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Abstract
This article introduces the Witte-Ulianov Time Interferometer (WUTI), a pioneering gravitational-wave (GW) detector. 
Built upon Einstein’s General Relativity (GR), WUTI capitalizes on the concept that gravitational fields can influence time 
dilation, akin to a "time flow rate" or "time velocity."

In February 2016, the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history by detecting a gravitational 
wave. However, LIGO's detectors are hampered by technical limitations, particularly low-frequency noise sources, confining 
their measurement range to 80-300 Hz. This narrow span is incongruous with major events that can generate GWs spanning 
seconds to hours. Analogously, LIGO offers a glimpse of a universe observed through gravitational waves, though it's akin 
to peering through a "keyhole" rather than unlocking this new universe's full potential.

The Witte-Ulianov Time Interferometer identifies gravitational waves through time distortion, as predicted by General 
Relativity when these waves traverse the detector. WUTI employs the Witte effect, first noted by R. D. Witte in 1991 while 
measuring disparities between atomic clocks. This effect facilitates observing time distortions by assessing phase changes 
across precise time sources.

The Witte effect enables the measurement of "time flow" alterations between two points in space, utilizing accurate time 
sources like atomic clocks or highly stable frequency laser sources. Upon encountering a gravitational wave, these clocks 
experience modified "time flow" between them, observable through phase comparators.

WUTI's operation is minimally affected by physical phenomena, unlike LIGO detectors susceptible to numerous noise sources, 
particularly at low frequencies. While WUTI's time sources may face external influences like temperature changes, the 
devised method uses a dual-phase comparison that inherently eliminates errors within time sources. This approach subtracts 
two practically identical phase errors, effectively canceling them out—except when the time flow changes momentarily, such 
as a gravitational wave's arrival that impacts each source individually, generating phase discrepancies in the phase detector.

As a result, the WUTI detector operates without low-frequency limitations, capable of detecting gravitational waves with 
periods ranging from seconds to hours. This enables the detection of slow gravitational field variations, facilitating the 
observation of Earth's field fluctuations due to its movement and rotation. WUTI can observe gravitational fields of the moon, 
sun, and Milky Way, uncovering not just gravitational waves, but also the "Gravity Ocean" Earth traverses.

1. Introduction
On September 13th, 2015, a groundbreaking announcement was 
made: The Laser Interferometer Gravitational-Wave Observatory 
(LIGO) had detected its first gravitational wave event, named 
GW150914 [1]. This landmark discovery, celebrated as a triumph 
by the hundreds of physicists at LIGO, marked the observation 
of gravitational waves generated by the collision of black holes.

However, amidst this celebratory atmosphere, certain authors 
have raised the possibility that LIGO's detection might be a 
false alarm. The signals recorded from the GW150914 event, 

as depicted in Figure 1, are linked to gravitational waves arising 
from black hole collisions [2, 3].

While this discovery heralded a new era in gravitational wave 
astronomy, LIGO's detection process is not without limitations. 
The apparatus's ability to detect gravitational waves is confined 
within a narrow frequency range, specifically from 80 to 300 
Hz. Given the astronomical events capable of generating 
gravitational waves with periods spanning seconds to hours, this 
frequency range appears notably restrictive.
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In the GW150914 event, the recorded signals exhibit a duration 
of less than 0.1 seconds, as evidenced in Figure 1. For further 
illustration, Figure 2 portrays the "NF waveform" (in green) 
representing Numerical Relativity signal—a simulation of 
the black hole collision—spanning a few seconds. A direct 
comparison of signals in Figure 2 reveals that LIGO's detectors 
missed capturing the initial phases of the gravitational wave 
curves due to the limitations of their low-frequency range.

Figure 1: Processed signals from the GW150914 event

Had LIGO possessed a broader frequency range, such as 10 to 
300 Hz, both signals in Figure 2 would present identical shapes, 
eliminating any doubt about the occurrence of gravitational waves 
during this event. This would enable immediate recognition that 
the recorded signals indeed originated from a collision involving 
two black holes.

Figure 2: Signals from the black hole collision: NR waveform in 
green and matched NR waveform in red. Both graphs depict the 
same curves across varying time windows.

2. LIGO Gravitational Wave Detection:
Einstein's General Relativity (GR) theory postulates that 
gravitational waves induce distortions in space-time. LIGO's 
approach revolves around detecting these distortions via a 
modified Michelson interferometer. This entails recording 
gravitational wave signals by gauging the length difference in 
the interferometer's orthogonal arms.

Within LIGO detectors, each arm integrates two mirrors 
functioning as test masses. A passing gravitational wave alters 
the lengths of these arms, a variation measurable through the 
interference of laser beams—a fundamental principle behind 
Michelson interferometry.

Figure 3: Signal from the black hole collision: NR waveform 
(in green),noise signal (in red), and recorded strain at Hanford 
(in black)

However, the challenge lies in this "space distortion" detection 
methodology. Various factors can trigger movements in the 
test mass, which consequently infuses substantial noise into 
the interferometer output. Regrettably, this amplified noise 
profoundly restricts LIGO's measurement frequency range, 
confining it between 80 and 300 Hz.

A significant drawback of this limitation is apparent when a 
genuine gravitational wave signal intersects with noise, as 
depicted in Figure 3. The H1 strain (black signal) may stem from 
either a black hole collision (green signal) or random noise (red 
signal). As such, solely examining the H1 strain curve doesn't 
allow differentiation between a legitimate event and a spurious 
noise occurrence.

Consequently, LIGO utilizes two detectors, Hanford and 
Livingston, to discern genuine gravitational waves from noise. 
For instance, the GW150914 event (Figure 1) showcases similar 
waveforms, recorded with a 7.5 ms time discrepancy. This time 
gap resides within a 10 ms time window, which signifies the 
maximum time light requires to traverse between both detectors. 
Therefore, the signals captured in the GW150914 event might 
signify the same gravitational wave sequentially striking both 
detectors.

Nonetheless, this alignment doesn't dismiss the possibility 
that the recorded GW150914 signals could merely be two 
coincidental noises coinciding within the same time window. 
To address this, the LIGO team conducted a statistical analysis, 
deducing that this form of coincidence could materialize once 
every 67 thousand years.

In light of the frequency range limitations in LIGO's detectors, 
this author posits that the system transforms from a "general 
gravitational-wave detector" into a "Black Hole Collision 
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detector," necessitating several months or years before a new 
event can be detected.

An analogy with oceanic waves provides insight—LIGO 
resembles a Tsunami detector, activated over extended periods 
but incapable of perceiving the multitude of waves incessantly 
striking the shore.

3. Witte-Ulianov Time Interferometer:
The Witte-Ulianov Time Interferometer fundamentally observes 
gravitational waves by leveraging the phenomenon of time 
distortion that, according to General Relativity (GR), manifests 
when these waves interact with Earth. Central to this novel 
interferometer's functionality is the Witte effect, first discovered 
by R. D. Witte in 1991 while employing phase comparison 
techniques to rectify errors in atomic clocks.

Figure 4: White-Ulianov Time Interferometer with two arms

Remarkably, the Witte effect, which is explored in greater 
detail subsequently in this article, facilitates the measurement 
of Earth's velocity in space—an aspect that contemporary 
physicists have not universally acknowledged. This intriguing 
outcome aligns with Michelson's original expectations when 
devising his interferometer. Michelson's experiment, however, 
encountered a shortfall due to Special Relativity's revelation 
that the interferometer arm lengths shift in response to Earth's 
displacement and rotation. Consequently, the measured speed of 
light via Michelson's interferometer remains invariant, failing 
to register the addition or subtraction of Earth's velocity to the 
speed of light.

This author contends that the Witte effect holds the capacity 
to detect alterations in Michelson's interferometer arm lengths 
because this variability stems from space contraction—a 
phenomenon intrinsically tied to time dilation. Space contraction 
emerges through two avenues:

• In accordance with Special Relativity, observers moving at 
significant velocities experience a slower "flow" of time, and 
objects contract along their trajectory.
• General Relativity stipulates that gravitational fields also 
trigger a deceleration of time flow and a contraction of space for 
observers within them.

Hence, the gravitational waves effectively reshaping LIGO's 
interferometer arm lengths also engender changes in time flow 

between points positioned at the arms' termini and the junction 
point.

Figure 4 presents a fundamental two-arm Witte-Ulianov Time 
Interferometer, readily adaptable onto the existing LIGO 
structure. Notably, the clocks depicted can encompass atomic 
clocks, employing coaxial cables or microwave conductors 
connected via electronic circuits for phase change detection. 
To heighten temporal precision, stable laser sources producing 
light beams can be utilized, with direct phase detection achieved 
through photodetectors. Optical fiber cables can facilitate 
connections between laser sources and phase detectors, although 
the optimal approach involves exploiting the vacuum chambers 
present in contemporary LIGO detectors.

Importantly, the WUTI gravitational-wave detector captures 
two phase shift signals, with each signal proportionate to the 
gravitational-wave projection onto the corresponding arm. 
Furthermore, the WUTI gravitational-wave detector is amenable 
to a three-arm configuration, encompassing a third arm mounted 
atop a towering structure or within a subterranean well.

4. The Witte Effect:
Discovered by R. D. Witte in 1991 through a 177-day experiment, 
the Witte effect emerged as a significant phenomenon. Witte's 
experiment involved monitoring the phase delays between 
atomic clocks connected by a 1.5 km length coaxial cable [4].

Figure 5: Phase drifts, as observed by Roland De Witte in 1991

Figure 5 presents Witte's recorded phase delays spanning three 
consecutive days. Evidently, a sinusoidal variation in phase 
delay is discernible, characterized by a period closely mirroring 
the sidereal day.

The amplitude of this sinusoidal variation, symbolized by the 
value Δt, is calculated via the following equation:

Here, L signifies the cable length, n represents the cable's 
refractive index, and c denotes the speed of light in a vacuum. 
Notably, the speed vE is intrinsically connected to Earth's velocity 
during its journey through space.

Witte's experimental results faced a roadblock in publication 
due to their apparent contradiction with Special Relativity. Only 
in 2006 did the Witte effect gain acknowledgment as genuine, 
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To analyze Einstein’s light clock rotation, let's imagine two of Einstein’s light clocks in a 90-degree 
configuration within a moving room in space, as shown in Figure 7. A vacuum exists inside the clock 
room, where light beams propagate at the speed of light (c). If the room is stationary, it forms a square. 
However, when moving at speed v, the room shrinks according to its movement direction. 
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when R. T. Cahill [2] proposed an explanation that harmonized 
with Einstein's principles of relativity without generating 
contradictions.

5. Rotating Einstein’s Light Clock to Explain the Witte 
Effect:
The Witte Effect finds a clear explanation through the rotation 
of Einstein’s light clock [3]. Figure 6 presents the fundamental 
concept of Einstein’s light clock, a quintessential example 
illustrating relativistic time dilation.

Figure 6: Einstein’s light clock

From the triangle depicted in Figure 6, the following equations 
can be deduced:

To analyze Einstein’s light clock rotation, let's imagine two of 

Einstein’s light clocks in a 90-degree configuration within a 
moving room in space, as shown in Figure 7. A vacuum exists 
inside the clock room, where light beams propagate at the speed 
of light (c). If the room is stationary, it forms a square. However, 
when moving at speed v, the room shrinks according to its 
movement direction.

Figure 7: Two of Einstein’s light clocks: a) room stationary; b) 
room moving at speed v.

The dual clock setup in Figure 7 can be observed through 
sequences of time, as presented in Figure 8. This involves 
considering two scenarios: with the clock stationary and with the 
clock moving at speed v. In the stationary case, two light pulses 
travel within the room during time frames (t_0,t_1,t_2,t_3,t_4). 
These pulses essentially have the same movement, going out 
and returning simultaneously. In the case of the room moving, 
an external observer witnesses the light pulse in the horizontal 
path moving at the speed of light, while the room wall is 
simultaneously moving at speed v. As a result, the vertical light 
pulse hits the top of the room at time t_2^' before the horizontal 
pulse hits the right wall. Conversely, when the horizontal light 
pulse returns, the relative speed (considering the wall and the 
light pulse) slightly exceeds the speed of light (c + v), causing 
both pulses to arrive simultaneously.An observer within the 
room always experiences the stationary case, unable to detect 
room contraction or perceive fluctuations in the speed of light 
pulses.
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Figure 8: Time frames for the rooms presented in Figure 8.

Figure 9 demonstrates Einstein’s light clock, designed to rotate while in motion. For a comprehensive grasp of its functioning, two 
precision atomic clocks are utilized—one at each end of the light clock. These clocks, perfectly in sync, are governed by the "hits" 
of light.
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Figure 7:  Two of Einstein’s light clocks: a) room stationary; b) room moving at speed v. 
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Figure 9: Rotating the Einstein’s light clock. 

In scrutinizing the rotation of Einstein's light clock as depicted in Figure 9, one can envision two 
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In scrutinizing the rotation of Einstein's light clock as depicted 
in Figure 9, one can envision two instances: when α equals zero 
and 90 degrees. The clock designated as "A" remains stationary, 
thus rendering its measured time t'A impervious to rotation. On 
the contrary, clock "B" undergoes a 90-degree rotation around 
clock "A," resulting in clock "B" measuring time t'A, contingent 
upon angle α. Consequently, the rotating Einstein’s light clock 
begets a temporal propagation delay (t'AB) contingent on α:

Equations (2) and (3) then permit us to define a phase delay (t_
AB^') linked to temporal disparities. This delay can be calculated 
through:

It is vital to highlight that in Equation (5), the intricacies of 
time disparities necessitate the utilization of a squared metric 
for temporal distance computation—a reflection of how time 
operates analogously to spatial dimensions within the context of 
Special Relativity.

For an observer within the room, Equation (5) reduces to:

      (6)

Hence, a variation in the time propagation delay (tAB) is defined:

      (7)

This signifies that by rotating Einstein’s light clock (Figure 7), 
a discernible variation in the phase delay (Δt_AB)  emerges 
between the two clocks. Remarkably, when α equals 90 degrees, 
Equation (7) calculates a time propagation delay analogous to 
the Witte effect, quantified by Equation (1). The refraction index 
present in Equation (1) is excluded from Equation (7) due to 
Einstein's light clock operating within a vacuum.

For an Earth-based implementation of the experiment in 

Figure 7, the angle α fluctuates with sidereal time, generating a 
sinusoidal waveform as described in Equation (7). R. D. Witte's 
experiment—employing two atomic clocks placed kilometers 
apart—generated synchronized sine waves across a coaxial cable, 
compared through a phase shift meter. This experiment yielded 
a sine wave delay with a 15 ns amplitude and a sidereal time 
period, as represented in Figure 1. Using this value—attributed 
to the clocks' distance and speed—R. D. Witte calculated Earth's 
velocity in space.

This phenomenon, acknowledged as the Witte effect, finds 
its explanation through the rotation of Einstein's light clock. 
Moreover, considering Earth's motion relative to the Cosmic 
Microwave Background, its velocity approximates 369 km/s. By 
employing a Witte-Ulianov Time Interferometer with an L value 
of 4 km, a time delay—according to Equation (7)—amounts to 
16.2 ns.

6. Witte Effect Over Gravitational Fields:
When applying the GR field equations to the scenario of a single 
spherical mass M in empty space, it leads to a solution known 
as the Schwarzschild metric [4]. This metric can be defined in 
spherical coordinates by the Schwarzschild equation:

      (8)

Where (  ) represent points in a spherical coordinate 
system centred at the gravity center of the spherical mass.

For an observer far from the mass, Equation (8) is simplified to:

      (9)

For an observer near the mass, at a specific distance r, the 
displacement ds^'2 can be defined as:

      (10)

Comparing Equations (14) and (15), the time dilation effect 
predicted by the Schwarzschild equation can be calculated as:
 

      (11)

Figure 9: Rotating the Einstein’s light clock.
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It is vital to highlight that in Equation (5), the intricacies of time disparities necessitate the utilization 
of a squared metric for temporal distance computation—a reflection of how time operates analogously 
to spatial dimensions within the context of Special Relativity. 
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Hence, a variation in the time propagation delay (𝑡𝑡��) is defined: 
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This signifies that by rotating Einstein’s light clock (Figure 7), a discernible variation in the phase delay 
(𝛥𝛥𝑡𝑡��)  emerges between the two clocks. Remarkably, when α equals 90 degrees, Equation (7) calculates 
a time propagation delay analogous to the Witte effect, quantified by Equation (1). The refraction index 
present in Equation (1) is excluded from Equation (7) due to Einstein's light clock operating within a 
vacuum. 

For an Earth-based implementation of the experiment in Figure 7, the angle α fluctuates with sidereal time, 
generating a sinusoidal waveform as described in Equation (7). R. D. Witte's experiment—employing two 
atomic clocks placed kilometers apart—generated synchronized sine waves across a coaxial cable, 
compared through a phase shift meter. This experiment yielded a sine wave delay with a 15 ns amplitude 
and a sidereal time period, as represented in Figure 1. Using this value—attributed to the clocks' distance 
and speed—R. D. Witte calculated Earth's velocity in space. 

This phenomenon, acknowledged as the Witte effect, finds its explanation through the rotation of Einstein's 
light clock. Moreover, considering Earth's motion relative to the Cosmic Microwave Background, its velocity 
approximates 369 km/s. By employing a Witte-Ulianov Time Interferometer with an L value of 4 km, a time 
delay—according to Equation (7)—amounts to 16.2 ns. 
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Witte Effect Over Gravitational Fields 
When applying the GR field equations to the scenario of a single spherical mass M in empty space, it 
leads to a solution known as the Schwarzschild metric [4]. This metric can be defined in spherical 
coordinates by the Schwarzschild equation: 
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Where (  ,,r ) represent points in a spherical coordinate system centred at the gravity center of the 
spherical mass. 

 
For an observer far from the mass, Equation (8) is simplified to: 
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Comparing Equations (14) and (15), the time dilation effect predicted by the Schwarzschild equation 
can be calculated as: 
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Comparing this to Equation (2), a time dilation equivalence can be observed: 
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This equivalence allows us to recreate the rotating Einstein's light clock experiment depicted in Figure 
7, now considering that the system's velocity is negligible and that the two clocks are at a distance r 
from a mass M, as illustrated in Figure 10. 
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This equivalence allows us to recreate the rotating Einstein's light clock experiment depicted in Figure 
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Comparing this to Equation (2), a time dilation equivalence can 
be observed:

 
 

      (12)

This equivalence allows us to recreate the rotating Einstein's 
light clock experiment depicted in Figure 7, now considering 
that the system's velocity is negligible and that the two clocks 
are at a distance r from a mass M, as illustrated in Figure 10.

Figure 10: Rotating the Einstein’s light clock near a spherical 
mass M.

Since the experiments in Figure 7 and Figure 10 have equivalent 
time dilation effects, using equations (7) and (12), we can derive 
the Witte effect applied to gravitational time distortions when 
rotating clocks over a gravitational field, with consideration for 
the angle α defined in Figure 10:
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In the setup shown in Figure 10, the time distortion in clock 
A is assumed to be constant. Consequently, as clock B orbits 
around clock A, the time distortion over clock B will change as a 
function of angle α, as described by equation (13).

By applying equation (13) to the moon's mass (7.6 x 1022 kg) and 
its distance from Earth (3.8 x 108 m) with an L value of 4 km, 
the maximum time variation is approximately 7.1 picoseconds. 
Similarly, for the sun's mass (1.99 x 1030 kg) and its distance from 
Earth (1.49 x 1011 m) with an L value of 4 km, the maximum time 
variation is around 1.8 ns.

This implies that with two highly precise clocks, featuring a 
time resolution on the order of 0.1 picoseconds (clock frequency 
of 10 GHz), and the ability to compare time differences with 
this level of precision, it would be feasible to not only detect 
gravitational waves but also identify the Witte Effect. This effect 
could be generated by Earth's rotation in the presence of the 
moon's gravitational field, as well as by the clock's time being 
affected by the sun's gravitational field.

7. WUTI Implementation Using Atomic Clocks: 
Figure 11 illustrates the foundational configuration of the Witte-
Ulianov Time Interferometer (WUTI) with a single-arm design. 
In this arrangement, a pair of atomic clocks plays a pivotal role as 
reference points for time measurement. The frequencies emitted 
by each atomic clock undergo a division process, which in turn 

orchestrates the synchronization of a sine wave generator (SG). 
This SG operates at a significantly "lower" frequency compared 
to the clock's GHz frequency, typically around 10 MHz or 100 
MHz. Despite its lower operational frequency, the SG generates 
a sine wave signal, characterized by its phase being intricately 
synchronized with the current time of the respective atomic 
clock.

As a consequence of this synchronization, the analog sine wave 
signal effectively carries intricate high-precision digital time 
information. The resulting output signal from each SG travels 
through coaxial cables, eventually reaching and interfacing with 
two phase comparators (PCs).

Figure 11: WUIT implementation using atomic clocks.

In the presented configuration (Figure 11), every phase 
comparator (PC) receives two sine wave signals: one originating 
locally and the other remotely. Ideally, both atomic clocks 
would register the same time, resulting in null outputs from the 
phase comparators. However, in practical scenarios, various 
factors such as temperature fluctuations introduce operational 
deviations. These deviations can be modeled as error signals, 
which are then added to the ideal time ( t ClockX = t+ eX). 

When the sine wave generators (SGs) function at angular 
frequencies denoted as wA and wB, their output signals adhere to 
the following equations:

Accounting for the cable delay in signal transmission between 
points X and Y, each phase comparator processes signals as 
defined by equations (19) and (20). The cable delay is represented 
as Δt_AB for the signal from point A to point B and Δt_BA for 
the reverse direction. Calculations proceed as follows:

Accounting for the cable delay in signal transmission between 
points X and Y, each phase comparator processes signals as 
defined by equations (19) and (20). The cable delay is represented 
as Δt_AB for the signal from point A to point B and Δt_BA for 
the reverse direction. Calculations proceed as follows:

P_A(t) = PhaseCompare[S_A(t), S_B(t + Δt_BA)]
P_A(t) = w_A * t + w_A * e_A + φ_A - w_B * t - w_B * Δt_BA 
- w_B * e_B - φ_B  
      (21)

P_B(t) = PhaseCompare[S_A(t + Δt_AB), S_B(t)]
P_B(t) = w_A * t + w_A * Δt_BA + w_A * e_A + φ_A - w_B * 
t - w_B * e_B - φ_B
      (22)
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Comparing this to Equation (2), a time dilation equivalence can be observed: 
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This equivalence allows us to recreate the rotating Einstein's light clock experiment depicted in Figure 
7, now considering that the system's velocity is negligible and that the two clocks are at a distance r 
from a mass M, as illustrated in Figure 10. 
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In the presented configuration (Figure 11), every phase comparator (PC) receives two sine wave 
signals: one originating locally and the other remotely. Ideally, both atomic clocks would register the 
same time, resulting in null outputs from the phase comparators. However, in practical scenarios, 
various factors such as temperature fluctuations introduce operational deviations. These deviations can 
be modeled as error signals, which are then added to the ideal time ( 𝑡𝑡������ � 𝑡𝑡 �  𝑒𝑒�).  
 
When the sine wave generators (SGs) function at angular frequencies denoted as  𝑤𝑤� and 𝑤𝑤�,  their 
output signals adhere to the following equations: 
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Accounting for the cable delay in signal transmission between points X and Y, each phase 
comparator processes signals as defined by equations (19) and (20). The cable delay is represented as 
Δt_AB for the signal from point A to point B and Δt_BA for the reverse direction. Calculations 
proceed as follows: 
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the signal from point A to point B and Δt_BA for the reverse direction. Calculations proceed as follows: 
 
P_A(t) = PhaseCompare[S_A(t), S_B(t + Δt_BA)] 
P_A(t) = w_A * t + w_A * e_A + φ_A - w_B * t - w_B * Δt_BA - w_B * e_B - φ_B (21) 
 
P_B(t) = PhaseCompare[S_A(t + Δt_AB), S_B(t)] 
P_B(t) = w_A * t + w_A * Δt_BA + w_A * e_A + φ_A - w_B * t - w_B * e_B - φ_B (22) 
 
Here, PhaseCompare[S1, S2] calculates the phase shift (in radians) between two sine signals, S1 and 
S2. 
 
Subtracting the outputs of the phase comparators, as derived from equations (21) and (22), yields: 
 
ΔP(t) = w_A * Δt_BA - w_B * Δt_BA = (w_A - w_B) * Δt_BA = 2 * w * Δt (23) 
 
Given that w_A = w_B = w and Δt_BA = Δt_AB = Δt, equation (23) simplifies to: 
 
ΔP(t) = 2 * w * Δt (24) 
 
Equation (24) signifies that the angle difference in the phase comparator outputs corresponds to twice 
the coaxial cable delay. Since the phase comparators essentially receive similar signals, their output 
subtraction effectively eliminates clock errors. 
 
For a WUTI placed aboard a spaceship moving with velocity v and undergoing rotation by an angle α 
(as shown in Figure 7), equations (11) and (24) yield: 
 
(ΔP(α)) / w = 2 * L / c^2 * v * sin(α) (25) 
 
Similarly, for a WUTI situated on a spaceship orbiting a mass M at a distance r and rotating by an 
angle α (as depicted in Figure 10), equations (18) and (24) provide: 
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angle α (as depicted in Figure 10), equations (18) and (24) provide: 
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Here, PhaseCompare[S1, S2] calculates the phase shift (in 
radians) between two sine signals, S1 and S2.

Subtracting the outputs of the phase comparators, as derived 
from equations (21) and (22), yields:

ΔP(t) = w_A * Δt_BA - w_B * Δt_BA = (w_A - w_B) * Δt_BA 
= 2 * w * Δt   
      (23)

Given that w_A = w_B = w and Δt_BA = Δt_AB = Δt, equation 
(23) simplifies to:

 ΔP(t) = 2 * w * Δt    (24)

Equation (24) signifies that the angle difference in the phase 
comparator outputs corresponds to twice the coaxial cable delay. 
Since the phase comparators essentially receive similar signals, 
their output subtraction effectively eliminates clock errors.

For a WUTI placed aboard a spaceship moving with velocity v 
and undergoing rotation by an angle α (as shown in Figure 7), 
equations (11) and (24) yield:

(ΔP(α)) / w = 2 * L / c^2 * v * sin(α)  (25)

Similarly, for a WUTI situated on a spaceship orbiting a mass M 
at a distance r and rotating by an angle α (as depicted in Figure 
10), equations (18) and (24) provide:

(ΔP(α)) / w = 2 * L / c^2 * √(2 * G * M / r) * sin(α)  (26)

Equations (25) and (26) demonstrate that the Witte-Ulianov Time 
Interferometer illustrated in Figure 11 can discern variations in 
the "flow of time" between the locations of the atomic clocks. 
Equation (24) enables the WUTI to measure time dilation effects 
in line with Special Relativity, while equation (26) facilitates 
measurements aligned with the predictions of General Relativity. 
Each PC receive the signals defined by equations (19) and (20), 
also considering the delay in the coaxial cables. Considering that 
is the cable delay to the signal travel from point X to point Y, we 
can calculate:

Where the PhaseCompare[S1,S2] function calculate the phase 
shift (in radians) from two sine signals S1 and S2 .  

Subtracting the PCs outputs, from equations (21) and (22), give 
us:

Considering that:

Equation (23) becomes:

Equation (24) means that subtracting the PC output angle is equal 
to two times the coaxial cable delay. As the phase comparators 
receives basically the same signals, the subtractions of its outputs 
remove the clock errors.

If the WUIT presented at Figure 11 is placed at one spaceship 
moving at velocity v and rotating in an angle α, as defined in 
Figure 7, from equations (11) and (24) we can calculate:

If   the WUIT presented at Figure 11 is placed at one spaceship 
orbiting the mass M at distance r, and rotating in an angle α, 
as defined in Figure 10, from equations (18) and (24) we can 
calculate:

Equations (25) and (26) means that the Witte-Ulianov Time 
Interferometer presented at Figure 11, can detect “time flow” 
variations between the points where the atomic  clocks are 
placed. Thus equation (24) allow the WUIT to measure time 
dilatation effects predicted by Special Relativity and equation 
(26) allow the WUIT to measure time dilatation effects predicted 
by General Relativity.  

8. Wuti Implementation Using Two Laser Soucers:
Paul Dirac in his book "The Principles of Quantum Mechanics" 
has claimed quite famously that the interference of two 
independent light beams can never occur. He stated that "the 
wave function gives information about the probability of one 
photon being in a particular place, and not the probable number 
of photons in that place."

Nevertheless several published papers have shown that 
interference between two laser sources, seize presenting some 
technical complexities, can be performed [5-7].So, to achieve 
higher resolution the WUIT can use two laser sources as time 
references, replacing the atomic clocks and sine wave generators, 
meaning that the two signals to be “phase compared” becomes 
two laser beans, 

The laser, phase comparing can be easy achieved using a bean 
splitter to merge the two laser beans, and the combined beam 
impinges on a photodetector as presented in Figure 12.
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If   the WUIT presented at Figure 11 is placed at one spaceship orbiting the mass M at distance 
r, and rotating in an angle 𝛼𝛼, as defined in Figure 10, from equations (18) and (24) we can calculate: 
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𝑤𝑤 � 2𝐿𝐿

𝑐𝑐� �
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Equations (25) and (26) means that the Witte-Ulianov Time Interferometer presented at Figure 

11, can detect “time flow” variations between the points where the atomic  clocks are placed. Thus 
equation (24) allow the WUIT to measure time dilatation effects predicted by Special Relativity and 
equation (26) allow the WUIT to measure time dilatation effects predicted by General Relativity.   

 
WUTI IMPLEMENTATION USING TWO LASER SOUCERS  

 
Paul Dirac in his book "The Principles of Quantum Mechanics" [5] has claimed quite famously 

that the interference of two independent light beams can never occur. He stated that "the wave function 
gives information about the probability of one photon being in a particular place, and not the probable 
number of photons in that place." 

Nevertheless several published papers [6] [7], have shown that interference between two laser 
sources, seize presenting some technical complexities, can be performed. 

So, to achieve higher resolution the WUIT can use two laser sources as time references, replacing 
the atomic clocks and sine wave generators, meaning that the two signals to be “phase compared” 
becomes two laser beans,  

The laser, phase comparing can be easy achieved using a bean splitter to merge the two laser 
beans, and the combined beam impinges on a photodetector as presented in Figure 12. 

 
 
 
 
 
 

 
Fig 12: Two laser sources interference. 

 
At the photodetector the light intensity I can be calculated from the laser beans equations:   
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(26) 
 
Equation (26), means that at the photodetector we can detect an wave with frequency 

proportional to the differences between the laser frequencies.  So if we use laser sources with wave 
length very stable (or using light filters tuned to specific wavelengths, e. q. Farby-Perrot resonator) 
with few Hz difference between the operating frequencies, the photodetector output can be easy read 
to achieve the differences between the laser frequencies. 

Laser A Photodetector 

Laser B 
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11, can detect “time flow” variations between the points where the atomic  clocks are placed. Thus 
equation (24) allow the WUIT to measure time dilatation effects predicted by Special Relativity and 
equation (26) allow the WUIT to measure time dilatation effects predicted by General Relativity.   

 
WUTI IMPLEMENTATION USING TWO LASER SOUCERS  

 
Paul Dirac in his book "The Principles of Quantum Mechanics" [5] has claimed quite famously 

that the interference of two independent light beams can never occur. He stated that "the wave function 
gives information about the probability of one photon being in a particular place, and not the probable 
number of photons in that place." 

Nevertheless several published papers [6] [7], have shown that interference between two laser 
sources, seize presenting some technical complexities, can be performed. 

So, to achieve higher resolution the WUIT can use two laser sources as time references, replacing 
the atomic clocks and sine wave generators, meaning that the two signals to be “phase compared” 
becomes two laser beans,  

The laser, phase comparing can be easy achieved using a bean splitter to merge the two laser 
beans, and the combined beam impinges on a photodetector as presented in Figure 12. 

 
 
 
 
 
 

 
Fig 12: Two laser sources interference. 

 
At the photodetector the light intensity I can be calculated from the laser beans equations:   
 
𝐸𝐸��𝑟𝑟, �� � 𝐸𝐸��𝑒𝑒������������� 
𝐸𝐸��𝑟𝑟, �� � 𝐸𝐸��𝑒𝑒������������� 
� � �𝐸𝐸� � 𝐸𝐸��� 
��𝑟𝑟, �� � 𝐸𝐸��� � 𝐸𝐸��� � 2𝐸𝐸��𝐸𝐸�� 𝑐𝑐��� ��� � ���𝑟𝑟 � �𝑤𝑤� � 𝑤𝑤��� � ��� � ���� ��0, �� � �� � �� 𝑐𝑐����� � �� � �𝑤𝑤� � �𝑤𝑤�� 

 
 
 
 
 
 

(26) 
 
Equation (26), means that at the photodetector we can detect an wave with frequency 

proportional to the differences between the laser frequencies.  So if we use laser sources with wave 
length very stable (or using light filters tuned to specific wavelengths, e. q. Farby-Perrot resonator) 
with few Hz difference between the operating frequencies, the photodetector output can be easy read 
to achieve the differences between the laser frequencies. 
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Fig 13: WUIT implementation using two Laser sources. 
 
The Witte-Ulianov Time interferometer can be mounted using the Figure 12 optical 

configuration in two positions, as presented at Figure 13. For these configurations the intensity at each 
photodetector (𝐼𝐼�and 𝐼𝐼� ) can be calculated from equation (26), and the output signal (S), can be easy 
obtained subtracting these intensities:  

 
𝐼𝐼��𝛥𝛥� � 𝐼𝐼�� � 𝐼𝐼�� ���� 𝜑𝜑� � 𝜑𝜑� � �𝛥𝛥 � 𝛥𝛥𝛥𝛥���𝑤𝑤� � 𝛥𝛥𝑤𝑤�� 𝐼𝐼��𝛥𝛥� � 𝐼𝐼�� � 𝐼𝐼�� ���� � � 𝛥𝛥𝛥𝛥��𝑤𝑤��         ⇒    � �  𝜑𝜑� � 𝜑𝜑� � 𝛥𝛥𝑤𝑤� � 𝛥𝛥𝑤𝑤� 
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(27) 

 
 
 
Considering that: 

𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝑤𝑤� � 𝑤𝑤� � 𝑤𝑤 
𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥 

 
 

 
Equation (27) becomes: 
 
 

��𝛥𝛥� � 𝐼𝐼������� � 𝑤𝑤𝛥𝛥𝛥𝛥� � ����� � 𝑤𝑤𝛥𝛥𝛥𝛥�� 
��𝛥𝛥� � �2𝐼𝐼�� ������ ����𝑤𝑤𝛥𝛥𝛥𝛥� ��𝛥𝛥� � �2𝐼𝐼�� ����𝜑𝜑� � 𝜑𝜑� � 𝛥𝛥𝑤𝑤 � 𝛥𝛥𝑤𝑤� ����𝑤𝑤𝛥𝛥𝛥𝛥� 
��𝛥𝛥� � �2𝐼𝐼�� ����𝜑𝜑� � 𝜑𝜑�� ����𝑤𝑤𝛥𝛥𝛥𝛥� 

 
 
 

 
(28) 

 
Using some optical adjust the system can be adjusted to obtain the maximum output value (𝜑𝜑� �𝜑𝜑� � �/2) and so equation (28) becomes: 
 

��𝛥𝛥� � �2𝐼𝐼�� ����𝑤𝑤𝛥𝛥𝛥𝛥� (29) 
 
From equation (29) we can consider that the phase variation in��𝛥𝛥� is given by: 
 

𝛥𝛥� � 𝑤𝑤𝛥𝛥𝛥𝛥 (30) 
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Fig 13: WUIT implementation using two Laser sources. 
 
The Witte-Ulianov Time interferometer can be mounted using the Figure 12 optical 

configuration in two positions, as presented at Figure 13. For these configurations the intensity at each 
photodetector (𝐼𝐼�and 𝐼𝐼� ) can be calculated from equation (26), and the output signal (S), can be easy 
obtained subtracting these intensities:  
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(27) 

 
 
 
Considering that: 

𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝑤𝑤� � 𝑤𝑤� � 𝑤𝑤 
𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥 

 
 

 
Equation (27) becomes: 
 
 

��𝛥𝛥� � 𝐼𝐼������� � 𝑤𝑤𝛥𝛥𝛥𝛥� � ����� � 𝑤𝑤𝛥𝛥𝛥𝛥�� 
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��𝛥𝛥� � �2𝐼𝐼�� ����𝜑𝜑� � 𝜑𝜑�� ����𝑤𝑤𝛥𝛥𝛥𝛥� 

 
 
 

 
(28) 

 
Using some optical adjust the system can be adjusted to obtain the maximum output value (𝜑𝜑� �𝜑𝜑� � �/2) and so equation (28) becomes: 
 

��𝛥𝛥� � �2𝐼𝐼�� ����𝑤𝑤𝛥𝛥𝛥𝛥� (29) 
 
From equation (29) we can consider that the phase variation in��𝛥𝛥� is given by: 
 

𝛥𝛥� � 𝑤𝑤𝛥𝛥𝛥𝛥 (30) 
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Fig 13: WUIT implementation using two Laser sources. 
 
The Witte-Ulianov Time interferometer can be mounted using the Figure 12 optical 

configuration in two positions, as presented at Figure 13. For these configurations the intensity at each 
photodetector (𝐼𝐼�and 𝐼𝐼� ) can be calculated from equation (26), and the output signal (S), can be easy 
obtained subtracting these intensities:  
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Considering that: 

𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝑤𝑤� � 𝑤𝑤� � 𝑤𝑤 
𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥 

 
 

 
Equation (27) becomes: 
 
 

��𝛥𝛥� � 𝐼𝐼������� � 𝑤𝑤𝛥𝛥𝛥𝛥� � ����� � 𝑤𝑤𝛥𝛥𝛥𝛥�� 
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(28) 

 
Using some optical adjust the system can be adjusted to obtain the maximum output value (𝜑𝜑� �𝜑𝜑� � �/2) and so equation (28) becomes: 
 

��𝛥𝛥� � �2𝐼𝐼�� ����𝑤𝑤𝛥𝛥𝛥𝛥� (29) 
 
From equation (29) we can consider that the phase variation in��𝛥𝛥� is given by: 
 

𝛥𝛥� � 𝑤𝑤𝛥𝛥𝛥𝛥 (30) 
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Fig 13: WUIT implementation using two Laser sources. 
 
The Witte-Ulianov Time interferometer can be mounted using the Figure 12 optical 

configuration in two positions, as presented at Figure 13. For these configurations the intensity at each 
photodetector (𝐼𝐼�and 𝐼𝐼� ) can be calculated from equation (26), and the output signal (S), can be easy 
obtained subtracting these intensities:  
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Equation (27) becomes: 
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Using some optical adjust the system can be adjusted to obtain the maximum output value (𝜑𝜑� �𝜑𝜑� � �/2) and so equation (28) becomes: 
 

��𝛥𝛥� � �2𝐼𝐼�� ����𝑤𝑤𝛥𝛥𝛥𝛥� (29) 
 
From equation (29) we can consider that the phase variation in��𝛥𝛥� is given by: 
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Figure 13: WUIT implementation using two Laser sources.

Figure 12: Two laser sources interference.

The Witte-Ulianov Time interferometer can be mounted using the Figure 12 optical configuration in two positions, as presented at 
Figure 13. For these configurations the intensity at each photodetector ( IA and IB ) can be calculated from equation (26), and the 
output signal (S), can be easy obtained subtracting these intensities: 

Considering that:

Equation (27) becomes:

At the photodetector the light intensity I can be calculated from the laser beans equations:  

Equation (26), means that at the photodetector we can detect an 
wave with frequency proportional to the differences between the 
laser frequencies.  So if we use laser sources with wave length 
very stable (or using light filters tuned to specific wavelengths, 

e. q. Farby-Perrot resonator) with few Hz difference between the 
operating frequencies, the photodetector output can be easy read 
to achieve the differences between the laser frequencies.
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If   the WUIT presented at Figure 11 is placed at one spaceship orbiting the mass M at distance 
r, and rotating in an angle 𝛼𝛼, as defined in Figure 10, from equations (18) and (24) we can calculate: 

   

���𝛼𝛼�
𝑤𝑤 � 2𝐿𝐿

𝑐𝑐� �
2𝐺𝐺𝐺𝐺
𝑟𝑟 ���� 𝛼𝛼� 

 
(26) 

 
Equations (25) and (26) means that the Witte-Ulianov Time Interferometer presented at Figure 

11, can detect “time flow” variations between the points where the atomic  clocks are placed. Thus 
equation (24) allow the WUIT to measure time dilatation effects predicted by Special Relativity and 
equation (26) allow the WUIT to measure time dilatation effects predicted by General Relativity.   

 
WUTI IMPLEMENTATION USING TWO LASER SOUCERS  

 
Paul Dirac in his book "The Principles of Quantum Mechanics" [5] has claimed quite famously 

that the interference of two independent light beams can never occur. He stated that "the wave function 
gives information about the probability of one photon being in a particular place, and not the probable 
number of photons in that place." 

Nevertheless several published papers [6] [7], have shown that interference between two laser 
sources, seize presenting some technical complexities, can be performed. 

So, to achieve higher resolution the WUIT can use two laser sources as time references, replacing 
the atomic clocks and sine wave generators, meaning that the two signals to be “phase compared” 
becomes two laser beans,  

The laser, phase comparing can be easy achieved using a bean splitter to merge the two laser 
beans, and the combined beam impinges on a photodetector as presented in Figure 12. 

 
 
 
 
 
 

 
Fig 12: Two laser sources interference. 

 
At the photodetector the light intensity I can be calculated from the laser beans equations:   
 
𝐸𝐸��𝑟𝑟, �� � 𝐸𝐸��𝑒𝑒������������� 
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Equation (26), means that at the photodetector we can detect an wave with frequency 

proportional to the differences between the laser frequencies.  So if we use laser sources with wave 
length very stable (or using light filters tuned to specific wavelengths, e. q. Farby-Perrot resonator) 
with few Hz difference between the operating frequencies, the photodetector output can be easy read 
to achieve the differences between the laser frequencies. 
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If   the WUIT presented at Figure 11 is placed at one spaceship orbiting the mass M at distance 
r, and rotating in an angle 𝛼𝛼, as defined in Figure 10, from equations (18) and (24) we can calculate: 

   

���𝛼𝛼�
𝑤𝑤 � 2𝐿𝐿

𝑐𝑐� �
2𝐺𝐺𝐺𝐺
𝑟𝑟 ���� 𝛼𝛼� 

 
(26) 

 
Equations (25) and (26) means that the Witte-Ulianov Time Interferometer presented at Figure 

11, can detect “time flow” variations between the points where the atomic  clocks are placed. Thus 
equation (24) allow the WUIT to measure time dilatation effects predicted by Special Relativity and 
equation (26) allow the WUIT to measure time dilatation effects predicted by General Relativity.   

 
WUTI IMPLEMENTATION USING TWO LASER SOUCERS  

 
Paul Dirac in his book "The Principles of Quantum Mechanics" [5] has claimed quite famously 

that the interference of two independent light beams can never occur. He stated that "the wave function 
gives information about the probability of one photon being in a particular place, and not the probable 
number of photons in that place." 

Nevertheless several published papers [6] [7], have shown that interference between two laser 
sources, seize presenting some technical complexities, can be performed. 

So, to achieve higher resolution the WUIT can use two laser sources as time references, replacing 
the atomic clocks and sine wave generators, meaning that the two signals to be “phase compared” 
becomes two laser beans,  

The laser, phase comparing can be easy achieved using a bean splitter to merge the two laser 
beans, and the combined beam impinges on a photodetector as presented in Figure 12. 

 
 
 
 
 
 

 
Fig 12: Two laser sources interference. 
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Equation (26), means that at the photodetector we can detect an wave with frequency 

proportional to the differences between the laser frequencies.  So if we use laser sources with wave 
length very stable (or using light filters tuned to specific wavelengths, e. q. Farby-Perrot resonator) 
with few Hz difference between the operating frequencies, the photodetector output can be easy read 
to achieve the differences between the laser frequencies. 
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Using some optical adjust the system can be adjusted to obtain 
the maximum output value (φA-φB = π/2) and so equation (28) 
becomes:

     (29)

From equation (29) we can consider that the phase variation 
inS(t) is given by:

     (30)

As the two photodetectors, in Figure 13 receives basically the 
same signals, equations (29) and (30) given us an value that is 
constant if the delay Δtis also constant. 

If we consider that the system presented at Figure 13 is placed in 
a spaceship moving at speed v, over a rotating table that can be 
associated with an α angle as presented at Figure 7, the value of 
Δt changes in function of the α angle as defined in equation (11), 
and so equation (30), can be written as: 

     (31)

Note that equation (31) is basically the same equation (25), 
meaning that we can also use laser beans to measure variation on 
the time flow. Thus, the WUIT that use atomic clocks (Figure 11) 
and the WUIT that use Laser sources as time reference sources 

have the same behavior. Otherwise, the laser sources operating 
at frequencies from 104 to 105 times greater than a sine wave 
generator frequency and allowing better accuracy to measured 
the phase delays.  

For example, using a 10Mhz SG and considering that the phase 
comparator use 16bits Analogical Digital Conversers (ADC), 
given at least 10.000 levels to the phase detection processing, 
the WUTI time resolution is in order to 10-14s. 

If we use a He-Ne laser source (632nm wavelength), and 
considering that the photodetector output can be digitalized by 
an 16bits ADC, the time resolution of this WUTI is in order of 
2x10-19s.

9. Exeriments Using Two Laser Soucers:
The author found, some experiments that confirm the possibility 
of measure the Witte effect using two laser sources. The first 
experiment performed   in 1963 used two He-Ne laser placed in 
a rotting table as presented in Figure 14.  The laser frequency 
difference was found to be constant to within 30Hz over times as 
short as about one second [8]. 

Figure 15 presents the frequency variation between lasers when 
the table is in rotation, resulting in 275 KHz sine wave, that this 
author believe appear in function of the Witte effect over the two 
laser sources. 

15 

 
            
 
 
 
 

 
 

Fig 13: WUIT implementation using two Laser sources. 
 
The Witte-Ulianov Time interferometer can be mounted using the Figure 12 optical 

configuration in two positions, as presented at Figure 13. For these configurations the intensity at each 
photodetector (𝐼𝐼�and 𝐼𝐼� ) can be calculated from equation (26), and the output signal (S), can be easy 
obtained subtracting these intensities:  

 
𝐼𝐼��𝛥𝛥� � 𝐼𝐼�� � 𝐼𝐼�� ���� 𝜑𝜑� � 𝜑𝜑� � �𝛥𝛥 � 𝛥𝛥𝛥𝛥���𝑤𝑤� � 𝛥𝛥𝑤𝑤�� 𝐼𝐼��𝛥𝛥� � 𝐼𝐼�� � 𝐼𝐼�� ���� � � 𝛥𝛥𝛥𝛥��𝑤𝑤��         ⇒    � �  𝜑𝜑� � 𝜑𝜑� � 𝛥𝛥𝑤𝑤� � 𝛥𝛥𝑤𝑤� 
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(27) 

 
 
 
Considering that: 

𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝐼𝐼�� � 𝐼𝐼�� � 𝐼𝐼� 
𝑤𝑤� � 𝑤𝑤� � 𝑤𝑤 
𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥�� � 𝛥𝛥𝛥𝛥 

 
 

 
Equation (27) becomes: 
 
 

��𝛥𝛥� � 𝐼𝐼������� � 𝑤𝑤𝛥𝛥𝛥𝛥� � ����� � 𝑤𝑤𝛥𝛥𝛥𝛥�� 
��𝛥𝛥� � �2𝐼𝐼�� ������ ����𝑤𝑤𝛥𝛥𝛥𝛥� ��𝛥𝛥� � �2𝐼𝐼�� ����𝜑𝜑� � 𝜑𝜑� � 𝛥𝛥𝑤𝑤 � 𝛥𝛥𝑤𝑤� ����𝑤𝑤𝛥𝛥𝛥𝛥� 
��𝛥𝛥� � �2𝐼𝐼�� ����𝜑𝜑� � 𝜑𝜑�� ����𝑤𝑤𝛥𝛥𝛥𝛥� 

 
 
 

 
(28) 

 
Using some optical adjust the system can be adjusted to obtain the maximum output value (𝜑𝜑� �𝜑𝜑� � �/2) and so equation (28) becomes: 
 

��𝛥𝛥� � �2𝐼𝐼�� ����𝑤𝑤𝛥𝛥𝛥𝛥� (29) 
 
From equation (29) we can consider that the phase variation in��𝛥𝛥� is given by: 
 

𝛥𝛥� � 𝑤𝑤𝛥𝛥𝛥𝛥 (30) 
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Using some optical adjust the system can be adjusted to obtain the maximum output value (𝜑𝜑� �𝜑𝜑� � �/2) and so equation (28) becomes: 
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From equation (29) we can consider that the phase variation in��𝛥𝛥� is given by: 
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As the two photodetectors, in Figure 13 receives basically the same signals, equations (29) and 
(30) given us an value that is constant if the delay 𝛥𝛥𝛥𝛥is also constant.  

 
If we consider that the system presented at Figure 13 is placed in a spaceship moving at speed v, 

over a rotating table that can be associated with an 𝛼𝛼angle as presented at Figure 7, the value of 𝛥𝛥𝛥𝛥 
changes in function of the 𝛼𝛼angle as defined in equation (11), and so equation (30), can be written as:  

 
𝛥𝛥��𝛼𝛼� � �𝛥𝛥𝛥𝛥�𝛼𝛼� 
𝛥𝛥��𝛼𝛼� � �� 𝑣𝑣𝑐𝑐� ���� 𝛼𝛼� 

 
 
(31) 

 
Note that equation (31) is basically the same equation (25), meaning that we can also use laser 

beans to measure variation on the time flow.  
Thus, the WUIT that use atomic clocks (Figure 11) and the WUIT that use Laser sources as time 

reference sources have the same behavior. Otherwise, the laser sources operating at frequencies from 
104 to 105 times greater than a sine wave generator frequency and allowing better accuracy to measured 
the phase delays.   

 
For example, using a 10Mhz SG and considering that the phase comparator use 16bits Analogical 

Digital Conversers (ADC), given at least 10.000 levels to the phase detection processing, the WUTI 
time resolution is in order to 10-14s.  

If we use a He-Ne laser source (632nm wavelength), and considering that the photodetector 
output can be digitalized by an 16bits ADC, the time resolution of this WUTI is in order of 2x10-19s. 

 
EXERIMENTS USING TWO LASER SOUCERS  

 
The author found, some experiments that confirm the possibility of measure the Witte effect 

using two laser sources. The first experiment [8] performed   in 1963 used two He-Ne laser placed in 
a rotting table as presented in Figure 14.  The laser frequency difference was found to be constant to 
within 30Hz over times as short as about one second.  

Figure 15 presents the frequency variation between lasers when the table is in rotation, resulting 
in 275 KHz sine wave, that this author believe appear in function of the Witte effect over the two laser 
sources.  
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Fig 14: Schematic diagram for recording the variations in beat frequency between two optical 

maser oscillators when rotated through 90o in space. Apparatus on the shock-proof rotating table is 
acoustically isolated from the remaining electronic and recording equipment. 

 

 
Fig 15: A plot of frequency variation between lasers due to 90o rotation of the table. Vertical 

scale is such that maximum variation is about 275 kHz. Markers indicate rotational angular positions 
zero and 90 o. Double markers appear because the total rotation slightly overshot the zero and 90' 

positions on each swing. 
 

In the article [8] we can see the flowing explanation for the 275 kHz signal, presented in Figure 
15:  

“The magnitude of this frequency change is about 275 kHz, or somewhat less than 
that attributable to the earth's orbital velocity on the simple ether theory. The change is 
mostly associated, as indicated above, with local effects such as the Earth's magnetic field, 
and must be measured throughout some appreciable part of the day to allow detection of 
any more fundamental spatial anisotropy.” 

 
The above explanation supposing that the “Earth's magnetic field” can change the laser 

frequencies was used, to not admit that some unknown effect is acting over the system. This author 
believes that the Witte effect can explain this frequency change, and so calculate its value from some 
parameter of this experiment.  

 
The equation (29) developed to the laser configuration presented at Figures 12 and 13, cannot be 

applied to the system presented in Figure 14, because the lasers sources not are placed in the same line. 
Thus we need develop new equations to represent the Figure 14 system:  
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Figure 14: Schematic diagram for recording the variations in beat frequency between two optical maser oscillators when rotated 
through 90o in space. Apparatus on the shock-proof rotating table is acoustically isolated from the remaining electronic and recording 
equipment.

Figure 15: A plot of frequency variation between lasers due to 90o rotation of the table. Vertical scale is such that maximum 
variation is about 275 kHz. Markers indicate rotational angular positions zero and 90 o. Double markers appear because the total 
rotation slightly overshot the zero and 90' positions on each swing.
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In the article we can see the flowing explanation for the 275 kHz 
signal, presented in Figure 15: 

“The magnitude of this frequency change is about 275 kHz, or 
somewhat less than that attributable to the earth's orbital velocity 
on the simple ether theory. The change is mostly associated, as 
indicated above, with local effects such as the Earth's magnetic 
field, and must be measured throughout some appreciable part 
of the day to allow detection of any more fundamental spatial 
anisotropy.”

The above explanation supposing that the “Earth's magnetic 
field” can change the laser frequencies was used, to not admit 
that some unknown effect is acting over the system. This 
author believes that the Witte effect can explain this frequency 
change, and so calculate its value from some parameter of this 
experiment. 

The equation (29) developed to the laser configuration presented 
at Figures 12 and 13, cannot be applied to the system presented 
in Figure 14, because the lasers sources not are placed in the 
same line. Thus we need develop new equations to represent the 
Figure 14 system: 

 

     (32)

Knowing that wA and wB values depends on the laser wave length 
(λA and λB), considering the Earth speed (v) these lengths vary in 
function of the table rotation angle:
   

      (33) 

      (34)

Thus for α equal to zero equations (33) and (34) given:

 

      (36)

For α angle changing in 90o steps the frequency variations 
between the two lasers will have a maximum value that is like 
the same presented at equation (36). Thus, the equation (32) 
basically generates a sine wave whit maximum frequency that 
can be calculated by equation (36). 

Otherwise, to obtain the signal generated from the laser 
interference, we need also consider the Witte effect acting over a 
distance L that is presented in Figure 16 as a red line contenting 
the centers of the laser sources.

Figure 16: Distance L between the lasers sources, used to 
calculate the Witte effect. 

If we consider the Earth moving in the space ate speed v, 
equation (31) allow calculate the Witte effect phase delay, given 
in radians. Otherwise, for the Figure 14 system, to convert the 
maximum phase delay (given in radians by equation (31)) in 
the maximum frequency variation ( f , given in Hz), we need 
consider  the sine wave signal defined in equation (32), which 
has an angular frequency Δw, using the flowing relation:

     (37)

Appling equation (36) to equation (37) give us:

   
     (38)

Knowing the laser frequency (w=1.88x1015 rad/s) and 
considering the Earth motion in relation the CMB (v=369 km/s), 
from equation (36) we can calculate: 
 

Unfortunately, the article [8] does not have the physical 
dimensions of the experiment and is not possible to determine 
exactly the value of the distance L as presented in Figure 16. 

Beside this we can suppose that L value can be found in a 
reasonable range, for example from 0.25m to 1.0m, and so 
obtained a range of values of frequency using equation (38): 

Thus, if the distance between the laser centers in Figure 14, is 
in order to 67cm and considering the Erath speed in relation the 
CMB  equal to 369km/h, applying the Witte effect to this system 
(equation (38)) give us an frequency variation in order of 275 

18 

𝐸𝐸���� � 𝐸𝐸��𝑒𝑒��������� 
𝐸𝐸���� � 𝐸𝐸��𝑒𝑒��������� 
� � �𝐸𝐸� � 𝐸𝐸��� 
���� � 𝐸𝐸��� � 𝐸𝐸��� � 2𝐸𝐸��𝐸𝐸�� 𝑐𝑐��� ��� � ��� � �𝑤𝑤� � 𝑤𝑤���� ���� � �� � �� 𝑐𝑐����� � ��𝑤𝑤� � 𝑤𝑤��� ���� � �� � �� 𝑐𝑐����� � �𝑤𝑤 �� 

 
 
 
 
 
 
 

(32) 
 

Knowing that 𝑤𝑤� and 𝑤𝑤� values depends on the laser wave length (𝜆𝜆� and 𝜆𝜆�), considering the 
Earth speed (v) these lengths vary in function of the table rotation angle: 
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For 𝛼𝛼angle changing in 90o steps the frequency variations between the two lasers will have a 
maximum value that is like the same presented at equation (36).  

 
Thus, the equation (32) basically generates a sine wave whit maximum frequency that can be 

calculated by equation (36).  
 
Otherwise, to obtain the signal generated from the laser interference, we need also consider the 

Witte effect acting over a distance L that is presented in Figure 16 as a red line contenting the centers 
of the laser sources. 
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Fig 16: Distance L between the lasers sources, used to calculate the Witte effect.  
 
If we consider the Earth moving in the space ate speed v, equation (31) allow calculate the Witte 

effect phase delay, given in radians. Otherwise, for the Figure 14 system, to convert the maximum 
phase delay (given in radians by equation (31)) in the maximum frequency variation      ( f , given in 
Hz), we need consider  the sine wave signal defined in equation (32), which has an angular frequency 
𝛥𝛥𝛥𝛥, using the flowing relation: 

 

𝑓𝑓 � 𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥  (37) 
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Appling equation (36) to equation (37) give us: 
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Knowing the laser frequency (w=1.88x1015 rad/s) and considering the Earth motion in relation 

the CMB (v=369 km/s), from equation (36) we can calculate:  
 

𝛥𝛥𝛥𝛥 � 1.42x10�𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 
 

 
 

Unfortunately, the article [8] does not have the physical dimensions of the experiment and is not 
possible to determine exactly the value of the distance L as presented in Figure 16.  

Beside this we can suppose that L value can be found in a reasonable range, for example from 
0.25m to 1.0m, and so obtained a range of values of frequency using equation (38):  

 
𝑤𝑤 � 0.25𝑚𝑚   ⇒   𝑓𝑓 � 738𝑘𝑘𝑘𝑘𝑘𝑘 
𝑤𝑤 � 0.50𝑚𝑚   ⇒   𝑓𝑓 � 369𝑘𝑘𝑘𝑘𝑘𝑘 
𝑤𝑤 � 0.67𝑚𝑚   ⇒   𝑓𝑓 � 275𝑘𝑘𝑘𝑘𝑘𝑘 
𝑤𝑤 � 0.75𝑚𝑚   ⇒   𝑓𝑓 � 246𝑘𝑘𝑘𝑘𝑘𝑘 
𝑤𝑤 � 1.00𝑚𝑚   ⇒   𝑓𝑓 � 184𝑘𝑘𝑘𝑘𝑘𝑘 

 
 
 
 
 

 
Thus, if the distance between the laser centers in Figure 14, is in order to 67cm and considering 

the Erath speed in relation the CMB  equal to 369km/h, applying the Witte effect to this system 
(equation (38)) give us an frequency variation in order of 275 kHz, that is the same measured at the 
experiment, as presented at Figure 15.  

 
Other experiment [9] was carried out in 1973, using two laser sources, as presented in Figure 

17. This experiment use a He-Ne laser source placed at a rotating table and a CH4 stabilized laser in 
a fixed position acting as a reference source.  

 

 
 

Fig 17: Experiment using a rotation laser and a fixes laser. 
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It should be noted that the use of two laser sources generating 
interference patterns that can be easily observed and thus the 
Witte effect can be monitored by means of atomic clocks can 
also be measured using light sources having stable frequency.

10. Wuti Gravitacional Waves Observer:
The Witte-Ulianov Time interferometer can observe “time flow” 
variation predicted in Special Relativity for bodies moving in 
high speed and so “time flow” variation predicted in General 
Relativity for bodies inside strong gravitational fields.

This author believe that the WUTI can also detect gravitational 
waves. 
Observing the WUTI “one arm” structure presented in Figure 
11 that use two atomic clocks. Supposing that a gravitational-
wave pulse “hit” the Clock A, it will affected by one time 
dilatation effect that initially not is observed over Clock B. 
As the gravitational-wave pulse travel at light speed, some 
microseconds after it “hit” clock B that will also be affected by 
the time dilatation. Thus the time delay between the two clocks 
varying with the gravitational wave and so the phase compares 

present complementary variations that can be observed at the  
WUIT output. 

From equation (26) we can deduce that the WUIT output has a 
signal that is proportional to the gravitational-wave amplitude:

Equation (39) meaning that the WUTI sensibility is related to the 
interferometer length (L) and to the angular frequency (w). Thus 
one good option is applied “all in fiber” optics components, as 
presented in Figure 19, and use optical fiber cables to connected 
the laser sources. 

This kind of WUIT can use fiber optics cable whit many 
kilometer of length, and so the photodetector output signal need 
be recorded by an data acquisition system whit a global time 
synchronization, for example by the GPS time.   

kHz, that is the same measured at the experiment, as presented at Figure 15. 

Other experiment was carried out in 1973, using two laser sources, as presented in Figure 17. This experiment use a He-Ne laser 
source placed at a rotating table and a CH4 stabilized laser in a fixed position acting as a reference source [9]. 
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Figure18: Result from Figure 17 experiment.
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Figure 18 presented the result of this experiment, where a small frequency variation can be 
observed. Like the table in Figure 17, allow measure the angular position the experiments results 
express the frequency variation considering a sidereal frame, and so in data plotted is possible note 
that the angular variation is related to the sidereal time. This author believes that article [9] results, 
presented at Figure 18, are also related to Witte effect, otherwise in this system the reference laser is 
mounted in a fixed position over the rotating table, and so to analyze their operation is necessary one 
mathematical equation different from what has been presented above, which is beyond the scope of 
this article.  
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easily observed and thus the Witte effect can be monitored by means of atomic clocks can also be 
measured using light sources having stable frequency. 

 
WUTI GRAVITACIONAL WAVES OBSERVER  

 
The Witte-Ulianov Time interferometer can observe “time flow” variation predicted in Special 

Relativity for bodies moving in high speed and so “time flow” variation predicted in General Relativity 
for bodies inside strong gravitational fields. 

This author believe that the WUTI can also detect gravitational waves.  
Observing the WUTI “one arm” structure presented in Figure 11 that use two atomic clocks. 

Supposing that a gravitational-wave pulse “hit” the Clock A, it will affected by one time dilatation 
effect that initially not is observed over Clock B. As the gravitational-wave pulse travel at light speed, 
some microseconds after it “hit” clock B that will also be affected by the time dilatation. Thus the time 
delay between the two clocks varying with the gravitational wave and so the phase compares present 
complementary variations that can be observed at the  WUIT output.  

From equation (26) we can deduce that the WUIT output has a signal that is proportional to the 
gravitational-wave amplitude: 

 

����� � 2𝑤𝑤𝑤𝑤
𝑐𝑐� ����� (39) 

 
Equation (39) meaning that the WUTI sensibility is related to the interferometer length (L) and 

to the angular frequency (w). Thus one good option is applied “all in fiber” optics components, as 
presented in Figure 19, and use optical fiber cables to connected the laser sources.  
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This kind of WUIT can use fiber optics cable whit many kilometer of length, and so the 
photodetector output signal need be recorded by an data acquisition system whit a global time 
synchronization, for example by the GPS time.    

           
Fig 19: WUIT implementation using “all in fiber”. 
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11. CONCLUSION:
As the LIGO detector can operate only in a narrow band of 
frequencies (from 80hz to 300hz) the LIGO, system becomes 
more a black hole collision detector than a generic gravitational-
waves detector.  

It should be remembered that, although those responsible for 
LIGO, won the Nobel Prize in 2017, the number of scientists 
who today question the results of the LIGO, gravitational wave 
detections, grows every day. For example, Dr. Andrew Jackson 
from LIGO dissenting team, at the Niels Bohr Institute in 
Copenhagen, Denmark, it’s very clear when speaking:

“We believe that LIGO has failed to make a convincing case for 
the detection of any gravitational wave event,” 

I believe that the scientists, will soon realize that LIGO is a 
FAKE and that this detector cannot detect gravitational waves, 
because the light is also affected by GWs [10-13].

Today many people think that actually, LIGO is only detecting 
noise, or else electromagnetic terrestrial or sidereal phenomena, 
that are affecting the United States Power Grid, and generating 
simultaneous effects (limited by the speed of light) on the both 
LIGO detectors, as we can see in [14-31].

“The analyze of the data for the gravitational wave (GW) 
events observed in LIGO detectors, from the viewpoint of signal 
estimation, detection and interference mitigation, shown that 
the GW events, are buried in detector noise and that the GW 
channel in the LIGO detector does in fact pick up strong 60*n 
Hz electromagnetic interference (EMI) from power lines…. and 
external magnetic field, from astrophysical objects, can enter the 
GW channel through electrical power points and wires, in which 
case we may not see any correlated peaks in the magnetometer 
channel and may mistake this interference, as a GW signal.... In 
conclusion, the magnetic coupling function between the received 
signal with the template in both the GW channel and the 
magnetometer channel is unknown for high frequencies. Hence 
it is suggested that the detected LIGO GW signals be further 



 Volume 2 | Issue 1 | 68Curr Res Stat Math, 2023

studied independently, given that magnetic field cannot be ruled 
out as a candidate for the GW events. ...”

It is interesting to observe that the LIGO teams themselves, 
report the presence of correlated noises in the two detectors and 
noise bursts (Blips) that appear continuously in the interval of 
a few minutes, in each day of operation, and that can be easily 
confused with gravitational waves, if by chance they happen at 
close intervals of time in the two LIGO detectors [32-33].

“Blip glitches are short noise transients present in data 
from groundbased gravitational-wave observatories. These 
glitches resemble the gravitationalwave signature of massive 
binary black hole mergers. Hence, the sensitivity of transient 
gravitational-wave searches to such high-mass systems and other 
potential short duration sources is degraded by the presence of 
blip glitches. The origin and rate of occurrence of this type of 
glitch have been largely unknown. In this paper we explore the 
population of blip glitches in Advanced LIGO during its first 
and second observing runs. On average, we find that Advanced 
LIGO data contains approximately two blip glitches per hour 
of data. We identify four subsets of blip glitches correlated with 
detector auxiliary or environmental sensor channels, however 
the physical causes of the majority of blips remain unclear.”

Oh yes! these bursts of noise happen thousands of times a year, 
in the two detectors, and they don't know, where it comes from 
or what they are…What would actually be, the probability that 
two of these noise surges, happened at the same window time 
(10 ms) in both detectors, without having any correlation over 
them in a time window of several years? Would it be, something 
really impossible, for this “Blips”, to occur simultaneously, 
and generate a false GW detection alarm in the LIGO detector? 
But then, how come they won a Nobel Prize, basically for th e 
first GW event that they detected? From what is stated in the 
and articles, the LIGO team, itself knew that there was a Great 
chance of some GW detected at LIGO, was the result of “Blips” 
and noise Bursts. 

Even so, the LIGO, leaders preferred to ignore these facts, and 
present to the whole World, the first detection of LIGO (the 
GW150914 event) as proof that not only the LIGO detector 
works well but as a unnecessary proof the Einstein’s General 
Relativity Theory, also works well!

Aside the fact, that they was sure to win the Nobel prize, the 
LIGO leaders, spending millions of Dolars producing media and 
paying advertising costs at magazines, newspapers, on television 
and on Internet pages, around world, with amazing news of one 
GW detection, that had a high chances of being a false alarm.

Obviously, at this first detection moment, they needed to justify 
the work of ten thousands scientists, who have been projecting, 
constructing and operating the LIGO detectors for over 20 years, 
without any presentable result, and also they need to justify the 
billions of dollars that have already been spent on the LIGO 
project, and in this critical, situation even the Nobel prize, ends 
up being a small bonus, for the LIGO leaders, and not the main 
concern of them…

On other hand, the Witte-Ulianov Time Interferometer here 
presented, can detecting gravitational-waves in very low 
frequency, and as stated in the title of this article, this detector 
can first see the ocean (the gravitational fields sea of the Moon, 
the Sun and  Galaxy), and then it can see and record, the 
gravitational waves

The first step to obtain this new kind of detector, is confirm the 
existence of the Witte effect, that can be achieved in simple 
experiment, with very low coast, using two atomic clocks, two 
phase compare detectors and some kilometers of coaxial cables,  
as presented on this article. 

Can be noted, the that historical experiments using two laser 
sources are not conclusive and have not explained effects, that 
this author believes, are related to the Witte effect, something 
that until now has not been recognized widely in scientific 
means. This occur because, in 1991, when R. D. Witte 
accidentally discovery, the Witte effect, the experimental results 
was interpreted by Witte, as  proofs that the Einstein´s Especial 
Relativity was wrong. 

The Witte, radical positioning turned the Witte effect in a kind of 
“bad” science. Then always in 2006, when R. T. Cahill showed 
that Witte effect, can be explained using Einstein's relativity, the 
Witte effect, was accepted at this first time, but still something 
obscure because, it use the Earth travel speed through, space as 
a velocity parameter, pointing to some sort of Ether, that can 
generate an absolute speed reference. 

On the other hand, if we look at the Witte effect considering 
the orbit of the earth around the sun (average speed of 30km/s), 
or considering the gravitational field caused by the sun (for a 
distance given by the average radius of the orbit) the WUIT 
output has the same value. This means that the large gravitational 
fields, generated from Milk Way, and near galaxies can define a 
reference frame, to the Earth velocity, used in equation (1) that 
define the Witte effect.

This author believes that experiments using independents 
time sources, whether two atomic clocks or two laser sources, 
have until, now been poorly understood, and in a sense the 
physical scientists "fled" of these problems, avoiding points 
that apparently generated conflict with the Einstein’s Relativity 
Theories.

Otherwise as the Witte, experiment with atomic clocks is very 
easy and cheap to be repeated, it is important to establish, more 
fully, the fact that the Witte effect exists, and can detect the “flow 
time” variations between two space time points.

If the Witte effect exist, it can be used as base to construct 
the Witte-Ulianov Time Interferometer, that is based in flow 
time variations detection. For this author, time distortions, as 
predicted by Einstein’s, Especial and General Relativity, is the 
key to construct gravitational-wave detectors that can operate in 
very low frequency, that can observe gravitational waves whit 
period of seconds, minutes or even hours. 
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On this way the Witte-Ulianov Time Interferometer besides 
allowing to observe low frequency gravitational-waves also 
makes it possible to observe the ocean of gravitational fields 
that surrounding the Earth. It can also be used, to a low coast, 
improving of the current LIGO detector (using tree lasers instead 
of one) and create a New LIGO, that in the future, can by capable 
of detecting Real gravitational waves, instead of Fake GW, like 
this is doing now [34-38].
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