact from galactic number
count statistics one presently knows that the hierarchical state of the present universe
manifests itself by observed local two-point correlation functions l expressing the
probability to find another galaxy at a distance l from any arbitrary local space point. For
an unstructured, homogeneous matter distribution the function  would of course be a
constant, in cosmic reality, however, this two-point correlation probability over wide
ranges of scales has observationally proven to fall off according to the following function:

l  l0   l0l    #   

with the power index   1.8 and some inner scale l0 typical for galaxies (see Bahcall
and Chokski; 1992). In terms of matter density this expresses an organized cosmic
matter distribution, however, so that the average density over cosmic scales R has not
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however, could simply be due to the fact that under the new condi-
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First we start an easy-minded exercise showing that gravitational 
structure formation in the universe may in fact have the quite un-
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flow velocity, - a virtue that is nowadays all over in the modern 
cosmological literature ascribed to the action of a vacuum pressure 
pvac (see e.g. Peebles and Ratra, 2003, Perlmutter et al., 1999, Per-
lmuttter, 2003, Riess et al., 1998, Schmidt et al., 1998). We shall 
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velop at some past epoch of cosmic evolution reaching nowadays 
some organized state of matter distribution, such that not anymore 
a homogeneous matter density distribution prevails, but instead a 
point-related, homogeneous distribution, however, of a hierarchi-
cally organized matter distribution. In fact from galactic number 
count statistics one presently knows that the hierarchical state of 
the present universe manifests itself by observed local two-point 
correlation functions ξ(l) expressing the probability to find another 
galaxy at a distance l from any arbitrary local space point. For 
an unstructured, homogeneous matter distribution the function ξ 
would of course be a constant, in cosmic reality, however, this two-
point correlation probability over wide ranges of scales has obser-
vationally proven to fall off according to the following function:

with the power index α ≃ 1.8 and some inner scale l0 typical for gal-
axies (see Bahcall and Chokski; 1992). In terms of matter density 
this expresses an organized cosmic matter distribution, however, 
so that the average density over cosmic scales R has not changed 
compared to the value of the associated homogeneous universe. 
Nevertheless, a clustering appears at local scales l ≤ R with higher 
than average densities. This clustering, however, is automatically 
associated with a more pronounced gravitational binding of this 
organized matter, i.,e. more negative gravitational potential ener-
gy has developed during the process of structuring. The important 
question thus must be posed: How does this affect cosmic expan-
sion dynamics?

To calculate the local potential energy of gravitating matter we 
start from that local density distribution ρ(l) corresponding to the 
probability function ξ(l) given by Equ.(34) and write the associat-
ed density of clustered matter in the form ρ(l)= ρ0,α (l/ l0 )

-α there by 
representing the number of stars at a spherical shell (4πl2) by their 
standard masses mS. Then in order to conserve the initial mass at 
the structuring process, the associated central density ρ0,α has to be 
defined by the following value

with lm as an outer integration scale, and ρ denoting the average 
mass density in the associated homogeneous universe. This obvi-
ously limits the structure coefficient to values α ≤ 3.

Figure 1: Density in a structured universe as function of the dis-
tance l/l0 for different correlation indices α

Now the total self-gravitation energy of this organized matter with-
in a scale lm can then be calculated according to an integration pro-
cedure described by Fahr and Heyl (2007) in the following form:
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posed: How does this affect cosmic expansion dynamics?
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and write the associated density of clustered matter in the form l  0, l/l0
thereby representing the number of stars at a spherical shell 4l2 by their standard
masses mS. Then in order to conserve the initial mass at the structuring process, the
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with lm as an outer integration scale, and  denoting the average mass density in the
associated homogeneous universe. This obviously limits the structure coefficient to
values   3.
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where the normalized distance scale has been defined by x  l/l0. Hence one obtains
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Evaluation of the integral expression yields
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and when taking xm  1 leads to
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With the requirement 0  3
3 xm this finally delivers

potlm  423  
95  2 G 2l05xm5   #   

obviously limiting the permittable structure coefficient to values   2.5. It is interesting
to recognize that for   0 (i.e. homogeneous matter distribution) in fact the potential
energy of a homogeneously matter-filled sphere with radius lm is found, which does not
vanish, but has a finite value, namely pot  0  42

15 G 2lm5 (see Fahr and Heyl,
2007). This latter binding energy , however, is fully incorporated by the
Friedmann-Lemaitre cosmology as the one reponsible for the deceleration of the normal
Hubble expansion of the universe. If in contrast the cosmic deceleration turns out to be
less than that , or it even indicates an acceleration, then in our view this must be
ascribed to the increased production of binding energy due to the upcome of structure
formation, i.e. what counts is the difference pot  pot  pot  0 between a
structured and an unstructured universe.

.
The value pot  0 hereby serves as a reference value for that potential energy in

the associated, re-homogenized universe. This means what really counts in terms of
binding energy of a structured universe causing a deviation from the expansion of the
Friedmann-Lemaitre universe is the difference pot between structured and the
unstructured universe, since naturally the unstructured universe has its own,
nonvanishing amount of binding energy, i.e in general cases one obtains:
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Equating now this actually counting potential energy pot, lm with a corresponding,
equivalent, cosmic density reduction    eff    one finds:
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fully incorporated by the Friedmann-Lemaitre cosmology as the 
one reponsible for the deceleration of the normal Hubble expan-
sion of the universe. If in contrast the cosmic deceleration turns 
out to be less than that, or it even indicates an acceleration, then 
in our view this must be ascribed to the increased production of 
binding energy due to the upcome of structure formation, i.e. what 
counts is the difference                                                       between 
a structured and an unstructured universe.

The value ϵPot (α=0) hereby serves as a reference value for that 
potential energy in the associated, re-homogenized universe. This 
means what really counts in terms of binding energy of a struc-
tured universe causing a deviation from the expansion of the Fried-
mann-Lemaitre universe is the difference ΔϵPot between structured 
and the unstructured universe, since naturally the unstructured uni-
verse has its own, nonvanishing amount of binding energy, i.e in 
general cases one obtains:

Equating now this actually counting potential energy ϵPot(α, lm) 
with a corresponding, equivalent, cosmic density reduction .                                
one finds:

leading to a density reduction by:

This expression tells us that the equivalent density reduction Δρ is 
proportional to the actual average cosmic density ρ. When look-
ing especially now for the situation that ρ equals Δρ, i.e. that the 
upper amount of gravitational binding would completely reduce 
the effective density to zero, would then indicate a critical density 
value ρc of:

The unstructured universe (α = 0) would thus have a vanishing 
effective density ρc associated with a density value:

or a total mass within the scale R of the universe of

This would mean that under these conditions the universe would 
have an outer scale Rc smaller than its Schwarzschildradius Rcs, 
namely:

This by the way does mean that the Big-Bang universe expected 

to originate from a vanishing scale R ≤ Rc does at its earliest times 
in any case sit deeply in its Schwarzschild radius and does con-
sequently not have any gravitationally active matter at this early 
cosmic phase.

Taking lm as the outer scale R of the universe and taking the max-
imum of this scale to be given by R = c/H in addition leads one to 
the expression:

which in fact is astonishingly close to the value for the critical cos-
mic density value ρcr that defines, as one may know, an uncurved 
Friedman universe, i.e. one with the curvature k = 0!.

The Evolution of the Hubble Parameter
The above result leads to the question of what Hubble parameter 
H = H (t) one may expect to prevail at the different cosmologic 
evolution times t. For Friedman-Lemaître-Robertson-Walker cos-
mologies (FLRW) the Hubble parameter H(t)=R(t)/R(t) generally 
is not a constant, but is given in form of the following differential 
equation (derived from the 1. Friedman equation; e.g. see Goen-
ner, 1996, Peebles and Ratra, 2003, Fahr, 2016, 2022):

where G again is Newton‘s gravitational constant, and ρb, ρD, ρv, 
ρ˄, denote the relevant equivalent cosmic mass densities ρb, ρD, ρv, 
ρ˄ of baryons, of dark matter, of photons, and of the vacuum ener-
gy. In case all of these quantities do count for the same cosmologic 
period, then it is complicated to find a closed solution for H(t) and 
R(t) over these cosmic times, because ρB may vary proportional 
to R-3, ρD most probably also according to R-3, but ρv is generally 
thought to vary according to R-4 (see Goenner, 1996, or Fahr and 
Heyl, 2017, 2018). Amongst these quantities the cosmic vacuum 
energy density ρ˄ is perhaps physically the least certain quantity, 
but - if it is described with Einstein´s cosmological constant ˄-, 
then it represents a positive, constant energy density, i.e its mass 
equivalent ρ˄ in connection with a constant and positive vacuum 
energy density ˄. would consequently as well be a positive, con-
stant quantity. This in fact would offer for the late phases of cosmic 
expansion, i.e. for ρ˄ ≫ ρB, ρD, ρv an easy and evident solution of 
the above equation for the late Hubble parameter H=H(t)=H(˄):

Namely from recent supernova SN1a observations (Permutter et 
al., 1999, Perlmutter, 2003, Riess et al., 1998, Schmidt et al., 1998) 
it has been concluded that at the present cosmic era, most prob-
ably already sometimes ago, we were and are in an accelerated 
expansion phase of the universe. Taking it serious that this is due 
to the term ˄ connected with cosmologic vacuum energy density, 
this then expresses the fact that ρ˄ is the dominant quantity in the 
universe amongst the other upper ingredients ρB, ρD, ρv.

Then in fact we can assume that the above differential equation 
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This expression tells us that the equivalent density reduction  is proportional to the
actual average cosmic density  .

When looking especially now for the situation that  equals , i.e. that the upper
amount of gravitational binding would completely reduce the effective density to zero,
would then indicate a critical density value  c of:

 c  1
 3

352 
1
5  4Glm2

c2

The unstructured universe (  0) would thus have a vanishing effective density c

associated with a density value:

 c  15c2

12Glm2

or a total mass within the scale R of the universe of

MuR  4
3 R3 c  5c2R

3G
This would mean that under these conditions the universe would have an outer scale

Rc smaller than its Schwarzschildradius Rcs , namely:

Rc  3
10 Rcs

This by the way does mean that the Big-Bang universe expected to originate from a
vanishing scale R  Rc does at its earliest times sit deeply in its Schwarzschild radius
and does consequently not have any gravitationally active matter at this early cosmic
phase.

Taking lm as the outer scale R of the universe and taking the maximum of this scale to
be given by R  c/H in addition leads one to the expression:

 c  0  5
3  9

4 2 H2

G  5
3  9

4 2 1
G  RR 2  3H2

8G
which in fact is astonishingly close to the value for the critical cosmic density value cr

that defines, as one may know, an uncurved Friedman universe, i.e. one with the
curvature k  0!.

4. The evolution of the Hubble parameter
The above result leads to the question of what Hubble parameter H  Ht one may

expect to prevail at the different cosmologic evolution times t. For
Friedman-Lemaître-Robertson-Walker cosmologies (FLRW) the Hubble parameter
Ht  R t/Rt generally is not a constant, but is given in form of the following
differential equation (derived from the 1. Friedman equation; e.g. see Goenner, 1996,
Peebles and Ratra, 2003, Fahr, 2016, 2022):

H2  R 2
R2  8G

3 B  D    

where G again is Newton‘s gravitational constant, and B,D,, denote the
relevant equivalent cosmic mass densities B, D, ,  of baryons, of dark matter, of
photons, and of the vacuum energy. In case all of these quantities do count for the same
cosmologic period, then it is complicated to find a closed solution for Ht and Rt over
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associated with a density value:
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This would mean that under these conditions the universe would have an outer scale

Rc smaller than its Schwarzschildradius Rcs , namely:

Rc  3
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This by the way does mean that the Big-Bang universe expected to originate from a
vanishing scale R  Rc does at its earliest times sit deeply in its Schwarzschild radius
and does consequently not have any gravitationally active matter at this early cosmic
phase.

Taking lm as the outer scale R of the universe and taking the maximum of this scale to
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for the Hubble parameter H=H(t) can be written in a much more 
simplified form:

Under these auspices the expansion of the universe is described by 
the expression:

with R0 and t0 denoting the present-day scale of the universe and 
the present cosmic time.

The Kinetic Transport Equation for Cosmic Gases in an 
Expanding Hubble Universe
Here we may start out from the generally accepted assumption in 
modern cosmology, that during the collision-dominated phase of 
the cosmic evolution, just before the time of matter recombination, 
matter and radiation, due to frequent energy exchange processes, 
are in complete thermodynamic equilibrium, i.e. matter and radia-
tion temperatures are identical Tm=Tv=T0 . In the following cosmic 
evolution this equilibrium, however, will experience perturba-
tions. Even if a Maxwellian distribution would actually prevail at 
the entrance to the collision-free cosmic expansion phase, it would 
not have persisted at times then after. Just after the recombination 
phase when electrons and protons recombine to H-atoms, and pho-
tons start propagating through cosmic space practically without 
further interaction with matter, the thermodynamic contact be-
tween matter and radiation furtheron is abolished or completely 
switched off (see e.g. Partridge, 1965, Fahr and Loch, 1991, Fahr 
and Zoennchen, 2009, Fahr, 2021).

This expresses the need to care for a kinetic description of cosmic 
gases at times after matter recombination. To enlucidate this point 
a little deeper, let us consider here a collision-free particle popula-
tion in an expanding, spatially symmetric Robertson-Walker uni-
verse. Hereby it is clear that due to the cosmological principle and 
the requirement of spatial homogeneity, the velocity distribution 
function f(v,t) of the particles must be isotropic in velocity space 
v and independent on the local cosmic place x. Thus it must be of 
the following general form

Where n(t) denotes the time-variable, cosmic density, only de-
pending on the worldtime t, and f ̅(v,t) is the normalized, time-de-
pendent, isotropic velocity distribution function with the property:

If we now face the fact that particles, moving freely with their ve-
locity v into their v⃗-associated direction over a distance l, at their 
new place have to restitute the actual cosmic distribution there, de-
spite the differential Hubble flow and the explicit time-dependence 

of f, then a locally prevailing co-variant distribution function f(v‘, 
t́) must exist with the property that the two associated functions 
f(v‘, t)́ and f(v, t) are related to each other in a Liouville-conform 
way (see e.g. Cercigniani, 1988, Landau-Lifshitz, 1990). To fix 
this required relation needs some special care, since particles that 
are freely moving in a homologously expanding Hubble universe, 
do in this specific case at their motions not conserve their associ-
ated phasespace volumes d6Ф=d3vd3x, as they usually do in clas-
sical gas dynamics. This is because in a homologously expanding 
cosmic space no particle Lagrangian L(v,x) exists as usually in gas 
dynamics, and thus no Hamiltonian canonical relations of their dy-
namical coordinates v and x are valid. Consequently Liouville‘s 
theorem (see e.g Chapman and Cowling, 1952) does not require 
that the differential 6D-phase space volumes d6Ф are identical, but 
that the conjugated differential phase space densities are identical 
to guarantee particle conservation. This is expressed by the fol-
lowing relation:

When arriving at the place x´ these particles, after passage over a 
distance l are incorporated into a particle population which has a 
relative Hubble drift with respect to the origin of the particle given 
by vH = l.H co-aligned with v⃗. Thus the original particle velocity v 
registered at the new place x´ appears as locally tuned down to v‘= 
v-l.H since at the present place x´, deplaced from the original place 
x by the increment l, all velocities have to be judged with respect to 
the new local reference frame (standard of rest) with its differential 
Hubble drift of  (l.H) relative to the particle´s origin.

If all of that is taken into account, it can be shown (see Fahr, 2o21a) 
that one finally is led to the following kinetic transport equation:

This partical differential equation should allow to derive the re-
sulting distribution function as function of the velocity v and of 
the cosmic time t.

As it was shown already by Fahr (2021a), the above kinetic trans-
port equation does not allow for a solution in the form of a separa-
tion of variables, i.e. putting f(v, t) = ft (t).fv(v) but one rather needs 
a different, non-straightforward method of finding a kinetic solution 
of this above transport equation Equ.(40). Under the assumption 
a) that at time t = t0 still a Maxwellian distribution is valid, and b) 
that since that time a constant Hubble parameter H0 = H˄ prevails, 
one can then write the actual distribution function derived with 
the above partial differential equation in the following form (Fahr, 
2021b):

where v0 denotes the thermal velocity by v0
2 = kT0/m at the time 

t0, when a temperature T(t0) = T0 prevails. Hereby the normalized 
velocity coordinate x was introduced by x = v/v0. Furthermore it 
turns out that one can interprete the actually prevailing distribution 

these cosmic times, because B may vary proportional to R3, D most probably also
according to R3, but  is generally thought to vary according to R4 ( see Goenner,
1996, or Fahr and Heyl, 2017, 2018). Amongst these quantities the cosmic vacuum
energy density  is perhaps physically the least certain quantity, but - if it is described
with Einstein´s cosmological constant  - , then it represents a positive, constant energy
density, i.e its mass equivalent  in connection with a constant and positive vacuum
energy density  would consequently as well be a positive, constant quantity. This in fact
would offer for the late phases of cosmic expansion , i.e. for   B,D, an easy and
evident solution of the above equation for the late Hubble parameter H  Ht  H:

Namely from recent supernova SN1a observations (Permutter et al., 1999, Perlmutter,
2003, Riess et al., 1998, Schmidt et al., 1998) it has been concluded that at the present
cosmic era, most probably already some times ago, we were and are in an accelerated
expansion phase of the universe. Taking it serious that this is due to the term 
connected with cosmologic vacuum energy density, this then expresses the fact that 
is the dominant quantity in the universe amongst the other upper ingredients B, D, .
Then in fact we can assume that the above differential equation for the Hubble
parameter H  Ht can be written in a much more simplified form:

H  R
R  8G

3 B  D      8G
3   const

Under these auspices the expansion of the universe is described by the expression:

Rt  R0 exp 8G
3  t  t0  R0 expHt  t0   #   

with R0 and t0 denoting the present-day scale of the universe and the present cosmic
time.

5. The kinetic transport equation for cosmic gases
in an expanding Hubble universe

Here we may start out from the generally accepted assumption in modern cosmology,
that during the collision-dominated phase of the cosmic evolution, just before the time of
matter recombination, matter and radiation, due to frequent energy exchange processes,
are in complete thermodynamic equilibrium, i.e. matter and radiation temperatures are
identical Tm  T  T0. In the following cosmic evolution this equilibrium, however, will
experience perturbations. Even if a Maxwellian distribution would actually prevail at the
entrance to the collision-free cosmic expansion phase, it would not have persisted at
times then after. Just after the recombination phase when electrons and protons
recombine to H-atoms, and photons start propagating through cosmic space practically
without further interaction with matter, the thermodynamic contact between matter and
radiation furtheron is abolished or completely switched off (see e.g. Partridge, 1965,
Fahr and Loch, 1991, Fahr and Zoennchen, 2009, Fahr, 2021).

This expresses the need to care for a kinetic description of cosmic gases at times
after matter recombination. To enlucidate this point a little deeper, let us consider here a
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that time a constant Hubble parameter H0  H prevails, one can then write the actual
distribution function derived with the above partial differential equation in the following
form (Fahr, 2021b):

fv, t  n0 exp3Ht  t0 
1  Ht  t03

3/2v0
3 expx2  1  Ht  t02

where v0 denotes the thermal velocity by v0
2  kT0/m at the time t0, when a temperature

Tt0  T0 prevails. Hereby the normalized velocity coordinate x was introduced by
x  v/v0. Furthermore it turns out that one can interprete the actually prevailing
distribution function fv, t as an actual Maxwellian with the time-dependent temperature
Tt given by:

Tt  T0
1  Ht  t02

and a time-dependent density
nt  n0 exp3Ht  t0

Hence one finds that under the given cosmologic auspices of a Hubble expansion with
the constant Hubble parameter H the thermal energy of matter in this universe
increases like:

therm  4
3 R3  nt   3

2 kTt  4
3

3/2n0kT0R0
3

1  Ht  t02

meaning that the thermal energy of the matter in the whole Hubble universe of this
type increases - violating normal, thermodynamical principles, since here the
temperature of matter increaes with the increase of cosmic space. This would, however,
indicate a total energy increase occuring in this universe with ongoing time, - somehow
giving an alarm to the physics operating here.

Now, at this place of the argumentation, an interesting idea may be brought into this
mysterious game; namely that the increase in thermal energy of cosmic matter is just
compensated by the increase in negatively valued ,cosmic binding energy pot, lm

due to ongoing structure formation, i.e. increase of the correlation coefficient , the latter
being suspected here as the true reason for the operation of a so-called "vacuum
pressure" corresponding to an equivalent mass density of   c2/8G .

To pursue a little more this idea, we start from the two competing quantities, i.e. the
potential binding energy on one hand:

pot, lm  42

3 
3  

35  2  1
5 G 2R5

and the thermal energy difference of cosmic matter on the other hand:

therm  4
3 R3  nt   3

2 kTt  4
3 3/2n0kT0R0

3 1
1  Ht  t02

 1

Now, in order to guarantee energy conservation, we shall require that the change with
cosmic time t of the first quantity pot, lm is equal to the negative change of the
second quantity therm which leads us to the following request:

(43)
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1  Ht  t02

meaning that the thermal energy of the matter in the whole Hubble universe of this
type increases - violating normal, thermodynamical principles, since here the
temperature of matter increaes with the increase of cosmic space. This would, however,
indicate a total energy increase occuring in this universe with ongoing time, - somehow
giving an alarm to the physics operating here.

Now, at this place of the argumentation, an interesting idea may be brought into this
mysterious game; namely that the increase in thermal energy of cosmic matter is just
compensated by the increase in negatively valued ,cosmic binding energy pot, lm

due to ongoing structure formation, i.e. increase of the correlation coefficient , the latter
being suspected here as the true reason for the operation of a so-called "vacuum
pressure" corresponding to an equivalent mass density of   c2/8G .

To pursue a little more this idea, we start from the two competing quantities, i.e. the
potential binding energy on one hand:

pot, lm  42

3 
3  

35  2  1
5 G 2R5

and the thermal energy difference of cosmic matter on the other hand:

therm  4
3 R3  nt   3

2 kTt  4
3 3/2n0kT0R0

3 1
1  Ht  t02

 1

Now, in order to guarantee energy conservation, we shall require that the change with
cosmic time t of the first quantity pot, lm is equal to the negative change of the
second quantity therm which leads us to the following request:

d
dt 

42

3 
3  

35  2  1
5 G 2R5   d

dt 
4
3

3/2n0kT0R0
3

1  Ht  t02


leading to:

d
dt 4

3  
35  2  1

5 G 0
2 R0

R 3R5   d
dt 

3/2n 0kT0R0
3

1  Ht  t02


or furtheron:

4 d
dt 

3  
35  2  1

5 G 0
2R0

3R2  
3  

35  2  1
5 8G 0

2R0
3RR  

 3/2n 0kT0R0
3 d
dt 

1
1  Ht  t02



or, when assuming the correlation coefficient   t as a time-dependent quantity:

4 d
dt 

3  
35  2  1

5 G 0
2R0

3R2  
3  

35  2  1
5 8G0

2R0
3R2H 

3/2n 0kT0R0
3 2H

1  Ht  t03


and furthermore:

d
dt

1
2 

3  
65  2   

3  
35  2  1

5 H  3/2n0kT0R0
3

8G 0
2R0

3R2  2H

1  Ht  t03


Now one can express R as function of t by putting: Rt  R0 expHt  t0 (see
Equ.(43) and one obtains:

d
dt 

3  
65  2   

3  
35  2  1

5 H  3/2n0kT0

8G 0
2R0

2 exp2Ht  t0
2H

1  Ht  t03

Next we obtain from:

d
dt 

3  
65  2    

65  2  3  2 
65  22    1

65  2  3  
35  22 

and with the following selfsuggestive guess for the time-dependence of the correlation
coefficient :   0 expHt  t0 with 0  1.8 one finds:

 
65  2  3  

35  22  3  
35  2  1

5   3/2n0kT0

8G 0
2R0

2 exp2Ht  t0
2

1  Ht  t03

yielding furthermore:
30  21
65  22

 1
5  3/2n0kT0

8G 0
2R0

2 exp2Ht  t0
 2

1  Ht  t03

Approximating the exponential function for small arguments (i.e.2Ht  t0  1) then
yields:

that time a constant Hubble parameter H0  H prevails, one can then write the actual
distribution function derived with the above partial differential equation in the following
form (Fahr, 2021b):

fv, t  n0 exp3Ht  t0 
1  Ht  t03

3/2v0
3 expx2  1  Ht  t02

where v0 denotes the thermal velocity by v0
2  kT0/m at the time t0, when a temperature

Tt0  T0 prevails. Hereby the normalized velocity coordinate x was introduced by
x  v/v0. Furthermore it turns out that one can interprete the actually prevailing
distribution function fv, t as an actual Maxwellian with the time-dependent temperature
Tt given by:

Tt  T0
1  Ht  t02

and a time-dependent density
nt  n0 exp3Ht  t0

Hence one finds that under the given cosmologic auspices of a Hubble expansion with
the constant Hubble parameter H the thermal energy of matter in this universe
increases like:

therm  4
3 R3  nt   3

2 kTt  4
3

3/2n0kT0R0
3

1  Ht  t02

meaning that the thermal energy of the matter in the whole Hubble universe of this
type increases - violating normal, thermodynamical principles, since here the
temperature of matter increaes with the increase of cosmic space. This would, however,
indicate a total energy increase occuring in this universe with ongoing time, - somehow
giving an alarm to the physics operating here.

Now, at this place of the argumentation, an interesting idea may be brought into this
mysterious game; namely that the increase in thermal energy of cosmic matter is just
compensated by the increase in negatively valued ,cosmic binding energy pot, lm

due to ongoing structure formation, i.e. increase of the correlation coefficient , the latter
being suspected here as the true reason for the operation of a so-called "vacuum
pressure" corresponding to an equivalent mass density of   c2/8G .

To pursue a little more this idea, we start from the two competing quantities, i.e. the
potential binding energy on one hand:

pot, lm  42

3 
3  

35  2  1
5 G 2R5

and the thermal energy difference of cosmic matter on the other hand:

therm  4
3 R3  nt   3

2 kTt  4
3 3/2n0kT0R0

3 1
1  Ht  t02

 1

Now, in order to guarantee energy conservation, we shall require that the change with
cosmic time t of the first quantity pot, lm is equal to the negative change of the
second quantity therm which leads us to the following request:
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d
dt 

42

3 
3  

35  2  1
5 G 2R5   d

dt 
4
3

3/2n0kT0R0
3

1  Ht  t02


leading to:

d
dt 4

3  
35  2  1

5 G 0
2 R0

R 3R5   d
dt 

3/2n 0kT0R0
3

1  Ht  t02


or furtheron:

4 d
dt 

3  
35  2  1

5 G 0
2R0

3R2  
3  

35  2  1
5 8G 0

2R0
3RR  

 3/2n 0kT0R0
3 d
dt 

1
1  Ht  t02



or, when assuming the correlation coefficient   t as a time-dependent quantity:

4 d
dt 

3  
35  2  1

5 G 0
2R0

3R2  
3  

35  2  1
5 8G0

2R0
3R2H 

3/2n 0kT0R0
3 2H

1  Ht  t03


and furthermore:

d
dt

1
2 

3  
65  2   

3  
35  2  1

5 H  3/2n0kT0R0
3

8G 0
2R0

3R2  2H

1  Ht  t03


Now one can express R as function of t by putting: Rt  R0 expHt  t0 (see
Equ.(43) and one obtains:

d
dt 

3  
65  2   

3  
35  2  1

5 H  3/2n0kT0

8G 0
2R0

2 exp2Ht  t0
2H

1  Ht  t03

Next we obtain from:

d
dt 

3  
65  2    

65  2  3  2 
65  22    1

65  2  3  
35  22



and with the following selfsuggestive guess for the time-dependence of the correlation
coefficient :   0 expHt  t0 with 0  1.8 one finds:

 
65  2  3  

35  22  3  
35  2  1

5   3/2n0kT0

8G 0
2R0

2 exp2Ht  t0
2

1  Ht  t03

yielding furthermore:
30  21
65  22

 1
5  3/2n0kT0

8G 0
2R0

2 exp2Ht  t0
 2

1  Ht  t03

Approximating the exponential function for small arguments (i.e.2Ht  t0  1) then
yields:

30  21
65  22

 1
5  3/2n0kT0

8G 0
2R0

2 
21  2Ht  t0
1  3Ht  t0

  3n0kT0
8G 0

2R0
2 1  Ht  t0

Setting   1.8 for times t  t0then brings us to;

pot  7.8
61.42  1

5  0.863   3n0kT0
8G 0

2R0
2 1  Ht  t0

For the times t  t0 this relation would require:

pot  0.863  3n0kT0
8G 0

2R0
2  kT0R0

24/3Gm 0R0
3

6. Conclusion

To state the above result in short: The required condition can in fact be fulfilled, if at
the time t  t0 the gravitational binding energy of the mass m , i.e. Gm4/30R0

3/R0

equals the actual thermal energy of the particles kT0. What concerns the needed and
necessary correlation coefficient , one can find, however, that only when this coefficient
has attained a value of   c  1.5, then the resulting mathematical sign allows a
physical solution in the expected form (see our Figure 2). This means that only when
the structure formation process in the universe has progressed far enough, then the
above required equality can be really achieved. But then, at times after that, when an
accelerated expansion of the universe with a Hubble parameter H  H prevails, then in
fact the increase in negative potential energy of cosmic matter pot,R is exactly
balanced by the increase of thermal cosmic energy thermR. During this phase of the
expansion of the universe one is obviously justified to assume that the creation of
negative binding energy is the reason for the accelerated expansion of the universe, -
normally in present-day cosmology ascribed to the action of vacuum energy.

Conclusion
To state the above result in short: The required condition can in 
fact be fulfilled, if at the time t = t0 the gravitational binding energy 
of the mass m, i.e. Gm(4π/3)ρ0R0

3/R0 equals the actual thermal en-
ergy of the particles kT0. What concerns the needed and necessary 
correlation coefficient α, one can find, however, that only when 
this coefficient has attained a value of α ≥ αc = 1. 5, then the result-
ing mathematical sign allows a physical solution in the expected 
form (see our Figure 2). This means that only when the structure 
formation process in the universe has progressed far enough, then 
the above required equality can be really achieved. But then, at 
times after that, when an accelerated expansion of the universe 
with a Hubble parameter H = H˄ prevails, then in fact the increase 
in negative potential energy of cosmic matter Δϵpot(α, R) is exact-
ly balanced by the increase of thermal cosmic energy Δϵtherm(R). 
During this phase of the expansion of the universe one is obviously 
justified to assume that the creation of negative binding energy is 
the reason for the accelerated expansion of the universe, -normally 
in present-day cosmology ascribed to the action of vacuum energy.

Figure 2: The quantity Δϵpot(α) as a function of the correlation co-
efficient α

30  21
65  22

 1
5  3/2n0kT0

8G 0
2R0

2 
21  2Ht  t0
1  3Ht  t0

  3n0kT0
8G 0

2R0
2 1  Ht  t0

Setting   1.8 for times t  t0then brings us to;

pot  7.8
61.42  1

5  0.863   3n0kT0
8G 0

2R0
2 1  Ht  t0

For the times t  t0 this relation would require:

pot  0.863  3n0kT0
8G 0

2R0
2  kT0R0

24/3Gm 0R0
3

6. Conclusion

To state the above result in short: The required condition can in fact be fulfilled, if at
the time t  t0 the gravitational binding energy of the mass m , i.e. Gm4/30R0

3/R0

equals the actual thermal energy of the particles kT0. What concerns the needed and
necessary correlation coefficient , one can find, however, that only when this coefficient
has attained a value of   c  1.5, then the resulting mathematical sign allows a
physical solution in the expected form (see our Figure 2). This means that only when
the structure formation process in the universe has progressed far enough, then the
above required equality can be really achieved. But then, at times after that, when an
accelerated expansion of the universe with a Hubble parameter H  H prevails, then in
fact the increase in negative potential energy of cosmic matter pot,R is exactly
balanced by the increase of thermal cosmic energy thermR. During this phase of the
expansion of the universe one is obviously justified to assume that the creation of
negative binding energy is the reason for the accelerated expansion of the universe, -
normally in present-day cosmology ascribed to the action of vacuum energy.
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