
Abstract
Nowadays, many marketing campaigns are based on personalized marketing, so a solution should be found for the core
problem, namely the creation of this content. More and more software solutions are based on proprietary products where the
licenses for commercial use are unclear. A solution has now been found for this, which is made available to all people as open
source technology. The concept is based on the Media Lovin’ Toolkit, which is a framework written in C++ that uses XML files
to create finished videos that have previously been designed in a conventional editor. In the XML file, however, the most diverse
parameters can be changed before processing, which makes this framework, a perfect problem solver.

Citation: Heinrich, M. (2023). High-Performance Network Application for Creating Personalized Videos and Audios Using MLT. J
Robot Auto Res, 4(2), 384-386.

 Volume 4 | Issue 2 | 384

High-Performance Network Application for Creating Personalized Videos and Audios Using
MLT

Research Article

Marius Heinrich*

Heinrich Software Solutions Department of Computer
Science North Rhine-Westphalia Germany

*Corresponding Author
Marius Heinrich, Heinrich Software Solutions Department of Computer
Science North Rhine-Westphalia Germany.

Submitted: 2023, Jun 13; Accepted: 2023, July 11; Published: 2023, July 20

Journal of Robotics and Automation Research
ISSN: 2831-6789

J Robot Auto Res , 2023

Keywords: Autoscaling, Rendering, Network

1. Media Lovin’ Toolkit
The Media Lovin’ Toolkit, a framework written in C++, uses XML
files to create finished videos that have previously been designed in
a conventional editor. In the XML file, however, the most diverse
parameters can be changed before processing.

1.1. Possible modifications
• Text replacement.
• Image replacement.
• Audio replacement.
• Video replacement.
• Path replacement for dynamic environments.
2. Example Commands
• Project preview without render
• melt {project}.mlt
• Render project without settings (default settings are used)

melt {project}.mlt -consumer avformat:{filename}.mp4
• Render project with settings (default settings are overwritten)
• melt {project}.mlt -consumer avformat:{filename}.mp4

f=mp4 movflags=+faststart vcodec=libx264 progressive=1
g=15 bf=2 crf=15 acodec=aac ab=256k

3. Network

3.1. Components
 Our network consists of 4 components
1. Databases.
2. Rendering nodes.
3. Head node.
4. RESTful Web-Services.

 Volume 4 | Issue 2 | 385J Robot Auto Res , 2023

3.2. Explanation of the Individual Components
1. The template database stores all the available projects with

their associated files. (placeholders, audios, videos, images)
2. The upload database stores all files uploaded by the user, for

later processing. (Audios, Videos, Images)
3. The render nodes are responsible for processing the final

product. They take over all relevant core tasks.

4. The head node is responsible for job distribution, it throws the
jobs into the queues and ensures load balancing among the
individual nodes.

5. The API is responsible for receiving the individual jobs, and
can of course also be relieved separately via a load balancer.

4. Render Node

The render nodes are responsible for processing the final product.
They perform all relevant core tasks, including processing the data
from the receipt of the job to the upload to the cloud storage.

4.1. Processing Sequence
1. First we create a working environment, this can be a folder

with a unique ID.
2. Next, we load all files into our working environment, including

the project file.
3. Now we open the project file and replace the Static paths with

the Dynamic paths, for this reason we also initially assigned a
unique ID to reference to our working environment later.

4. When this step is done, all previously determined placeholders
are replaced.

5. Now the project file can be rendered.
6. We will then get a file, in the desired output format. This

file can now be saved in a previously determined temporary
location.

7. This file will now be uploaded to the cloud storage.
8. Finally, we will now delete the render product, including the

working environment.
9. Now we have our finished video in the cloud storage.

 Volume 4 | Issue 2 | 386J Robot Auto Res , 2023

5. Head Node

The main node is responsible for the job distribution, it throws the
jobs into the queues and takes care of the load balancing between
the individual nodes. In addition, it takes care of the validation of
the individual requests and ensures a correct upload of all data to
be processed later. The main node takes care of the modularization
of the individual render nodes and serves as a central hub. Thus,
the render nodes can be expanded as needed to handle load peaks
more easily and quickly. Message Brokers are a common tool
employed to fixture communication in a distributed environment.
This system provides with asynchronous communication between
producers and consumers, and handles some of the challenges that
are common within distributed and concurrent data processing [1].

5.1. High Load Peaks
To get the highest performance out of the system, please pay
special attention to the following factors

1. Make sure you have enough system resources in both the head
node and the render node.

2. Make sure they have enough cloud storage to avoid a mistake.
In addition, you should pay attention to the latency of the
provider.

3. Set up a redundant system and use a load balancer in front of
the API.

4. Make sure that the uploaded files are validated properly and
that there is no vulnerability in the system.

References
1. Landau, D., Andrade, X., & Barbosa, J. G. (2022). Kafka

Consumer Group Autoscaler. arXiv preprint arXiv:2206.11170.

Copyright: ©2023 Marius Heinrichl. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

mailto:https://doi.org/10.48550/arXiv.2206.11170
mailto:https://doi.org/10.48550/arXiv.2206.11170

