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Abstract
Focusing on the particularity of holiday load, in this paper, a periodic autoregressive moving average model (PAMAM) 
algorithm based on selecting optimal input features (SOIF) is proposed to predict the short-term holiday power load. In 
short-term load forecasting models, there are few researches on feature selection (FS). However, as more and more intelligent 
hybrid models are used in real-time load forecasting, FS has become a key factor affecting the forecasting accuracy. Based 
on the idea of SOIF, PAMAM model is proposed to improve the influence of FS factors, and the holiday equations are 
combined into periodic autoregressive moving average model, so as to improve the short-term forecasting. In order to 
simplify the calculation, in this paper, the probability distribution is used to calculate the FS, and the autoregressive spline 
algorithm is used to establish the nonlinear solar radiation and temperature effect model. Based on the statistics of solar 
radiation intensity, temperature and other data during the Spring Festival, in this paper we analyze the influence of the above 
factors on the short-term power load forecasting during holidays. Experimental results show that SOIF-PAMAM algorithm 
in which temperature and other weather conditions are considered can significantly improve the prediction accuracy, the 
average absolute error is 2.45%, and the root mean square error is 2.61%.
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1. Introduction
Power load forecasting plays an increasingly important role in 
power generation, energy storage, transmission and operation of 
power system, and accurate forecasting is becoming the main 
problem of current research [1]. With the rapid development 
of smart grid technology, the scale of complex power grid 
increases the complexity of power data, which puts forward 
higher requirements for the accuracy and real-time of power 
load forecasting [2]. Therefore, how to further improve the 
robustness and accuracy of power load forecasting has attracted 
the focus of more and more researchers.

For short-term load power forecasting, scholars have proposed 
a large number of power forecasting methods, including but 
not limited to neural network method, Markov chain method, 
support vector machine and so on [3]. Although the above 
algorithms have their own advantages and disadvantages, they 
are all based on massive data for target prediction and analysis. 
Compared with the power load data of holidays, the amount 
of power load data of non-holidays is extremely sufficient; 
therefore, we can get more accurate forecasting results based on 
the existing forecasting algorithm. However, the variation law 
of power load data in Chinese Spring Festival, National Day, 
Qingming Festival, May Day, Dragon Boat Festival and Mid-

Autumn Festival holidays is quite different from that in non-
holidays, moreover, the power load data in holidays is limited to 
a large extent by the amount of historical load data, which makes 
it impossible to accurately predict the power load in holidays.

In view of the above reasons, relevant scholars have conducted in-
depth research on holiday power load forecasting. In reference for 
seasonal short-term load forecasting, IGRA-CMPSO-LSSVM 
joint forecasting algorithm is proposed to improve short-term 
load forecasting accuracy by optimizing LSSVM parameters; 
In reference EEMD algorithm is used to decompose the load 
data, and CS optimized LSSVM is used to predict the load data 
with different characteristic components, which improves the 
accuracy of load forecasting to 98.5%; In reference considering 
the influence of feature selection on prediction accuracy, GWO 
is used to optimize LSSVM to predict the power load in half 
an hour; In reference a new forecasting mode combining power 
load data with field programmable gate array (FPGA) controller 
is proposed. The load forecasting algorithm is implemented in 
FPGA [4,5]. The high-speed data processing ability of FPGA is 
used to predict power load in real time, which provides powerful 
data support for power dispatching management of dispatching 
center. However, the above algorithm has the following 
problems: firstly, the forecasting objects are short-term load 
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forecasting on normal days, and the particularity of holidays 
is not considered; Secondly, for the load forecasting of special 
holidays, the influence of weather system on the load forecasting 
accuracy of special holidays should also be considered; At last, 
there is few researches focus on feature selection of input data 
although it is the key factor in algorithms.

In view of the problems existing in the current research on 
load forecasting of special holidays, in this paper we propose 
SOIF-EMM algorithm for holiday load forecasting. Firstly, the 
mathematical statistics of temperature, wind speed, light and 
rainfall during holidays are analyzed, and the complexity and 
diversity of the data are modeled, and the data characteristics 
of the above data are analyzed as well; Secondly, the optimal 
feature selection is used to determine the dependence between 
temperature, wind speed, light, rainfall and power load during 
holidays, and then the functional relationship between the above 
factors and power load is determined; Finally, based on the 
EMM model, the grey prediction is improved to improve the 
power load forecasting accuracy during special holidays, which 
provides a reliable basis for power load dispatching during 
holidays, so as to realize the optimization of power economic 
benefits during holidays.

The rest of this paper is arranged as follows: in section 2, the 
description and establishment of the basic principles of the 
model is involved; in section 3, the solution steps of the model 

are demonstrated in detail; in section 4, taking the IEEE 39 node 
test system as an example, we comprehensively discuss the 
research results of the energy system coordination mechanism; 
Finally, we come to the conclusions in this paper.

2. Mathematical Models Formulation
Appropriate selection of input data features can significantly 
improve the performance of the model. The optimal selection 
of input features depends not only on the algorithm itself, but 
also on the data representation [6,7]. The relationship between 
the external factor eigenvector and the load vector is relatively 
pure, generally linear or simple monotonic nonlinear. When 
constructing a mathematical model, the ultimate goal is to 
make the model meet the mapping relationship between new 
data as much as possible, but when determining the mapping 
relationship, it is easy to emerge local dead zone, which leads to 
the decline of the generalization ability of the model. Therefore, 
this paper uses regularization to reduce the complexity of the 
model so as to describe the correlation between data better.

Regularization is to add structured risk to experience risk or 
experience loss. In this paper, the structured risk parameter is 
penalized by norm, which is used to limit the learning ability of 
the model and improve the generalization ability by preventing 
high deviation [8]. Therefore, the total loss function of power 
load is
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this paper, the structured risk parameter is penalized by norm, which is used to limit the
learning ability of the model and improve the generalization ability by preventing high
deviation. Therefore, the total loss function of power load is

J(θ;X, y) = Lemp(θ;X, y) + αΩ(θ), (2.1)

where X denotes input data, y denotes corresponding labels, θ denotes weight param-
eters, Lemp denotes experience loss, α ∈ [0,+∞] is used to adjust the super parameter
of the relative contribution of norm penalty and experience loss, specific speaking, when
α = 0, it means there is no regularization, the larger of the value of α, the larger the
regularization penalty.

The most commonly used functions Ω(θ) include L1 norm and L2 norm, also known
as L1 and L2 regularization. By comparison, L1 regularization can make the parameters
sparse and further improve the generalization ability of the model, while L2 regularization
can reduce the sum of parameter norm and make the optimal solution closer to the far
point. In this paper, in order to improve the generalization ability of the model, we will
use L1 regularization. Since we take L1 regularization, i.e., Ω(θ) = ‖θ‖1 =

∑
i |θi|, thus,

L1 regularization loss function is obtained by substituting formula (2.1) as

J(θ;X, y) = Lemp(θ;X, y) + α‖θ‖1 = Lemp(θ;X, y) + α
∑
i

|θi|, (2.2)

In order to minimize the objective function, by deriving with respect to θ in equation
(2.1) as follows,

∇θJ(θ;X, y) = ∇θLemp(θ;X, y) + αsign(θ), (2.3)

where sign(θ) = 1, when θ > 0; sign(θ) = −1, when θ < 0; sign(θ) = 0, when θ = 0.
When α = 0 and first derivative ∇Lemp(θ

∗) = 0, we use Taylor expansion to expand and
simplify the optimal solution at θ∗, thus, we can obtain the optimal solution.
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Figure 1: The Principle of L1 Regularization Geometry

For the convenience of understanding, we will analyze the L1 regularization from the
geometric point of view, and get the regularization geometric principle, as shown in Figure
1.

Seen from figure 1, it can be known that when |θ∗| ≤ α
Hi,i

, the optimal solution is

θ∗ = 0, this means the effect of Lemp(θ;X, y) is offset; while when |θ∗| ≥ α
Hi,i

, the optimal

solution θ∗ �= 0, and the moving distance to the origin is α
Hi,i

. The red bull’s-eye region

is the most perfect data fitting of the algorithm. The dispersion and concentration of the
green points reflect the variance of the data, while the position relationship between the
green points and the bull’s-eye reflects the deviation of the data.

2.1 Load forecasting model for special holidays

Considering that the short-term power load series {xt} of special holidays is composed
of certain components, weather conditions and random process, therefore, the periodic
autoregressive sliding model is as follows

xt =

p∑
j=1

ajxt−j +

k∑
j=1

Ajcos(ωjt+ ϕj) +

q∑
j=0

bjεt−j , t ∈ N+ (2.4)

where aj , bj ∈ R are model parameters; 0 ≤ ω1 < ω2 < · · · < ωk ≤ π are angular
frequencies; Aj is amplitude; ϕj ∈ [0, 2π); εt is white noise process. Obviously, the model
(2.4) consists of autoregressive term, periodic term and random term. When p = q = 0,
there are only periodic superposition terms yt =

∑k
j=1Ajcos(ωjt + ϕj) left, where the

period of each item is Tj =
2π
ωj
.

Furthermore, we can extend the model in the real number field (2.4) to the complex
number field, and obtain that the complex number model is as follows

xt =

p∑
j=1

ajxt−j +
r∑

j=1

αjexp(iλjt) +

q∑
j=0

bjεt−j , t ∈ N+ (2.5)
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For the convenience of understanding, we will analyze the L1 
regularization from the geometric point of view, and get the 
regularization geometric principle, as shown in Figure 1.

Seen from figure 1, it can be known that when                     the 
optimal solution is θ∗ ≠ 0, this means the effect of Lemp(θ;X,y) is 
offset; while when                   the optimal solution θ∗ 6= 0, and the 
moving distance to the origin is       . The red bull’s-eye region is 
the most perfect data fitting of the algorithm. The dispersion and 

concentration of the green points reflect the variance of the data, 
while the position relationship between the green points and the 
bull’s-eye reflects the deviation of the data.

a. Load Forecasting Model for Special Holidays
Considering that the short-term power load series {xt} of special 
holidays is composed of certain components, weather conditions 
and random process, therefore, the periodic autoregressive 
sliding model is as follows

where aj,bj ∈ R are model parameters; 0 ≤ ω1 < ω2 < ••• < ωk 
≤ π are angular frequencies; Aj is amplitude; φj ∈ [0,2π); εt is 
white noise process. Obviously, the model (2.4) consists of 
autoregressive term, periodic term and random term. When p = 
q = 0, there are only periodic superposition terms                        

                                left, where the period of each item is 

Furthermore, we can extend the model in the real number field 
(2.4) to the complex number field, and obtain that the complex 
number model is as follows

Where                                                                    is periodic superposition 
term. In the process of solving the model, it is necessary to 
ensure that the complex vectors meet the requirements Πr

j=1aj 

6= 0, i.e., there is no zero component in vector α = (α1,α1,••• ,αr)
T. In addition,
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where r = 2k, yt =
∑r

j=1 αjexp(iλjt) is periodic superposition term. In the process of
solving the model, it is necessary to ensure that the complex vectors meet the requirements
Πr

j=1aj �= 0, i.e., there is no zero component in vector α = (α1, α1, · · · , αr)
T . In addition,

λj =

{
ωj , j = 1, 2, 3 · · · , k
−ωj−k, j = k + 1, k + 2 · · · , r.

and

αj =

{
1
2Ajexp(iϕj), j = 1, 2, 3 · · · , k
1
2Aj−kexp(−iϕj−k), j = k + 1, k + 2 · · · , r.

Summarized from historical data, the accuracy of load forecasting on special holidays
can be divided into three cases as follows, 1) it remains stable for a period of time; 2) For a
period of time, due to the influence of weather and other factors, the power load fluctuates
alternately; 3) In a period of time, due to environmental factors, it directly transits from
one steady state to another.

Therefore, the trend term of short-term power load forecasting in holidays can be
eliminated by time interval average. Before establishing the cycle autoregressive sliding
average model, the influence of trend term should be eliminated, and the accuracy require-
ments can be met by difference calculation. Defined the first order difference operator as
∇1xt = ∇xt = xt − xt−1, then d-th order difference operator is ∇dxt = ∇(∇d−1xt), the
lower order difference can eliminate the linear and nonlinear growth trend. According
to the power load data in special holidays, the cycle is 24 hours, the number of days
M = 24 × d is taken as the sample capacity in holidays, we define the trend term as the
average value of the period as

Ti =
1

s

s∑
j=1

x(i− 1)s+j , i = 1, 2, · · ·M (2.6)

where M denotes the number of periods.
By using the calculation formula of segmented trend elimination, the following results

can be obtained

x′t = xt − T[t/s], i = 1, 2, · · ·N (2.7)

where N denotes the capacity of samples, x′t means transformation sequence to eliminate
the influence of weather factors.

Through the data statistics of weather and other influencing factors, the estimation
of parameter r, λ, α is discussed, which is more conducive to the accuracy of the periodic
autoregressive moving average model. In the calculation of parameter λ, let

SN (λ) =

N∑
t=1

xtexp(−iλt), (2.8)

in the formula |SN (λ)|, the number of bee colony is exactly the number of periods of the
model, i.e., r. To further improve the efficiency of colony detection, the specific steps are
as follows

Take A > 0, such that A = O(N0.75) as N → ∞. Define µj = π
2N j − π, we calculate

dj = |SN (µj)|, j = 1, 2, · · · , 4N , i.e.,
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dj = {[
N∑
t=1

xtcos(π − π

2N
j)]2 + [

N∑
t=1

xtsin(π − π

2N
j)]2}

1
2 , j = 1, 2, · · · 4N. (2.9)

let dj1 = maxdj , j = 1, 2, · · · 4N . If dj1 ≤ A, we define r̂ = 0, and stop the calculation and
then define

Ωl = {λ ∈ (−π, π] : N−1/2 ≤ |λ− µj1 | ≤ 2π −N−1/2}. (2.10)

It can be obtained by recursion method that when dj reach the maximum value dj1 in
Ωl, we define the estimated value of r as r̂ = p, and sort the maximum points in ascending
order, so that we get the initial estimation of the parameter λ is λ̂ = (λ̂1, λ̂2, · · · , λ̂r(N))

T .

Next, we estimate the value of the parameter α, let

α̂j =
1

N

N∑
t=1

xtexp(−iλ̂jt), 1 ≤ j ≤ r̂, (2.11)

To improve the accuracy of the estimation on α, we use arg(c) to denote the angle of
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Figure 2: Statistics of Weather Data during Spring Festival

data, analyzes the data characteristics of the weather data, determines the optimal data
input characteristics, and further improves the short-term load forecasting accuracy.

Figure 2 is a real-time data statistics of four kind of weather, namely temperature,
solar radiation intensity, air specific temperature and average soil temperature during
Spring Festival. It is known from the figure 2 that the temperature and solar radiation
intensity in the weather data show some regular data characteristics, while the other
two weather data are irregular. Therefore, this paper only analyzes the two data of
temperature and solar radiation intensity, this paper analyzes the influence of the power
load forecast during the Spring Festival and improves the accuracy of the power load
forecast from the mathematical direction. After normalization of the above data, the
approximate probability distribution function curve is shown in Figure 3.

Figure 3: Probability Density Distribution of Different Intervals

Figure 3 shows the density estimation and interval division of probability density dis-
tribution of weather data by temperature and solar radiation intensity. The calculated
probability distribution of solar radiation intensity is stable normal distribution, and the
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solar radiation intensity, air specific temperature and average soil temperature during
Spring Festival. It is known from the figure 2 that the temperature and solar radiation
intensity in the weather data show some regular data characteristics, while the other
two weather data are irregular. Therefore, this paper only analyzes the two data of
temperature and solar radiation intensity, this paper analyzes the influence of the power
load forecast during the Spring Festival and improves the accuracy of the power load
forecast from the mathematical direction. After normalization of the above data, the
approximate probability distribution function curve is shown in Figure 3.
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characteristics, while the other two weather data are irregular. 
Therefore, this paper only analyzes the two data of temperature 
and solar radiation intensity, this paper analyzes the influence of 
the power load forecast during the Spring Festival and improves 
the accuracy of the power load forecast from the mathematical 
direction. After normalization of the above data, the approximate 
probability distribution function curve is shown in Figure 3.
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Figure 3 shows the density estimation and interval division 
of probability density distribution of weather data by 
temperature and solar radiation intensity. The calculated 
probability distribution of solar radiation intensity is stable 
normal distribution, and the probability density distribution of 

temperature is a multi-peak distribution of approximate normal 
state. In order to ensure the contingency and randomness of the 
original data, the normal distribution of the data is preserved by 
using the segment bandwidth to the maximum extent.
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3. Example Analysis
In this part, we select the historical load data of Lanzhou city, 
China during the Spring Festival in 2021 as the research object. 
Considering that the weather and meteorological data during 
the Spring Festival are obtained by China weather data network 
and the load data are given by Gansu Electric Power Research 
Institute, there must be some errors in the data, so the data used 
in this paper is preprocessed to make the original data more 
accurate. After reasonable preprocessing, the time interval 
of data points is 1 hour. The accuracy and reliability of the 

prediction model are analyzed by comparing the predicted and 
measured power load during the Spring Festival in 2021.

Considering both temperature and solar radiation intensity, short-
term holiday power load forecasting is carried out, compared 
with the results of short-term holiday power load forecasting 
without considering weather factors, the average absolute error 
is 2.45% and 25.96% respectively, and the root mean square 
error is 2.61% and 29.74% respectively.
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Figure 4: Distribution of Weather and Power Load during Spring Festival in 2021

Figure 4 takes the temperature, solar radiation intensity and power load during the
Spring Festival in 2021 as an example to analyze. In order to facilitate the comparative
analysis of data, the solar radiation intensity and power load are normalized. It can be seen
from Figure 4 that the temperature and solar radiation intensity have obvious influence
on the load power of the whole network. The average temperature on February 11, 2021
is −12 ◦C , the average solar radiation intensity is 500W/m2, and the power load of the
whole network is 3117MW ; On February 15, 2021, the average temperature is 6 ◦C, the
average solar radiation intensity is 720W/m2, and the power load of the whole network
is 2912MW . Affected by the temperature and solar radiation intensity, the power load
of the whole network has obvious difference, in which the power load difference between
February 11 and February 15 is 205MW .
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Figure 4 takes the temperature, solar radiation intensity and 
power load during the Spring Festival in 2021 as an example to 
analyze. In order to facilitate the comparative analysis of data, 
the solar radiation intensity and power load are normalized [9-
11]. It can be seen from Figure 4 that the temperature and solar 
radiation intensity have obvious influence on the load power of 
the whole network. The average temperature on February 11, 
2021 is −12 ◦C , the average solar radiation intensity is 500W/
m2, and the power load of the whole network is 3117MW; On 
February 15, 2021, the average temperature is 6 ◦C, the average 
solar radiation intensity is 720W/m2, and the power load of the 
whole network is 2912MW. Affected by the temperature and 

solar radiation intensity, the power load of the whole network 
has obvious difference, in which the power load difference 
between February 11 and February 15 is 205MW.

Fig. 5 is a comparison result diagram of the power prediction 
value and the actual value based on different feature selection. It 
can be seen from Figure 5 that the proposed prediction model can 
better predict the short-term power load, which better illustrates 
the feasibility of the proposed model. The prediction model 
based on the feature selection of temperature and solar radiation 
intensity is slightly better, and its power load prediction value 
basically coincides with the original data value.
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Figure 5: Actual and Predicted Load Power

Figure 6 shows the error between the actual load power value and the predicted value
of power load under different characteristics selection conditions. It can be seen from
Figure 6 that when considering the temperature and solar radiation intensity at the same
time, the error is greatly reduced, and the error size is no more than 3.78%; When weather
factors are not considered, the error between the predicted value and the actual value is
as high as 35.44%; Considering the temperature and solar radiation intensity alone, the
prediction accuracy and reliability of the model can be improved better than that without
considering the weather effect.
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Table 1 is the evaluation technical index of the prediction 
model proposed in this paper. It can be seen from table 1 
that the periodic autoregressive moving average model can 
effectively predict the short-term load power on holidays. 
The prediction model considering weather factors can greatly 
improve the prediction accuracy of the prediction model. When 

considering the temperature and solar radiation intensity, the 
prediction accuracy of the prediction model can be improved, 
The correlation coefficient with the power load during the 
Spring Festival is 0.88, which better explains the accuracy of the 
proposed algorithm.

Algorithm Maximum Value Minimum Value Average Value
GA 58,743.28 57,166.45 57,954.865                                                                                   
PSO 58,443.35 56,962.09 57,702.720
GA PSO 57,846.67 56,054.12 56,950.395

Table 1: Optimization results of power purchase cost and maintenance cost Algorithm Maximum value Minimum value 
Average value

Table 1 is the evaluation technical index of the prediction 
model proposed in this paper. It can be seen from table 1 
that the periodic autoregressive moving average model can 
effectively predict the short-term load power on holidays. 
The prediction model considering weather factors can greatly 
improve the prediction accuracy of the prediction model. When 
considering the temperature and solar radiation intensity, the 
prediction accuracy of the prediction model can be improved, 
The correlation coefficient with the power load during the 
Spring Festival is 0.88, which better explains the accuracy of the 
proposed algorithm.

4. Conclusions
This paper focuses on the short-term power load forecasting 
during the Spring Festival, and on this basis, a holiday load 
forecasting model is established for different periods and 
weather. According to the data feature selection, the regularized 
feature selection algorithm is used to calculate the correlation 
between each data feature and the target object, and reduce 
the complexity of each variable in the mathematical model, so 
as to ensure the optimal input of the feature data and further 
improve the generalization ability of the data. The proposed 

prediction algorithms need a lot of historical data to predict 
effectively [12-17]. But it is no longer applicable to short-term 
power load prediction in special periods such as holidays. The 
autoregressive sliding average model proposed in this paper can 
consider the periodic and random components of meteorological 
temperature and solar radiation intensity at the same time, and 
the method is simple and easy to realize. The model is tested by 
data from Lanzhou power supply company, and the validity of 
the model is verified.

In principle, the method proposed in this paper can be easily 
extended to all power load forecasting during special holidays. 
Data test experiments show that under different meteorological 
factors, the autoregressive moving average power load 
forecasting method proposed in this paper has greater advantages 
than other methods, and the forecasting accuracy has been 
significantly improved.
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