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Abstract
The adjustment of statistical models to wind speed data makes it possible to know in detail the wind energy potential 
of a given location, representing a relevant data in the selection of the location for new installations of wind farms.
The objective of this study was to evaluate the fit of average wind speed data for Brasilia, Campo Grande, Cuiaba 
and Goiania in central western Brazil, to the probability distributions functions (PDF) of: GEV, GUM and LN. The 
statistical criteria, KS, R2, χ2, RMSE, AIC and BIC were considered as judgment criteria to assess the adequacy of 
PDF. As the main result, the GEV distribution was the one that presented the best result of adjustments to the functions 
, mainly in the potential of wind energy use and extreme winds that cause felling of trees in the urban environment. 
These distributions can be used as an alternative distribution that adequately describes the wind speed data in the 
region. The weakest configurations were obtained by the GUM and LN distributions.

Keywords: - Wind speed, Probability Density Function, Maximum Likelihood Method

Introduction
The wind is one of the most important meteorological elements 
and has many applications in several research areas, which are still 
poorly studied, especially in central western Brazil. Among these 
various applications of wind direction and speed, we highlight 
here its important contribution to the dispersion of smoke and soot 
resulting from the burning of sugarcane straw, especially in re-
gions that have some ethanol and sugar factories, maintaining the 
practice of burning this crop in order to facilitate the harvest [1]. 
Studies on winds show great applicability: in the assessment of the 
potential of wind energy generation, in the transport of atmospher-
ic pollutants and spread from various sources, in the measure-
ment and installation of industries, in civil construction and also 
in agriculture, considering the importance of wind in the flower 
pollination process [2-7]. Wind is one of the unlimited renewable 
energy resources that can provide important units of energy to sup-
port a nation's requirements. It is recognized that wind energy has 
emerged as the most precious and promising choice for electricity 
generation. Studies have proven that the installation of a series of 
wind turbines can effectively reduce environmental pollution, fos-
sil fuel consumption and the costs of general electricity generation 
[8]. Although wind is only the sporadic source of energy that can 
represent a reliable energy resource, based on a long-term energy 
policy. Among the various renewable energy resources, wind is 
one of the most admired energy resources worldwide [9].

Wind is a growing technology, developments in the area of wind 
power generation are very inspiring, especially in tropical regions 
of Asia and Australia [10]. On remote farms in Australia, wind 
power generation can play an important role [11, 12], as well as in 
Europe in the face of climate change in relation to the potential for 
generating energy from wind [2]. The wind is acting as fuel that is 
free and clean and drives the turbine or used to operate pumps for 
irrigation. Thus, wind is the renewable source and substitute for 
green energy [13].

The probability density function (PDF) of wind speed is used in 
many meteorological, oceanographic and climatological investi-
gations. Wanninkhof [14] studied the gas exchange at the ocean 
surface as a function of wind speed PDF. Justus et al [15] use the 

wind speed distribution to study the intra-annual variation of wind 
speed in the United States.

Holland makes a study of turbulent atmospheric eddies on the 
ocean surface using the wind and temperature data PDFs. The use 
of wind speed PDF is gradually increasing in the wind energy in-
dustry and here it is necessary to assess the energy potential of dif-
ferent locations [16-20]. In the literature, it appears that different 
probability density functions (PDFs) have been used to describe 
wind speed characteristics which include Weibull, Rayleigh, bi-
modal Weibull, lognormal, gamma, etc. [21]. Celik did a statis-
tical analysis of wind energy density in the southern region of 
Turkey and summarized that the Weibull model was better than 
the Rayleigh model [22]. Akdag et al 2010 discussed the two-com-
ponent Weibull distribution and stated that Weibull-Weibull gave 
a good fit to wind speed in the Eastern Mediterranean [23]. Chang 
used the Rayleigh, Weibull and gamma distribution and its gen-
eralized form to estimate wind energy potential [24]. Yilmaz and 
Celik mention that wind speed probabilities can be estimated us-
ing probability distributions [25]. An accurate determination of the 
probability distribution for wind speed values is very important in 
assessing the wind speed energy potential of a region. Safari cal-
culates the parameters of five probability density distribution func-
tions, such as Weibull, Rayleigh, lognormal, normal and gamma, 
in light of long-term hourly data observed at four weather stations 
in Rwanda [26]. Hossain et al, determined the best wind speed dis-
tribution with statistical properties of maximum monthly sustained 
wind speed (km/h) from two airports in Bangladesh and found that 
the Generalized Extreme Value (GEV) distribution is more accu-
rate for modeling speeds wind from both locations [27].

Pobočíková, et al. showed that the 3-parameter Weibull has the best 
performance to model wind speed at Dolný Hričov airport [28]. 
Seguro and Lambert considered three methods to estimate Weibull 
wind speed distribution parameters for wind energy analysis and 
recommend the maximum likelihood estimation (MLE) method 
for wind time series data and the modified maximum likelihood 
method for wind data with of frequency distribution [29]. Carta 
et al., stated that the two-parameter Weibull distribution presents 
a series of advantages in relation to the other analyzed PDFs [30]. 
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Ouarda, et al., showed that two-component mixing distributions 
give a very good fit and are generally superior to non-parametric 
distributions in the United Arab Emirates (UAE) [31].

Ayodele et al., analyzes the wind speed characteristics and wind 
energy potential of Port Elizabeth, South Africa, using Weibull's 
statistical parameters [32]. Kidmo, et al., selects a method that pro-
vides a more accurate estimate for the Weibull parameters from 
wind speed data from Garoua International Airport, Cameroon 
[33]. Parajuli has statistically analyzed wind speed data from Jum-
la, Nepal and show that the Weibull distribution fits better than the 
Rayleigh distribution. Dokur, et al., considers the inverse Weibull 
distribution (IWD) to analyze the wind speed potential in Bilecik, 
Turkey[34, 35]. Abdulkarim et al.,compare different probability 
distribution function models to fit wind speed data from some se-
lected locations in northern Nigeria [36].

Souza et al., estimated the parameters of the Weibull distribution 
for wind speed in an urbanized area in the city of Campo Grande, 
MS and used three numerical methods: standard energy factor 
method (EPFM), least squares regression method (LSRM ) and 
method of moments (MOM) [37]. The EPFM method presented 
the best performance and is applicable for a good estimation of the 
parameters of the Weibull distribution.

Souza et al ., evaluated the fit of hourly average wind speed data 
for Campo Grande, State of Mato Grosso do Sul, to the probabili-
ty distributions of: Weibull (W2), Ralyeigh (RAY), Log-Logistics 
(LL), Gaussian Inverse (IG), Normal (N), Range (G), Extremely 
Generated (GV), Extreme (EV), Lognormal (LN), Logistic (L), 
Burr (BR) and Rician (R) [38]. Four statistical criteria, coefficient 
of determination (R2), mean square error (RMSE), mean absolute 
error (MAE) and mean absolute error (MAPE) were considered 
as judgment criteria to assess the adequacy of probability density 
functions. 

As a result, Weibull, Rayleigh, generalized extreme value, extreme 
value and Rician distributions execute data accurately. These dis-
tributions can be used as an alternative distribution that adequately 
describes the Campo Grande wind speed data. The weakest con-
figurations were obtained by the Normal, Burr, Logistic, Log-Lo-
gistic and Inverse Gaussian distributions.

Due to the location of the Brazilian Midwest, it is considered to 
have abundant wind resources for integration into a wind energy 
grid. However, to date, no detailed statistical analysis of the wind 
speed characteristics of this area has been carried out. Therefore, 
this study tries to determine the best distribution of maximum 
sustained monthly wind speed (m.s-1) with statistical properties, 
which will be useful for policy makers related to wind power gen-
eration in this area. To assess the goodness of fit of PDFs fitted to 
monthly maximum sustained wind speed data, KS, R2, χ2, RMSE, 
AIC and BIC were used.

Material and Methods
Study Area
The Midwest region is the second largest in the country in terms of 
land area, and the least populous. Comprised of the states of Goiás 
(GO), Mato Grosso (MT), Mato Grosso do Sul (MS) and the Fed-
eral District (DF), where the country's capital, Brasília, is located, 
the region does not have places with high altitudes. Its relief is 
divided into three main areas: central plateau, southern plateau and 
wetland plain. The climate of the region is semi-humid tropical, 
with frequent summer rains. In the extreme north and south of the 
region, the average annual temperature is 22ºC and in the chapadas 
it varies from 20º to 22ºC. In spring/summer, high temperatures 
are common, with the average of the hottest month varying from 
24º to 26ºC. The average of the maximums of the hottest month os-
cillates between 30º and 36ºC. In winter, due to the polar invasion, 
lower temperatures are common. In the coldest month, the average 
temperature fluctuates between 15º and 24ºC, while the minimum 
average is between 8º and 18ºC. 

The average rainfall is 2,000 to 3,000 mm per year in northern 
Mato Grosso, while in the Pantanal it is 1,250 mm. Despite this, 
the Midwest region is well provided with rainfall, with more than 
70% of the total rainfall occurring from November to March, 
which makes the winter quite dry. It is in the Midwest that the 
largest flooded plain in the world is found: the Pantanal. In addi-
tion to it, the vegetation that predominates is the Cerrado, which 
is characterized by the presence of low trees, spaced with twisted 
trunks and branches. The north of Mato Grosso is characterized 
by the Amazon Forest. In terms of water resources, the region is 
very rich, as it is drained by many rivers, which form three large 
hydrographic basins: the Amazon, the Tocantins-Araguaia and the 
Platina. Midwest. Although it does not have high altitudes, it is 
divided into three main types of surface: Central Plateau – Present 
in almost the entire Midwest, it is composed of ancient terrains and 
shaped by erosion processes, giving rise to mountains and plateaus 
– such as the Chapada dos Parecis and Guimarães. It has altitudes 
ranging from 600 to 1000 meters, in addition to crystalline and 
sedimentary rock cover. Southern Plateau – It extends between 
Mato Grosso do Sul and Goiás, being an extension of the central 
relief. It has slightly uneven terrains and soils of purple earth (re-
sults from the sedimentation of basalt – a rock of volcanic origin), 
the most fertile in the Cerrado. Southern Gross. In the cycles of 
rain and flood of rivers, more than 80% of its biome is submerged. 

The flooding starts in November, when the rains reach the highest 
points of the Upper Paraguay basin. Only in May do the waters 
recede. As the climate of the Midwest region stimulates a lot of 
precipitation, the most abundant vegetation is from the Cerrado 
– known for its diverse landscape, with stretches formed by sa-
vannas, forests and fields. But in the area that encompasses the 
Pantanal, the vegetation cover is in line with the floods. In the high 
parts that do not suffer from flooding, it is similar to that of the 
Caatinga, with large trees, deep roots and twisted leaves. In the 
intermediate regions, that is, which flood in certain months, there 
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are medium-sized shrubs and trees. On the other hand, the areas 
that are underwater practically all year round, the plants are low, 
like the grasses.

CRU Data 
The Climate Research Unit (CRU Time-Series (TS) v. 4.0 (Harris 
et al., 2014) for the study period was downloaded in grid form 
(0.5º × 0.5º) from the following website: https://crudata.uea .ac.
uk/cru/. CRU TS4.0.1

According to the compass roses, east-west winds are the most fre-
quent for Brasilia; In Campo Grande the predominant direction is 
northeast, Cuiaba is northwest and Goiania is southwest, as can be 
seen in Figure 2.

Data analysis
In this study, LN, GUM and GEV probability distributions were 
considered to model the historical series of wind speed. The prob-
ability density functions (PDFs) and their corresponding cumula-
tive distribution functions (CDFs) are shown in Table 1.

The parameter μ ∈ R is a position parameter, σ>0 is a scale and ξ>0 
is a shape parameter. The parameter ξ is related to the tail weight 
of the GEV distribution, and for this reason, it is also called the tail 
index. The GUM distribution appears as a particular case of the 
GEV distribution when the shape parameter tends to zero (ξ→0).

The estimates of the parameters for each distribution were obtained 
using the maximum likelihood method (ML). The log-likelihood 
functions of the LN, GUM and GEV distributions are given, re-
spectively, by equations to follow:
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Figure 1. Geographical location of the Brazilian Midwest States (Brasilia, Campo Grande, Cuiaba e Distrito Federal). Figure 2- Direc-
tion and predominant frequency of wind speed in the central west region (Brasilia, Campo Grande, Cuiaba and Goiania).

Table 1. List of the probability density function (PDFs), cumulative distribution function (CDFs) and supports of LN, GUM and 
GEV distributions.

                       where Φ is the standard normal distribution CDF.
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Distribution PDF CDF Support 

LN 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥𝑥𝑥√2𝜋𝜋

𝑒𝑒−
1
2(
ln𝑥𝑥−𝜇𝜇

𝜎𝜎 )
2

 𝐹𝐹(𝑥𝑥) = Φ(ln 𝑥𝑥 − 𝜇𝜇
𝑥𝑥 ) 𝑥𝑥 > 0 

GUM 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥 𝑒𝑒

−(𝑥𝑥−𝜇𝜇𝜎𝜎 )−𝑒𝑒
𝑥𝑥−𝜇𝜇
𝜎𝜎  𝐹𝐹(𝑥𝑥) = 𝑒𝑒−𝑒𝑒−(

𝑥𝑥−𝜇𝜇
𝜎𝜎 −𝜇𝜇)/𝜎𝜎

 𝑥𝑥 ∈ ℝ 

GEV 
𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥 (1 + 𝜉𝜉 (𝑥𝑥 − 𝜇𝜇
𝑥𝑥 ))

−1+𝜉𝜉𝜉𝜉
𝑒𝑒−(1+𝜉𝜉(

𝑥𝑥−𝜇𝜇
𝜎𝜎 ))

−1𝜉𝜉
 𝐹𝐹(𝑥𝑥) = 𝑒𝑒−(1+𝜉𝜉(

𝑥𝑥−𝜇𝜇
𝜎𝜎 ))

−1𝜉𝜉
 

𝑥𝑥 < 𝜇𝜇 − 𝑥𝑥
𝜉𝜉 for 𝜉𝜉 < 0

𝜇𝜇 − 𝑥𝑥
𝜉𝜉 < 𝑥𝑥 for 𝜉𝜉 > 0

 

where Φ is the standard normal distribution CDF. 

 

The parameter 𝜇𝜇 ∈ ℝ is a position parameter, 𝑥𝑥 > 0 is a scale and 𝜉𝜉 > 0 is a shape 

parameter. The parameter 𝜉𝜉 is related to the tail weight of the GEV distribution, and for 

this reason, it is also called the tail index. The GUM distribution appears as a particular 

case of the GEV distribution when the shape parameter tends to zero (𝜉𝜉 → 0). 
The estimates of the parameters for each distribution were obtained using the maximum 

likelihood method (ML). The log-likelihood functions of the LN, GUM and GEV 

distributions are given, respectively, by equations to follow: 

ln 𝐿𝐿(𝜇𝜇, 𝑥𝑥, 𝑋𝑋) = −∑ln𝑥𝑥𝑖𝑖 − 𝑛𝑛 ln 𝑥𝑥 − 𝑛𝑛
2

𝑛𝑛

𝑖𝑖=1
ln 2𝜋𝜋 −∑

(ln 𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
2𝑥𝑥2

𝑛𝑛

𝑖𝑖=1
 (1) 

ln 𝐿𝐿(𝜇𝜇, 𝑥𝑥, 𝑋𝑋) = −𝑛𝑛 ln 𝑥𝑥 −∑𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝑥𝑥

𝑛𝑛

𝑖𝑖=1
−∑𝑒𝑒−

𝑥𝑥𝑖𝑖−𝜇𝜇
𝜎𝜎

𝑛𝑛

𝑖𝑖=1
 (2) 

ln 𝐿𝐿(𝜇𝜇, 𝑥𝑥, 𝑋𝑋) =∑{− ln 𝑥𝑥
𝑛𝑛

𝑖𝑖=1

− (1 + 𝜉𝜉
𝜉𝜉 ) ln [1 + 𝜉𝜉 (𝑥𝑥𝑖𝑖 − 𝜇𝜇

𝑥𝑥 )] − [1 + 𝜉𝜉 (𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝑥𝑥 )]

−1𝜉𝜉} 

(3) 

Estimates of the distribution parameters are obtained by maximizing the log-likelihood 

function in relation to the parameters. Taking the partial derivatives of the ln 𝐿𝐿 function 

with respect to each of the parameters and making these derivatives equal to zero, the 

likelihood equations are obtained. The solutions to these equations are called maximum 

likelihood estimates of the parameters. 
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Estimates of the distribution parameters are obtained by maximiz-
ing the log-likelihood function in relation to the parameters. Tak-
ing the partial derivatives of the ln L function with respect to each 
of the parameters and making these derivatives equal to zero, the 
likelihood equations are obtained. The solutions to these equations 
are called maximum likelihood estimates of the parameters.

In this study six goodness-of-fit (GOF) indicators were used to 
assess the quality of fitted distribution. In order to determine how 
well the selected distributions fit the monthly wind speed data, they 
were tested for goodness-of-fit (GOF) using Kolmogorov - Smirn-
ov test. Along with the GOF test, root mean square error (RMSE), 
coefficient of determination (R2) and the information criteria such 
as Akaike Information Criterion (AIC), Bayesian Information Cri-
terion (BIC) and corrected Akaike Information Criterion (AICc) 
were also used to determining which distribution fits the data best.

The Kolmogorov-Smirnov (KS) test was used in this study to de-
cide if a sample comes from a hypothetical continuous distribu-
tion. This test is based on the CDF. Suppose that x1,x2,…,xn is a 
random sample from some theoretical distribution with CDF F(x). 
The empirical CDF is given by:

                    (4)

where I{xi≤x} is the indicator function assuming the value 1 if xi≤x 
and 0 otherwise.
The Kolmogorov-Smirnov (D) statistic is based on the largest ver-
tical difference between the theoretical and empirical CDF:

                (5)

where F ̂(x) is an estimate of the theoretical CDF of the distribu-
tion being tested and   are observations in ascending order.  

The null hypothesis that the data follow the specified distribution 
being tested is rejected at the chosen significance level α, if the test 
statistic D>D(α), where D(α) it is critical value of the KS test. The 
smaller the value of D, the better the fit. The most typical and com-
monly accepted significance level of 0.05 was chosen in this study.

Alternatively, the p-value of the test can be used in hypothesis 
testing. The null hypothesis is accepted at the chosen significance 
level α if p-value>α, otherwise the null hypothesis is rejected. The 
higher the p-value, the better the fit. Thus, while comparing two 
different distributions, the distribution with higher p-value is likely 
to better fit regardless of the level of significance.

Three information criteria such as Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC) and corrected Akaike 
Information Criterion (AICc) were also used to determining which 
distribution fits the data best. The AIC, BIC and AICc criteria can 
be calculated as follows

where ln L is the maximized value of the loglikelihood function 
of the model, n is sample size and k is the number of parameters 
in the model. 

The model with the lowest values of these three criteria is usually 
the preferred model and is selected [39]. 

The coefficient of determination (R2) and the root mean square er-
ror (RMSE) were also used to measure a goodness-of-fit of the 
examined pdfs to model the data. The coefficient of determination 
(R2) and the root mean square error (RMSE) can be calculated as 
follows

The lower value of RMSE and higher value of R2 indicate that the 
distribution fits the data better.

In general, the smaller the value of AIC, BIC, AICc and RMSE and 
the highest value of R2 and p-value of KS test the better the fit. 

The return level xp of the extreme event (here wind speed) associ-
ated with the return period T is defined as the value that is expected 
to be exceeded on average once every interval of time T with the 
probability of 

Let X be a random variable with the CDF F(x) then
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likelihood method (ML). The log-likelihood functions of the LN, GUM and GEV 

distributions are given, respectively, by equations to follow: 

ln 𝐿𝐿(𝜇𝜇, 𝑥𝑥, 𝑋𝑋) = −∑ln𝑥𝑥𝑖𝑖 − 𝑛𝑛 ln 𝑥𝑥 − 𝑛𝑛
2

𝑛𝑛

𝑖𝑖=1
ln 2𝜋𝜋 −∑

(ln 𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
2𝑥𝑥2

𝑛𝑛

𝑖𝑖=1
 (1) 

ln 𝐿𝐿(𝜇𝜇, 𝑥𝑥, 𝑋𝑋) = −𝑛𝑛 ln 𝑥𝑥 −∑𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝑥𝑥

𝑛𝑛

𝑖𝑖=1
−∑𝑒𝑒−

𝑥𝑥𝑖𝑖−𝜇𝜇
𝜎𝜎

𝑛𝑛

𝑖𝑖=1
 (2) 

ln 𝐿𝐿(𝜇𝜇, 𝑥𝑥, 𝑋𝑋) =∑{− ln 𝑥𝑥
𝑛𝑛

𝑖𝑖=1

− (1 + 𝜉𝜉
𝜉𝜉 ) ln [1 + 𝜉𝜉 (𝑥𝑥𝑖𝑖 − 𝜇𝜇

𝑥𝑥 )] − [1 + 𝜉𝜉 (𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝑥𝑥 )]

−1𝜉𝜉} 

(3) 

Estimates of the distribution parameters are obtained by maximizing the log-likelihood 

function in relation to the parameters. Taking the partial derivatives of the ln 𝐿𝐿 function 

with respect to each of the parameters and making these derivatives equal to zero, the 

likelihood equations are obtained. The solutions to these equations are called maximum 

likelihood estimates of the parameters. 

(1)

(2)

(3)

(6)

(7)

(8)
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In this study six goodness-of-fit (GOF) indicators were used to assess the quality of fitted 

distribution. In order to determine how well the selected distributions fit the monthly wind 

speed data, they were tested for goodness-of-fit (GOF) using Kolmogorov - Smirnov test. 

Along with the GOF test, root mean square error (RMSE), coefficient of determination 

(R2) and the information criteria such as Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and corrected Akaike Information Criterion (AICc) were also 

used to determining which distribution fits the data best. 

 

The Kolmogorov-Smirnov (KS) test was used in this study to decide if a sample comes 

from a hypothetical continuous distribution. This test is based on the CDF. Suppose that 

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 is a random sample from some theoretical distribution with CDF 𝐹𝐹(𝑥𝑥). The 

empirical CDF is given by:  

𝐹𝐹𝑛𝑛(𝑥𝑥) = 1
𝑛𝑛 ∑ 𝐼𝐼{𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥},

𝑛𝑛

𝑖𝑖=1
              (4) 

where 𝐼𝐼{𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥} is the indicator function assuming the value 1 if 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥 and 0 otherwise. 

The Kolmogorov-Smirnov (D) statistic is based on the largest vertical difference between 

the theoretical and empirical CDF: 

𝐷𝐷 = max
1≤𝑖𝑖≤𝑛𝑛

[|�̂�𝐹(𝑥𝑥(𝑖𝑖)) − 𝑖𝑖 − 1
𝑛𝑛 | , | 𝑖𝑖

𝑛𝑛 − �̂�𝐹(𝑥𝑥(𝑖𝑖))|] (5) 

where �̂�𝐹(𝑥𝑥) is an estimate of the theoretical CDF of the distribution being tested and 

𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑛𝑛) are observations in ascending order.   

 

The null hypothesis that the data follow the specified distribution being tested is rejected 

at the chosen significance level 𝛼𝛼, if the test statistic 𝐷𝐷 > 𝐷𝐷(𝛼𝛼), where 𝐷𝐷(𝛼𝛼) it is critical 

value of the KS test. The smaller the value of 𝐷𝐷, the better the fit. The most typical and 

commonly accepted significance level of 0.05 was chosen in this study. 

 

Alternatively, the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of the test can be used in hypothesis testing. The null 

hypothesis is accepted at the chosen significance level 𝛼𝛼 if 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 > 𝛼𝛼, otherwise the 

null hypothesis is rejected. The higher the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, the better the fit. Thus, while 

comparing two different distributions, the distribution with higher 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is likely to 

better fit regardless of the level of significance. 
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Three information criteria such as Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and corrected Akaike Information Criterion (AICc) were also 

used to determining which distribution fits the data best. The AIC, BIC and AICC criteria 

can be calculated as follows 

𝐴𝐴𝐴𝐴𝐴𝐴 = −2 ln 𝐿𝐿 + 2𝑘𝑘, (6) 

𝐵𝐵𝐴𝐴𝐴𝐴 = −2 ln 𝐿𝐿 + 𝑘𝑘 ln 𝑛𝑛 , (7) 

𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴 + 2𝑘𝑘(𝑘𝑘 + 1)
𝑛𝑛 − 𝑘𝑘 − 1, (8) 

where ln 𝐿𝐿 is the maximized value of the loglikelihood function of the model, 𝑛𝑛 is sample 

size and 𝑘𝑘 is the number of parameters in the model.  

The model with the lowest values of these three criteria is usually the preferred model 

and is selected [39].  

 

The coefficient of determination (R2) and the root mean square error (RMSE) were also 

used to measure a goodness-of-fit of the examined pdfs to model the data. The coefficient 

of determination (R2) and the root mean square error (RMSE) can be calculated as follows 

𝑅𝑅2 =
∑ (�̂�𝐹(𝑥𝑥𝑖𝑖) − �̅�𝐹)2𝑛𝑛

𝑖𝑖=1

∑ (�̂�𝐹(𝑥𝑥𝑖𝑖) − �̅�𝐹)2 + ∑ (𝐹𝐹𝑛𝑛(𝑥𝑥𝑖𝑖) − �̂�𝐹(𝑥𝑥𝑖𝑖))
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

, (9) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = [1
𝑛𝑛 ∑ (𝐹𝐹𝑛𝑛(𝑥𝑥𝑖𝑖) − �̂�𝐹(𝑥𝑥𝑖𝑖))

2
𝑛𝑛

𝑖𝑖=1
]

1
2

. (10) 

The lower value of RMSE and higher value of 𝑅𝑅2 indicate that the distribution fits the 

data better. 

 

In general, the smaller the value of AIC, BIC, AICC and RMSE and the highest value of 

𝑅𝑅2 and 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of KS test the better the fit.  

 

The return level 𝑥𝑥𝑝𝑝 of the extreme event (here wind speed) associated with the return 

period 𝑇𝑇 is defined as the value that is expected to be exceeded on average once every 

interval of time 𝑇𝑇 with the probability of  

𝑝𝑝 = 1
𝑇𝑇. 

Let 𝑋𝑋 be a random variable with the CDF 𝐹𝐹(𝑥𝑥) then 
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          P(X>xp )=1-F(xp )=p,  (11)
 
that is equivalent to
          F(xp )=1-p.   (12)

The return level xp is the quantile of probability distribution with 
CDF F(x) and can be calculated using inverting the equation 

      (13)

By replacing the CDFs of the LN, GUM and GEV distributions 
(Table 1.) into equation (13), the following equations for the quan-
tile functions of these distributions can be obtained:

      (14)

      (15)

      (16)

On substituting the maximum likelihood estimates of the parame-
ters into (14), (15) and (16), respectively, one obtains the estimates 
of the return level, here the maximum wind speed expected, for the 
return period T. The return periods T were considered equal to 10, 
20, 30, 40, 50 and 100 years.

The return time (return levels) represents the inverse of the proba-
bility that a given event has occurred. Given the occurrence of an 
event, the turnaround time is the average time required (in years) 
for that event to recur, in any given year. In practical terms, its 
meaning is: if an intensity event occurs, what is the average time 
(T) expected for the intensity event to occur again? It follows that 
the turnaround time associated with the event is given by:

      (11)

In this article, the event E is the wind speed that exceeds a certain 
level xp and the probability p of this event being exceeded is ob-
tained by 1-F(xp). Therefore,

       (12)

As F(x)=1-p , the level of wind speed that is expected to be ex-
ceeded in an average time every T years, is obtained as a solution 
of the equation:

       (13)
   
From the relation   and using (13) with the CDFs of the LN, GUM 
and GEV distributions, the quantile functions of these distributions 
are given, respectively, by:

      
      (14)

      (15)

      (16)

The estimated return levels     ,which are the maximum wind speed 
expected for the return times T, are obtained by replacing the max-
imum likelihood estimates of the parameters in (14), (15) and (16). 
The return times T were considered equal to 10, 20, 30, 40, 50 and 
100 years.

All statistical analysis was performed using the R Core Team 
(2022) software. The evd packages from the R library were used to 
study the data [40, 41]. In particular, the evd package was used for 
data analysis, as it has specific functions in the analysis of extreme 
values. 

Results
In this section, we present only the general results and the results 
for Campo Grande, while for Brasilia, Cuiaba and Goiania the de-
tailed results are shown in the tables and figures provided in the 
Complementary Material (SM).

For the four study sites, Campo Grande, Brasília, Cuiabá and 
Goiânia, the analysis of wind speed including mean, median, 
standard deviation, coefficient of variation (CV), minimum, max-
imum, asymmetry and kurtosis is presented in Tables 2, and in 
Supplementary material (SM Table 3, 4 and 5) respectively.
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𝑃𝑃(𝑋𝑋 > 𝑥𝑥𝑝𝑝) = 1 − 𝐹𝐹(𝑥𝑥𝑝𝑝) = 𝑝𝑝, 
 

(11) 
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𝐹𝐹(𝑥𝑥𝑝𝑝) = 1 − 𝑝𝑝. 
 

(12) 
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𝑇𝑇). 

 
(13) 
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obtained: 

𝑥𝑥𝑝𝑝(𝑇𝑇) = 𝑒𝑒𝜇𝜇+𝜎𝜎Φ−1(1−1
𝑇𝑇), (14) 

𝑥𝑥𝑝𝑝(𝑇𝑇) = 𝜇𝜇 − 𝜎𝜎 𝑙𝑙𝑙𝑙 [−𝑙𝑙𝑙𝑙 (1 − 1
𝑇𝑇)], (15) 

𝑥𝑥𝑝𝑝(𝑇𝑇) = 𝜇𝜇 − 𝜎𝜎
𝜉𝜉  [1 − 𝑙𝑙𝑙𝑙 (1 − 1

𝑇𝑇)
𝜉𝜉

]. (16) 
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The mean monthly wind speed change from 1960 to 2020(61 
years) for the four locations(Campo Grande, Brazil, Cuiaba and 
Goiania) is seen in Figure 2. Campo Grande clearly displays the 
highest values over the course of the investigation; the mean 
monthly wind speed ranges from 2.39 m/s (March) to 3.36 m/s 
(September). And on other hand, Cuiaba presents the lowest val-
ues, the mean monthly wind speed varies from 2.39 m/s (March) 
to 3.36 m/s (September).
For Goiania the mean monthly wind speed varies between 1.1 m/s 
(April) to1.71 m/s (December), and for Brazil varies between 1.56 
m/s (February, April) to 2.09 m/s (September). Both locations Goi-
ania and Brazil are comparable in mean monthly wind speed. As 
the results showed, three sites, namely Campo Grande, Brasilia 
and Goiania, have the highest mean wind speed between July and 
October (3.08-3.36 m/s, 1.96-2.09 m/s, 1.87-2.1 m/s), and on other 
hand, the lowest mean wind speed between February and April 
(2.39-2.51 m/s, 1.56-1.6 m/s, 1.47-1.52 m/s). In Cuiaba the highest 
mean wind speed occurred in months January, September and De-
cember (1.56-1.71 m/s), and the lowest between March and May 
(1.1-1.27 m/s).

Using the CV, one may determine which months have more varied 
wind speeds. According to, there is a moderate (20% CV30%) de-
gree of wind speed fluctuation in February and April for Brazil and 

Goiania, and in October for Cuiaba [42]. Months with a CV of less 
than 20% are those with less variation in wind speed.

Asymmetry inside the distribution is measured by skewness. In 
April, May, August, and September, the negative skewness values 
for Campo Grande range from -1.01 and -0.67. These values show 
a mildly left-skewed distribution. For Brasilia, the positive skew-
ness values of 1.1 (February and December) reflect a highly right-
skewed distribution. The positive skewness values of 0.9 (March) 
and 0.63 (July) for Brasilia, 0.95 (February) and 0.75 (March) for 
Goiania, and 0.87 (March) and 0.74 (October) for Cuiaba reveal 
a moderately right skewed distribution.For the other months, the 
skewness values are ranged from -0.5 to 0.5, indicating fairly sym-
metrical or very slightly skewed distribution. 

The peakness of the distribution are measured by Kurtosis. The 
months with negative value of kurtosis  have more flattened 
(platykurtic) distribution, and months with positive kurtosis value 
have more peaked (leptokurtic) distribution compared to the nor-
mal distribution. For Brazil(March, April, July and August) as well 
for Cuiaba (October), the results showed that the values of kurtosis  
were above than 1, indicatingan overly peaked (leptokurtic) distri-
bution. For Campo Grande in July the kurtosis is identical to the 
normal distribution (mezokurtic distribution).

  Volume 1 | Issue 2 | 75

Month Mean Median Standard 
deviation

CV
(%)

Min Ma Lower 
quartile

Upper 
quartile

Skewness Kurto-
sis

Jan 2.69 2.63 0.436 16.22 1.82 3.61 2.36 3.00 0.33 -0.53
Feby 2.46 2.49 0.449 18.25 1.55 3.61 2.21 2.72 0.02 0.13
Mar 2.39 2.43 0.372 15.58 1.51 3.37 2.18 2.63 -0.39 0.42
Apr 2.51 2.56 0.419 16.70 1.50 3.42 2.38 2.76 -0.75 0.77
May 2.72 2.79 0.415 15.22 1.74 3.57 2.58 3.00 -0.67 0.23
Jun 2.89 2.92 0.434 15.01 1.77 4.03 2.69 3.10 -0.35 0.59
Jul 3.13 3.09 0.484 15.44 2.05 4.29 2.84 3.44 0.15 -0.00
Aug 3.16 3.27 0.428 13.52 2.14 3.72 3.05 3.46 -0.99 0.19
Sep 3.36 3.47 0.369 10.99 2.45 3.99 3.25 3.62 -1.01 0.25
Oct 3.08 3.12 0.390 12.67 2.24 3.72 2.82 3.36 -0.29 -0.74
Nov 2.99 3.00 0.389 13.02 2.11 3.88 2.73 3.22 -0.07 -0.36
Dec 2.73 2.69 0.403 14.77 1.77 3.81 2.52 2.96 0.08 0.44

Table 2. Monthly wind speed descriptive statistics for Campo Grande
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Figure 3. Variation in the mean monthly wind speed at the study locations from 1960 to 2020.

Monthly wind speed data for Campo Grande, Brazil, Cuiabá and 
Goiânia were fitted with three distinct probability distributions: 
Lognormal, (LN), Gumbel (GUM) and General extrem value 
(GEV). The characteristics of the distributions examined for each 
location using the maximum likelihood estimator were grouped 

in annexes 2, 3, 4 and 5. The monthly PFD and CDF wind speeds 
of the distributions studied for Campo Grande, Campo Grande, 
Brasília, Cuiabá and Goiânia are shown in Figures 4, and in the 
supplemental material (SM Figures 5, 6 and 7), respectively.
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February and April for Brazil and Goiania, and in October for Cuiaba [42]. Months with 

a CV of less than 20% are those with less variation in wind speed. 
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Figure 4a. monthly PDFs for Campo Grande. 
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Figure 4a. monthly PDFs for Campo Grande.
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Figure 4b. Monthly CDFs for Campo Grande. 
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Figure 4b: Monthly CDFs for Campo Grande.

The best distribution that fits the wind speed data well is selected 
using the GOF criteria. This distribution has the lowest values of 
AIC, BIC, AICC and RMSE along with the highest values of R^2 
and p-value of the KS test. Tables 6 and supplementary material 
(SM Table 7, 8 and 9) present the fit test results and model selec-
tion indicators.

It can be difficult to determine which distribution best matches 
wind speed when multiple GOF indicators produce conflicting 
results. For example, GEV performs better in Campo Grande in 
December in terms of RMSE and R2, while LN performs better in 
terms of AIC, AICC and BIC. As a result, probability distributions 
were rated from 1 (best-fit distribution) to 3 (worst-fit distribu-
tion). In the case of the KS test, the distributions were classified 
according to p-value, with the highest p-value indicating the best 
fit. When the p-value of the KS test result is low, indicating that 
the wind speed does not fit the distribution, it was not taken into 
account as noted in Table 6 LN and GUM in March, April, August 
and September. Based on the combined ranking score of all GOF 
indicators, the distribution that best fits the data is chosen for its 
total value, which should be low.

Campo Grande
All criteria indicate that GEV distribution demonstrates a better 
fitting than other two distributions for most of months except Jan-
uary, when LN performs better, whereas GUM distribution per-
forms the worst for all months. In July, GEV and LN ranked the 
same, but GEV performs better in terms of R2 and p-value of KS 
test. Note that according to the KS test, the data in April, May, Au-
gust and September do not follow the LN and GUM distributions. 

Brasilia
With the exception of January and July, when LN performs better, 
and May, when GEV and LN were tied for first place, the GEV dis-
tribution shows a better fit than the other two distributions for the 
majority of the months. However, LN outperforms GEV in terms 
of R2 and p-value of KS test. For 10 months, GUM distribution 
has performed the worst.

Goiania
GEV distribution ranked first for eight months except February, 
when GUM performs better, and March, July and October, when 
LN ranked first. 

Cuiaba
GEV distribution ranked first for February, June, August and Sep-
tember, LN performs the best in May, October and November, 
whereas GUM performs the best in March and April. GUM and 
LN ranked the same in January (GUM performs better in terms of 
R2 and p-value of KS test), and GEV and LN in December (GEV 
performs better in terms of R2 and p-value of KS test). 

Tables 10 and supplemental material (SM Table 11, 12, and 13) 
provide MLM estimates of the return level for Campo Grande, 
Brasília, Goiânia, and Cuiabá for various values of the return level 
T. For example, the value of 3, 5727 (LN, January, T = 30) would 
be the maximum monthly wind speed return level predicted to oc-
cur in Campo Grande on average once every 30 years.
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Table 6. Results of the goodness-of-fit indicators - Campo Grande 
Distr. KS (p value) Rank Ln(L) Rank AIC Rank AICc Rank BIC Rank RMSE Rank R2 Rank Sum of 

ranks

Jan

LN 0.0548 (0.9931) 2 -34.5466 1 73.0933 1 73.2933 1 77.3150 1 0.0202 1 0.9953 1 8

GUM 0.0529 (0.9956) 1 -35.5534 3 75.1068 3 75.3068 3 79.3286 2 0.0222 3 0.9941 3 18

GEV 0.0592 (0.9797) 3 -34.2420 2 74.4840 2 74.8908 2 80.8166 3 0.0220 2 0.9945 2 16

Feb LN 0.1132 (0.4209) 2 -38.5986 2 81.1971 2 81.3971 2 85.4189 1 0.0507 2 0.9679 2 13

GUM 0.1346 (0.2197) 3 -41.4544 3 86.9088 3 87.1088 3 91.1309 3 0.06525 3 0.9427 3 21

GEV 0.0842 (0.7626) 1 -37.3728 1 80.7457 1 81.1524 1 87.0783 2 0.0374 1 0.9821 1 8

Ma LN 0.1323 (0.2363) 2 -28.7447 2 61.4895 2 61.6895 2 65.7112 2 0.0688 2 0.9402 2 14

GUM 0.1556 (0.1045) 3 -33.4954 3 70.9908 3 71.1908 3 75.2125 3 0.0852 3 0.8988 3 21

GEV 0.0992 (0.5639) 1 -26.4107 1 58.8214 1 59.2281 1 65.1540 1 0.0499 1 0.9670 1 7

Apr LN 0.1764 (0.0449) - -38.4721 - 80.9442 - 81.1442 - 85.1659 - 0.0923 - 0.8839 - -

GUM 0.1943 (0.0200) - -43.7181 - 91.4483 - 91.6483 - 95.6700 - 0.1107 - 0.8190 - -

GEV 0.1179 (0.3440) 1 -32.1363 1 70.2725 1 70.6793 1 76.6052 1 0.0627 1 0.9451 1 7

May LN 0.1858 (0.0296) - -36.3383 - 76.8757 - 77.0757 81.0974 - 0.0829 - 0.9142 - -

GUM 0.2155 (0.0069) - -41.8178 - 87.6357 - 87.8357 91.8574 - 0.0980 - 0.8674 - -

GEV 0.1348 (0.2014) 1 -30.8538 1 67.7077 1 68.1145 1 74.0403 1 0.0509 1 0.9661 1 7

Jun LN 0.1241 (0.3061) 2 -38.0144 2 80.0287 2 80.2287 2 84.2505 2 0.0617 2 0.9498 2 14

GUM 0.14997 (0.1287) 3 -43.1655 3 90.3309 3 90.5309 3 94.5527 3 0.0814 3 0.9021 3 21

GEV 0.0925 (0.6532) 1 -35.7856 1 77.5712 1 77.9779 1 83.9038 1 0.0467 1 0.9705 1 7

Jul LN 0.0861 (0.7571) 2 -42.1820 2 88.3641 1 88.5641 1 92.5858 1 0.0294 1 0.9891 2 10.5

GUM 0.1145 (0.4061) 3 -45.1726 3 94.3452 3 94.5452 3 98.5669 3 0.0453 3 0.9713 3 21

GEV 0.0783 (0.8337) 1 -41.4933 1 88.9865 2 89.3933 2 95.3191 2 0.0294 2 0.9893 1 10.5

Aug LN 0.1849 (0.0309) - -38.9665 - 81.9330 - 82.1330 - 86.1547 - 0.0956 - 0.8896 - -

GUM 0.2091 (0.0097) - -45.5214 - 95.0429 - 95.2429 - 99.2646 - 0.1101 - 0.8365 - -

GEV 0.0846 (0.7577) 1 -23.7090 1 53.4181 1 53.8249 1 59.7507 1 0.0345 1 0.9855 1 7

Sep LN 0.1743 (0.0491) - -28.9792 - 61.9584 - 62.1584 - 66.1802 - 0.0967 - 0.8893 - -

GUM 0.2108 (0.0089) - -36.6545 - 77.3090 - 77.5090 - 81.5308 - 0.1121 - 0.8313 - -

GEV 0.1105 (0.4243) 1 -19.7425 1 45.4851 1 45.8919 1 51.8177 1 0.0576 1 0.9583 1 7

Oct LN 0.1067 (0.5021) 2 -30.1371 2 64.2742 2 64.4742 2 68.4959 2 0.0446 1 0.9779 2 14

GUM 0.1153 (0.3962) 3 -34.1234 3 72.2468 3 72.4468 3 76.4685 3 0.0597 2 0.9556 3 21

GEV 0.0711 (0.9075) 1 -25.9804 1 57.9607 1 58.3675 1 64.2934 1 0.0281 3 0.9913 1 7

Nov LN 0.0677 (0.9423) 2 -29.3656 2 62.7311 2 62.9311 2 66.9529 1 0.0312 1 0.9885 2 13

GUM 0.0962 (0.6247) 3 -32.9024 3 69.8049 3 70.0049 3 74.0266 3 0.0491 3 0.9687 3 21

GEV 0.0483 (0.9985) 1 -28.1567 1 62.3134 1 62.7202 1 68.6461 2 0.0197 2 0.9954 1 8

Dec LN 0.0812 (0.8167) 2 -31.4815 2 66.9629 1 67.1629 1 71.1847 1 0.0375 2 0.9818 2 11

GUM 0.1149 (0.4016) 3 -35.2866 3 74.5731 3 74.7731 3 78.7949 3 0.0570 3 0.9528 3 21

GEV 0.0720 (0.8991) 1 -30.8762 1 67.7525 2 68.1593 2 74.0851 2 0.0337 1 0.9852 1 10
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Table 10. Return level estimates of monthly wind speed- Campo Grande 

Table 11. Return level estimates of monthly wind speed- Brasilia

Dis-
tr

LN GUM GEV

T 10 20 30 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100

Jan 3.2670 3.4650 3.5727 3.6463 3.7021 3.8692 2.7981 2.8983 2.9467 2.9776 3.0000 3.0621 3.2530 3.4308 3.5228 3.5836 3.6285 3.7559

Feb 3.0850 3.3054 3.4262 3.5092 3.5723 3.7621 2.5991 2.7133 2.7683 2.8036 2.8291 2.8998 3.0566 3.2200 3.3011 3.3533 3.3911 3.4949

Mar 2.9129 3.0939 3.1926 3.2601 3.3112 3.4645 2.5187 2.6213 2.6707 2.7024 2.7253 2.7888 2.8883 3.0164 3.0785 3.1180 3.1463 3.2226

Apr 3.1358 3.3543 3.4740 3.5561 3.6185 3.8061 2.6808 2.8043 2.8639 2.9020 2.9295 3.0061 3.0523 3.1675 3.2203 3.2527 3.2753 3.3338

May 3.3222 3.5273 3.6390 3.7154 3.7733 3.9468 2.8811 2.9995 3.0567 3.0932 3.1197 3.1931 3.2471 3.3543 3.4029 3.4325 3.4530 3.5055

Jun 3.5015 3.7102 3.8237 3.9013 3.9601 4.1360 3.0497 3.1707 3.2291 3.2664 3.2935 3.3685 3.4745 3.6234 3.6957 3.7415 3.7743 3.8630

Jul 3.7864 4.0092 4.1303 4.2131 4.2758 4.4632 3.2799 3.4014 3.4600 3.4974 3.5245 3.5998 3.7652 3.9408 4.0283 4.0848 4.1256 4.2382

Aug 3.7853 3.9937 4.1066 4.1837 4.2420 4.4160 3.3363 3.4630 3.5241 3.5631 3.5914 3.6699 3.6263 3.6713 3.6877 3.6965 3.7020 3.7140

Sep 3.8769 4.0463 4.1373 4.1992 4.2458 4.3842 3.5051 3.6148 3.6677 3.7016 3.7260 3.7940 3.7880 3.8601 3.8908 3.9087 3.9208 3.9503

Oct 3.6110 3.7870 3.8820 3.9466 3.9954 4.1406 3.2005 3.3016 3.3504 3.3816 3.4042 3.4669 3.5463 3.6235 3.6563 3.6755 3.6884 3.7199

Nov 3.5176 3.6919 3.7859 3.8500 3.8984 4.0424 3.1116 3.2107 3.2586 3.2891 3.3113 3.3727 3.4933 3.6190 3.6796 3.7179 3.7453 3.8187

Dec 3.2755 3.4610 3.5616 3.6304 3.6823 3.8377 2.8589 2.9634 3.0138 3.0460 3.0694 3.1341 3.2671 3.4183 3.4939 3.5429 3.5783 3.6765

Dis-
tr

LN GUM GEV

T 10 20 30 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100

Jan 2.2295 2.3859 2.4717 2.5305 2.5752 2.7097 1.8761 1.9550 1.9931 2.0175 2.0351 2.0840 2.2126 2.3384 2.4021 2.4437 2.4741 2.5589

Feb 2.0836 2.2866 2.4000 2.4787 2.5390 2.7225 1.6289 1.7099 1.7489 1.7739 1.7920 1.8422 2.1218 2.4365 2.6351 2.7834 2.9030 3.3023

Mar 1.9446 2.0612 2.1246 2.1680 2.2008 2.2991 1.6637 1.7209 1.7485 1.7662 1.7789 1.8144 1.9535 2.0892 2.1647 2.2167 2.2564 2.3757

Apr 2.0674 2.2536 2.3570 2.4286 2.4832 2.6492 1.7021 1.7978 1.8440 1.8735 1.8949 1.9542 1.9713 2.0589 2.0992 2.1240 2.1412 2.1860

May 2.0821 2.2206 2.2962 2.3481 2.3874 2.5056 1.7641 1.8342 1.8680 1.8896 1.9052 1.9487 2.0805 2.2077 2.2741 2.3182 2.3509 2.4443

Jun 2.0988 2.2145 2.2773 2.3200 2.3524 2.4491 1.8337 1.8981 1.9292 1.9491 1.9635 2.0034 2.0752 2.1504 2.1859 2.2081 2.2238 2.2652

Jul 2.3792 2.5119 2.5839 2.6330 2.6701 2.7811 2.0761 2.1492 2.1845 2.2070 2.2233 2.2687 2.4004 2.5385 2.6117 2.6608 2.6974 2.8035

Aug 2.5187 2.6726 2.7563 2.8136 2.8570 2.9870 2.1824 2.2686 2.3102 2.3369 2.3561 2.4096 2.5260 2.6648 2.7362 2.7832 2.8178 2.9155

Sep 2.5936 2.7706 2.8674 2.9339 2.9843 3.1358 2.1969 2.2890 2.3334 2.3618 2.3823 2.4394 2.5580 2.6755 2.7320 2.7677 2.7932 2.8616

Oct 2.4284 2.5901 2.6784 2.7390 2.7850 2.9230 2.0615 2.1449 2.1852 2.2109 2.2296 2.2813 2.3972 2.5079 2.5616 2.5956 2.6199 2.6856

Nov 2.1915 2.3248 2.3974 2.4471 2.4847 2.5973 1.8912 1.9638 1.9988 2.0212 2.0374 2.0823 2.1720 2.2693 2.3170 2.3474 2.3692 2.4286

Dec 2.1424 2.2585 2.3214 2.3643 2.3967 2.4936 1.8821 1.9487 1.9808 2.0013 2.0162 2.0574 2.1478 2.2530 2.3069 2.3422 2.3681 2.4410

Discussions
The practice of fitting probability distribution models to data, es-
pecially velocity data, has been reported in the literature [28, 37, 
38]. In these studies, different probability distribution models were 
fitted to data series in observations from the Midwest region. The 
use of probability distribution models capable of reproducing sta-
tistics from data series is useful in the analysis of complex phe-
nomena with composite factors such as the interaction between 
land use change and water resources. Three probability distribu-
tions were analyzed to characterize the area of the Midwest region. 
These include; LN, GUM and GEV. Three goodness-of-fit tests 
were applied: maximum likelihood method (ML), (GOF) using 
Kolmogorov - Smirnov test, root mean square error (RMSE), co-
efficient of determination (R2) and the information criteria such as 
Akaike Information Criterion (AIC). ), Bayesian Information Cri-
terion (BIC) and corrected Akaike Information Criterion (AICc) 
to evaluate the best fit probability distribution model. For each 

dataset in the series, the best-fit model was selected based on the 
classification metric.

The velocity series were adjusted by the probability distribution, 
however, an error that may occur in the analysis of climatological 
data of this nature may be a consequence of neglecting the charac-
teristics of the most adequate probability distribution for the data 
under study. Such a mistake can result in the unnecessary use of a 
more complex and laborious model, as well as in the use of a sim-
plified model, but which results in wrong conclusions, if the data 
do not adhere to this distribution. Such choice depends on several 
factors which involve from the origin, periodicity and duration of 
the data series, in addition to the type of variable and purpose of 
the model under study.

However, in the Brazilian scenario, especially in the Cerrado bi-
ome and its transitions with other biomes, there is still a lack of 
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information that allows the characterization of wind speeds, due to 
the low density of the meteorological network and the short peri-
od of observations available (43). The Midwest is included in this 
context, since, despite presenting in recent decades an intense pro-
cess of changes in land use and occupation such as increasing ur-
banization, expansion of agricultural borders and implementation 
of hydroelectric plants, studies that characterize the distribution of 
Probability of extreme wind events are still limited to daily wind 
data series, or obtained by disaggregation methods and/or punctual 
surveys with only one meteorological station.

Using the goodness of the Kolmogorov-Smirnov (KS) test, it is 
observed that the wind speed, the GEV distribution best fitted for 
four cities (Brasilia, Campo Grande, Cuiaba and Goiania), the 
GEV distribution best suited for four cities and the distribution 
Gum came in third. Tables 6, 7, 8 and 9 list the names of cities 
characterizing the distribution of best fit individually and monthly.

In the same way, using the other adequacy tests, it is also observed 
that the GEV distribution fits well for the four cities followed by 
the LN and Gum distributions. It is practically not possible to judge 
which probability distribution to select as the best fit to the data of 
speed based solely on the assessment of the individual quality of 
the fit test. Therefore, to finalize the best distribution, the lower the 
combined rank of all fit qualities, the better the choice of probabil-
ity distribution would be considered. Tables 6, 7, 8, and 9 show the 
summary score with the name cities. From the above results, it can 
be assumed that the distribution of winds shows a slightly skewed 
distribution to the left. For Brasília, the positive skewness is posi-
tively and negatively skewed, for Cuiabá they reveal a moderately 
skewed distribution to the right, and the GEV distributions can be 
properly applied for wind speed prediction.

Wind outperforms fossil fuels by any reasonable measure of long-
term environmental impacts per unit of energy generated. Assess-
ing the environmental impacts of wind energy is relevant because, 
like all energy sources, wind energy has climate impacts. As so-
ciety decarbonises energy systems to limit climate change, poli-
cymakers will face trade-offs between various low-carbon energy 
technologies such as wind, solar, biofuels, nuclear and carbon-cap-
turing fossil fuels. Each technology benefits the global climate by 
reducing carbon emissions, but also causes local environmental 
impacts.

Conclusion
Statistical properties of wind speed are of particular importance 
for evaluating the structure and durability of cities. They provide 
information about the maintenance or interruption of power supply 
stability.

1. We estimated the parameters of the GEV, GUM and LN distri-
butions for wind speeds for the central west region of Brazil. The 
distributions have been satisfactorily combined with monthly data 
and can be used to provide extreme levels of maximum speeds. 

Next, we calculate the probabilities of occurrence of monthly max-
imum speeds of the year for those above 10 to 100 years. Tempera-
ture estimates for each month and for return periods of 10 to 100 
years showed that velocities are increasing over time. The factors 
that modify the speed generate extreme values in the cities include 
the climatic factors, as well as the increase of deforestation and 
fires and those related to extensive fires and aerosol emissions. 
Significant and permanent changes in cities are also caused by var-
ious forms of human activity.

2. The AIC, BIC, RMSE and the R2 coefficient were used to iden-
tify the distribution that gave the best results for each month and 
each city. Knowing the average monthly wind speed distribution is 
of paramount importance in optimizing the use of these renewable 
energy sources. In this work, the wind speed of the municipalities 
of Brasília, Campo Grande, Cuiabá and Goiânia from 61 years of 
data were better represented by the GEV probability distribution 
for all cities, when compared to other distributions commonly pre-
sented in the literature.

Based on what is presented in this work, the parameters of each 
estimated distribution can be used in works with different appli-
cations in order to have more realistic characteristics and results. 
Thus, the methodology can be implemented to direct studies such 
as location, reliability of modules for renewable energy sourc-
es, power quality protection system, harmonics, noise treatment, 
among others.
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APPENDIX
Complementary data for the cities of Brasilia, Cuiabá, Distrito Federal and Goiânia

Table 3. Monthly wind speed descriptive statistics for BRASILIA
Month Mean Median Standard 

deviation
CV
(%)

Min Max Lower
quartile

Upper
quartile

Skewness Kurto-
sis

Jan 1.78 1.79 0.328 18.37 1.05 2.55 1.52 1.90 0.24 -0.23

Feby 1.56 1.47 0.430 27.55 0.95 2.8 1.23 1.80 1.10 0.77
Mar 1.60 1.58 0.267 16.63 1.15 2.37 1.43 1.72 0.90 1.15
Apr 1.56 1.55 0.319 20.43 0.5 2.2 1.38 1.79 -0.44 1.01
May 1.68 1.69 0.297 17.66 1.1 2.5 1.49 1.87 0.40 0.36
Jun 1.76 1.75 0.252 14.37 1.25 2.24 1.60 1.91 -0.07 -0.35
Jul 1.97 2.00 0.298 15.01 1.3 3.08 1.80 2.14 0.63 2.35
Aug 2.07 2.07 0.331 15.99 1.16 3.11 1.82 2.26 0.32 1.34
Sep 2.09 2.11 0.365 17.50 1.38 2.86 1.86 2.31 -0.05 -0.36
Oct 1.96 2.00 0.339 17.28 1.18 2.67 1.66 2.20 0.05 -0.58
Nov 1.80 1.78 0.285 15.84 1.10 2.45 1.52 1.90 0.24 -0.23
Dec 1.79 1.80 0.256 14.27 1.10 2.59 1.23 1.80 1.10 0.77
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Table 4. Monthly wind speed descriptive statistics for Goiania

Table 5. Monthly wind speed descriptive statistics for Cuiaba

Month Mean Median Standard 
deviation

CV
(%)

Min Max Lower
quartile

Upper
quartile

Skewness Kurto-
sis

Jan 1.80 1.78 0.359 19.93 0.82 2.62 1.55 2.08 -0.15 -0.14

Feby 1.52 1.47 0.373 24.51 0.95 2.52 1.24 1.71 0.95 0.41
Mar 1.48 1.46 0.255 17.18 1.05 2.18 1.30 1.60 0.75 0.56
Apr 1.47 1.51 0.302 20.50 0.86 2.07 1.26 1.67 -0.09 -0.39
May 1.65 1.64 0.289 17.46 1.09 2.30 1.51 1.80 0.13 -0.22
Jun 1.68 1.71 0.252 15.04 1.14 2.22 1.50 1.83 -0.31 -0.31
Jul 1.93 1.91 0.273 14.12 1.37 2.76 1.79 2.07 0.36 0.65
Aug 2.10 2.14 0.342 16.28 1.33 2.99 1.89 2.30 -0.12 0.39
Sep 2.09 2.10 0.373 17.86 1.34 2.89 1.84 2.33 0.00 -0.38
Oct 1.87 1.83 0.305 16.35 1.25 2.59 1.67 2.03 0.16 -0.31
Nov 1.73 1.72 0.263 15.24 1.10 2.34 1.56 1.89 0.09 0.08
Dec 1.78 1.79 0.278 15.60 1.00 2.52 1.61 1.95 -0.08 0.84

Month Mean Median Standard 
deviation

CV
(%)

Min Max Lower
quartile

Upper
quartile

Skewness Kurto-
sis

Jan 1.63 1.60 0.291 17.83 1.09 2.28 1.40 1.88 0.41 -0.67

Feby 1.43 1.40 0.277 19.35 0.85 2.07 1.24 1.65 0.00 -0.54
Mar 1.22 1.19 0.213 17.49 0.77 1.79 1.06 1.34 0.87 0.58
Apr 1.10 1.05 0.199 18.01 0.75 1.55 0.95 1.25 0.49 -0.59
May 1.20 1.18 0.192 16.02 0.79 1.57 1.05 1.30 0.18 -0.70
Jun 1.27 1.28 0.184 14.43 0.80 1.63 1.17 1.40 -0.47 0.15
Jul 1.39 1.40 0.222 15.96 0.97 1.99 1.24 1.52 0.43 0.46
Aug 1.55 1.56 0.287 18.46 0.89 2.06 1.38 1.77 -0.28 -0.63
Sep 1.65 1.64 0.259 15.72 0.95 2.41 1.49 1.78 0.05 0.87
Oct 1.49 1.50 0.321 21.51 0.87 2.44 1.24 1.64 0.74 1.20
Nov 1.56 1.52 0.278 17.79 0.93 2.24 1.34 1.78 0.21 -0.35
Dec 1.71 1.70 0.279 16.29 1.2 2.37 1.49 1.91 0.21 -0.60
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Figure 5a. monthly PDFs for Brasilia.
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Figure 5b. monthly CDFs for Brasilia.
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Figure 6a. monthly PDFs for Goiania.
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Figure 6b. monthly CDFs for Goiania

J Math Techniques Comput Math, 2022



  Volume 1 | Issue 2 | 95J Math Techniques Comput Math, 2022



  Volume 1 | Issue 2 | 96

Figure 7a. monthly PDFs for Cuiaba.
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Figure 7b. monthly CDFs for Cuiaba.
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Table 7. Results of the goodness-of-fit indicators - Brasilia

Month Distr. KS (p value) Rank Ln(L) Rank AIC Rank AICc Rank BIC Rank RMSE Rank R2 Rank Sum 
of 
ranks

Jan

LN 0.0895 
(0.7133)

1 -17.9822 2 39.9643 1 40.1643 1 44.1861 1 0.0352 2 0.9853 2 10

GUM 0.1071 
(0.4974)

2 -19.8645 3 43.7290 3 43.9290 3 47.9507 3 0.0431 3 0.9766 3 20

GEV 0.1045 
(0.4954)

3 -17.4322 1 40.8643 2 41.2711 2 47.1970 2 0.0326 1 0.9875 1 12

Feb LN 0.0885
(0.7257)

3 -28.0605 3 60.1210 3 60.3210 3 64.3427 3 0.0372 3 0.9841 3 21

GUM 0.0785
(0.8464)

2 -26.5838 2 57.1675 2 57.3675 1 61.3893 1 0.0312 2 0.9894 2 12

GEV 0.0576
(0.9849)

1 -25.5696 1 57.1393 1 57.5461 2 63.4719 2 0.0235 1 0.9938 1 9

Ma LN 0.0890
(0.7192)

3 -2.4202 3 8.8405 2 9.0405 2 13.0622 2 0.0353 2 0.9838 2 16

GUM 0.0869
(0.7459)

2 -2.0095 2 8.0190 1 8.2190 1 12.2407 1 0.0381 3 0.9811 3 13

GEV 0.0746
(0.8741)

1 -1.7761 1 9.5522 3 9.9590 3 15.8849 3 0.0340 1 0.9851 1 13

Apr LN 0.1029
(0.5557)

2 -24.0655 2 52.1310 2 52.3310 2 56.3528 2 0.0529 2 0.9598 2 14

GUM 0.1106
(0.4521)

3 -26.8623 3 57.7246 3 57.9246 3 61.9464 3 0.0669 3 0.9254 3 21

GEV 0.0655
(0.9493)

1 -15.8124 1 37.6248 1 38.0316 1 43.9574 1 0.0254 1 0.9917 1 7

May LN 0.0832
(0.7928)

2 -11.3888 2 26.7776 1 26.9776 1 30.9993 1 0.0320 2 0.9874 2 11

GUM 0.1105
(0.4541)

3 -12.9929 3 29.9858 3 30.1858 3 34.2076 2 0.0471 3 0.9718 3 20

GEV 0.0767
(0.8519)

1 -11.3346 1 28.6693 2 29.0760 2 35.0019 3 0.0296 1 0.9892 1 11

Jun LN 0.0606
(0.9787)

2 -3.0749 2 10.1498 2 10.3498 2 14.3715 1 0.0296 2 0.9894 2 13

GUM 0.0848
(0.7725)

3 -6.5314 3 17.0629 3 17.2629 3 21.2846 3 0.0475 3 0.9995 3 21

GEV 0.0470
(0.9999)

1 -1.4094 1 8.8187 1 9.2255 1 15.1514 2 0.0229 1 0.9938 1 8

Jul LN 0.0916
(0.6857)

1 -11.2713 1 26.5425 1 26.7425 1 30.7643 1 0.0360 1 0.9827 1 7

GUM 0.1156
(0.3937)

3 -14.0143 3 32.0287 3 32.2287 3 36.2504 3 0.0550 3 0.9563 3 21

GEV 0.1023
(0.5242)

2 -11.8600 2 29.7200 2 30.1268 2 36.0526 2 0.0391 2 0.9789 2 14

Aug LN 0.1155
(0.3948)

2 -19.0830 2 42.1660 1 42.3660 1 46.3878 1 0.0442 2 0.9739 2 11

GUM 0.1353
(0.2146)

3 -22.8712 3 49.7424 3 49.9424 3 53.9642 3 0.0613 3 0.9437 3 21

GEV 0.1023
(0.5230)

1 -18.9692 1 43.9384 2 44.3452 2 50.2710 2 0.0430 1 0.9748 1 10
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Sep LN 0.1100
(0.5260)

2 -25.9635 2 55.9270 2 56.1270 2 60.1488 2 0.0450 2 0.9759 2 14

GUM 0.1212
(0.3338)

3 -28.7167 3 61.4337 3 61.6337 3 65.6554 3 0.0590 3 0.9560 3 21

GEV 0.0664
(0.9437)

1 -24.2858 1 54.5716 1 54.9783 1 60.9042 1 0.0273 1 0.9911 1 7

Oct LN 0.1259
(0.2900)

2 -20.8106 2 45.6213 2 45.8213 2 49.8430 1 0.0439 2 0.9785 2 13

GUM 0.1442
(0.1584)

3 -23.1239 3 50.2478 3 50.4478 3 54.4695 3 0.0507 3 0.9692 3 21

GEV 0.0916
(0.6647)

1 -19.5592 1 45.1184 1 45.5252 1 51.4510 2 0.0348 1 0.9865 1 8

Nov LN 0.0545
(0.9934)

1 -10.4084 2 24.8168 2 25.0168 2 29.0386 1 0.0232 2 0.9935 2 12

GUM 0.0710
(0.9180)

3 -13.5527 3 31.1053 3 31.3053 3 35.3271 3 0.0368 3 0.9817 3 21

GEV 0.0571
(0.9862)

2 -9.2723 1 24.5446 1 24.9514 1 30.8773 2 0.0193 1 0.9956 1 9

Dec LN 0.0578
(0.9869)

2 -3.4887 2 10.9773 1 11.1773 1 15.1990 1 0.0282 2 0.9901 2 11

GUM 0.0845
(0.7730)

3 -7.3886 3 18.7772 3 18.9772 3 22.9989 3 0.0456 3 0.9703 3 21

GEV 0.1709
(0.9962)

1 -3.4546 1 12.9092 2 13.3160 2 19.2419 2 0.0249 1 0.9921 1 10

Month Distr. KS (p value) Rank Ln(L) Rank AIC Rank AICc Rank BIC Rank RMSE Rank R2 Rank Sum 
of 
ranks

Jan LN 0.0733 
(0.8870)

2 -26.5598 2 57.1196 2 57.3196 2 61.3414 2 0.0358 2 0.9842 2 14

GUM 0.1021 
(0.5482)

3 -29.5218 3 63.0436 3 63.2436 3 67.2654 3 0.0448 3 0.9720 3 21

GEV 0.0608 
(0.9681)

1 -23.2398 1 52.4796 1 52.8863 1 58.8122 1 0.0240 1 0.9932 1 7

Feb LN 0.0709 
(0.9088)

3 -21.2093 2 46.4186 2 46.6186 2 50.6404 2 0.0274 3 0.9912 3 17

GUM 0.0546 
(0.9934)

2 -20.2166 3 44.4331 1 44.6331 1 48.6549 1 0.0204 2 0.9953 2 12

GEV 0.0474 
(0.9989)

1 -20.1159 1 46.2318 3 46.6385 3 52.5644 3 0.0192 1 0.9958 1 13

Mar LN 0.0633 
(0.9621)

3 -0.0183 1 4.0366 2 4.2366 2 8.2583 2 0.0170 1 0.9965 1 12

GUM 0.0561 
(0.9907)

2 0.3507 2 3.2987 1 3.4987 1 7.5204 1 0.0227 3 0.9938 3 13

GEV 0.0443 
(0.9997)

1 0.5293 3 4.9413 3 5.3481 3 11.2739 3 0.0177 2 0.9963 2 17

Apr LN 0.1019 
(0.5293)

3 -15.0440 2 34.0880 2 34.2880 2 38.3097 2 0.0424 2 0.9783 2 15

GUM 0.1042 
(0.5365)

2 -17.4736 3 38.9472 3 38.1472 3 43.1689 3 0.0518 3 0.9647 3 20

GEV 0.0630 
(0.9639)

1 -12.4190 1 30.8379 1 31.2447 1 37.1706 1 0.0256 1 0.9923 1 7

Table 8. Results of the goodness-of-fit indicators - Goiania
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May LN 0.1204 
(0.3198)

2 -10.6854 2 25.3708 1 25.5708 1 29.5926 1 0.0442 2 0.9766 2 11

GUM 0.1470 
(0.1434)

3 -12.9473 3 29.8947 3 30.0947 3 34.1164 3 0.0579 3 0.9579 3 21

GEV 0.0965 
(0.5992)

1 -9.9167 1 25.8333 2 26.2401 2 32.1659 2 0.0363 1 0.9841 1 10

Jun LN 0.1221 
(0.3251)

2 -4.2251 2 12.4503 2 12.6503 2 16.6720 2 0.0534 2 0.9661 2 12

GUM 0.1353 
(0.2143)

3 -8.3520 3 20.7041 3 20.9041 3 24.9258 3 0.0679 3 0.9395 3 21

GEV 0.0760 
(0.8596)

1 -1.2461 1 8.4922 1 8.8989 1 14.8248 1 0.0296 1 0.9894 1 7

Jul LN 0.0911 
(0.6921)

2 -6.4359 1 16.8718 1 17.0718 1 21.0935 1 0.0353 1 0.9841 1 8

GUM 0.1250 
(0.2974)

3 -8.8593 3 21.7186 3 21.9186 3 25.9404 3 0.0522 3 0.9618 3 21

GEV 0.0892 
(0.6967)

1 -6.5585 2 19.1170 2 19.5238 2 25.4496 2 0.0357 2 0.9835 2 13

Aug LN 0.1345 
(0.2039)

2 -22.5066 1 49.0132 2 49.2132 2 53.2350 1 0.0611 2 0.9528 2 12

GUM 0.1532 
(0.1143)

3 -26.4282 2 56.8565 3 57.0565 3 61.0782 3 0.0762 3 0.9200 3 20

GEV 0.1036 
(0.5077)

1 -27.0367 3 48.0735 1 48.4803 1 54.4061 2 0.0481 1 0.9698 1 10

Sep LN 0.1110 
(0.4178)

2 -26.8672 2 57.7344 2 57.9344 2 61.9561 1 0.0471 2 0.9740 2 13

GUM 0.1378 
(0.1972)

3 -29.3272 3 62.6543 3 62.8243 3 66.8761 3 0.0604 3 0.9550 3 21

GEV 0.0791 
(0.8250)

1 -25.5247 1 57.0494 1 57.4562 1 63.3820 2 0.0314 1 0.9883 1 8

Oct LN 0.0670 
(0.9396)

1 -13.8061 2 31.6123 1 31.8126 1 35.834. 1 0.0298 2 0.9895 3 10

GUM 0.0940 
(0.6544)

3 -15.9830 3 35.9660 3 36.1660 3 40.1879 3 0.0437 3 0.9760 2 21

GEV 0.0673 
(0.9371)

2 -13.2008 1 32.1017 2 32.8085 2 38.7343 2 0.0236 1 0.9934 1 11

Nov LN 0.0897 
(0.6904)

2 -5.3256 2 14.6511 1 14.8611 1 18.8729 1 0.0308 2 0.9881 2 11

GUM 0.1205 
(0.3408)

3 -8.5548 3 21.1096 3 21.3096 3 25.3314 3 0.0483 3 0.9679 3 21

GEV 0.0802 
(0.8118)

1 -4.5895 1 15.1790 2 15.5858 2 21.5116 2 0.0250 1 0.9922 1 10

Dec LN 0.0834 
(0.7727)

2 -10.1798 2 24.3596 2 24.5596 2 28.5814 1 0.0395 2 0.9791 2 13

GUM 0.1136 
(0.4161)

3 -14.9976 3 33.9952 3 34.1952 3 38.2169 3 0.0610 3 0.9420 3 21

GEV 0.0802 
(0.8115)

1 -8.6902 1 23.3805 1 23.7873 1 29.7131 2 0.0306 1 0.9874 1 8
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Month Distr. KS (p value) Rank Ln(L) Rank AIC Rank AICc Rank BIC Rank RMSE Rank R2 Rank Sum 
of 
ranks

Jan LN 0.0810 (0.8187) 2 -9.3447 2 22.6895 1 22.8895 1 26.9112 1 0.0337 2 0.9873 3 12

GUM 0.0776 (0.8566) 1 -9.6502 3 23.3004 2 23.5004 2 27.5222 2 0.0298 1 0.9898 1 12

GEV 0.0851 (0.7503) 3 -9.0473 1 24.0946 3 24.5014 3 30.4273 3 0.0339 3 0.9874 2 18

Feb LN 0.1015 (0.5557) 3 -8.7862 2 21.5724 2 21.7724 2 25.7942 1 0.0414 2 0.9804 2 14

GUM 0.0956 (0.6332) 2 -10.9966 3 25.9933 3 26.1933 3 30.2150 3 0.0481 3 0.9715 3 20

GEV 0.0810 (0.8026) 1 -7.2149 1 20.4298 1 20.8366 1 26.7624 2 0.0331 1 0.9876 1 8

Mar LN 0.0769 (0.8630) 3 11.4930 3 -18.9860 2 -18.7860 2 -14.7642 2 0.0351 3 0.9849 3 18

GUM 0.0584 (0.9853) 1 12.1588 2 -20.3175 1 -20.1175 1 -16.0958 1 0.0232 1 0.9933 1 8

GEV 0.0672 (0.9379) 2 12.3527 1 -18.7053 3 -18.2985 3 -12.3727 3 0.0253 2 0.9922 2 16

Apr LN 0.0910 (0.6935) 3 14.4073 3 -24.8146 2 -24.6146 2 -20.5929 2 0.0384 3 0.9840 3 18

GUM 0.0755 (0.8781) 1 14.6795 2  -25.3590 1 -25.1590 1 -21.1373 1 0.0339 1 0.9874 1 8

GEV 0.0798 (0.8165) 2 14.8607 1 -23.7214 3 -23.3146 3 -17.3888 3 0.0368 2 0.9856 2 16

May LN 0.0756 (0.8765) 1 14.9115 1 -25.8231 1 -25.6231 1 -21.6013 1 0.0332 1 0.9876 1 7

GUM 0.0775 (0.8571) 2 13.1656 2 -22.3312 3 -22.1312 3 -18.1095 3 0.0333 2 0.9865 2 17

GEV 0.0935 (0.6389) 3 15.6123 3 -25.2247 2 -24.8179 2 -18.8920 2 0.0374 3 0.9848 3 18

Jun LN 0.1222 (0.3243) 2 14.1952 2 -24.3905 2 -24.1905 2 -20.1687 2 0.0521 2 0.9649 2 14

GUM 0.1494 (0.1313) 3 8.7983 3 -13.5967 3 -13.3967 3 -9.3749 3 0.0729 3 0.9212 3 21

GEV 0.0759 (0.8602) 1 18.8809 1 -31.7618 1 -31.3550 1 -25.4291 1 0.0324 1 0.9869 1 7

Jul LN 0.0842 (0.7802) 2 6.6195 1 -9.2389 1 -9.0389 1 -5.0172 1 0.0277 2 0.9906 2 10

GUM 0.1120 (0.4352) 3 5.0509 3 -6.1018 3 -5.9018 3 -1.8800 2 0.0430 3 0.9765 3 20

GEV 0.0759 (0.8602) 1 6.5915 2 -7.1831 2 -6.7763 2 -0.8505 3 0.0274 1 0.9908 1 12

Aug LN 0.1051 (0.5240) 2 -12.3820 2 28.7640 2 28.9640 2 32.9857 2 0.0489 2 0.9725 2 14

GUM 0.1118 (0.4378) 3 -15.4564 3 34.9129 3 35.1129 3 39.1346 3 0.0583 3 0.9570 3 21

GEV 0.058 (0.9834) 1 -7.9720 1 21.9441 1 22.3509 1 28.2767 1 0.0204 1 0.9953 1 7

Sept LN 0.105 (0.5157) 2 -5.0042 2 14.0083 1 14.2083 1 18.2301 1 0.0413 2 0.9774 2 11

GUM 0.1322 (0.2376) 3 -9.2375 3 22.4751 3 22.6751 3 26.6968 3 0.0611 3 0.9439 3 21

GEV 0.0881 (0.7116) 1 -4.3004 1 14.6009 2 15.0077 2 20.9335 2 0.0360 1 0.9825 1 10

Oct LN 0.0812 (0.8165) 1 -14.5479 1 33.0959 1 33.2959 1 37.3176 1 0.0360 1 0.9839 1 7

GUM 0.101 (0.5596) 3 -15.2607 3 34.5214 2 34.7214 2 38.7432 2 0.0455 3 0.9740 3 18

GEV 0.08 (0.7749) 2 -14.5988 2 35.1976 3 35.6043 3 41.5302 3 0.0369 2 0.9831 2 17

Nov LN 0.0656 (0.9554) 2 -7.9306 2 19.8612 1 20.0612 1 24.0829 1 0.0264 1 0.9919 1 9

GUM 0.067 (0.9431) 3 -9.8825 3 23.7651 3 23.9651 3 27.9868 3 0.0308 3 0.9880 3 21

GEV 0.0623 (0.9673) 1 -7.3314 1 20.6628 2 21.0696 2 26.9954 2 0.0269 2 0.9917 2 12

Dec LN 0.0642 (0.9632) 2 -7.8353 2 19.6705 1 19.8705 1 23.8923 1 0.0287 1 0.9908 2 11

GUM 0.073 (0.8929) 3 -9.2022 3 22.4043 3 22.6043 3 26.6261 3 0.0373 2 0.9839 3 20

GEV 0.0608 (0.9736) 1 -7.4142 1 20.8284 2 21.2352 2 27.1610 2 0.0264 3 0.9923 1 11

Table 9. Results of the goodness-of-fit indicators - Cuiaba

J Math Techniques Comput Math, 2022



Copyright: ©2022 Amaury de Souza . This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited.

  Volume 1 | Issue 2 | 103

Table 12. Return level estimates of monthly wind speed- Goiania

Table 13. Return level estimates of monthly wind speed- Cuiaba

Dis-
tr

LN GUM GEV

T 10 20 30 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100

Jan 2.3202 2.5075 2.6109 2.6822 2.7365 2.9007 1.9257 2.0215 2.0677 2.0972 2.1186 2.1779 2.2654 2.3777 2.4313 2.4650 2.4889 2.5527

Feb 1.9963 2.1729 2.2708 2.3386 2.3903 2.5473 1.5900 1.6645 1.7005 1.7235 1.7401 1.7863 2.0077 2.2351 2.3696 2.4661 2.5417 2.7807

Mar 1.8103 1.9235 1.9851 2.0273 2.0593 2.1552 1.5378 1.5925 1.6188 1.6357 1.6479 1.6817 1.8165 1.9465 2.0189 2.0688 2.1068 2.2211

Apr 1.9013 2.0571 2.1432 2.2026 2.2478 2.3846 1.5655 1.6425 1.6797 1.7034 1.7206 1.7684 1.8568 1.9487 1.9923 2.0196 2.0390 2.0903

May 2.0460 2.1832 2.2581 2.3095 2.3486 2.4657 1.7347 1.8053 1.8393 1.8611 1.8768 1.9206 2.0170 2.1192 2.1701 2.2030 2.2268 2.2924

Jun 2.0282 2.1478 2.2129 2.2573 2.2910 2.3917 1.7603 1.8273 1.8597 1.8803 1.8953 1.9368 1.9976 2.0697 2.1032 2.1240 2.1386 2.1768

Jul 2.2964 2.4175 2.4831 2.5278 2.5615 2.6623 2.0130 2.0793 2.1113 2.1318 2.1466 2.1877 2.3026 2.4184 2.4785 2.5183 2.5476 2.6313

Aug 2.5751 2.7397 2.8295 2.8909 2.9375 3.0773 2.2134 2.3039 2.3476 2.3756 2.3958 2.4519 2.5567 2.6784 2.7383 2.7766 2.8042 2.8795

Sep 2.6007 2.7811 2.8799 2.9477 2.9991 3.1539 2.1948 2.2874 2.3320 2.3606 2.3812 2.4386 2.5683 2.6932 2.7541 2.7929 2.8206 2.8959

Oct 2.2782 2.4200 2.4973 2.5501 2.5902 2.7102 1.9513 2.0253 2.0610 2.0839 2.1004 2.1463 2.2629 2.3749 2.4310 2.4672 2.4935 2.5663

Nov 2.0855 2.2070 2.2730 2.3181 2.3523 2.4544 1.8099 1.8767 1.9089 1.9295 1.9444 1.9859 2.0744 2.1697 2.2171 2.2476 2.2697 2.3304

Dec 2.1719 2.3050 2.3774 2.4270 2.4645 2.5770 1.8867 1.9633 2.0003 2.0239 2.0410 2.0886 2.1597 2.2602 2.3099 2.3417 2.3646 2.4273

Dis-
tr

LN GUM GEV

T 10 20 30 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100

Jan 2.0168 2.1507 2.2238 2.2739 2.3120 2.4262 1.6995 1.7642 1.7954 1.8153 1.8297 1.8698 2.0096 2.1394 2.2086 2.2551 2.2898 2.3907

Feb 1.8134 1.9508 2.0263 2.0783 2.1179 2.2371 1.5090 1.5775 1.6105 1.6317 1.6470 1.6894 1.7851 1.8775 1.9225 1.9511 1.9716 2.0272

Mar 1.4893 1.5833 1.6345 1.6696 1.6961 1.7758 1.2643 1.3095 1.3313 1.3453 1.3554 1.3834 1.4939 1.6029 1.6638 1.7060 1.7381 1.8352

Apr 1.3642 1.4549 1.5045 1.5385 1.5643 1.6417 1.1466 1.1895 1.2102 1.2235 1.2330 1.2596 1.3638 1.4628 1.5173 1.5547 1.5831 1.6678

May 1.4532 1.5412 1.5890 1.6218 1.6466 1.7208 1.2478 1.2935 1.3155 1.3295 1.3397 1.3680 1.4396 1.5060 1.5388 1.5599 1.5752 1.6169

Jun 1.5336 1.6216 1.6693 1.7019 1.7266 1.8004 1.3426 1.3943 1.4192 1.4352 1.4467 1.4787 1.5022 1.5475 1.5678 1.5801 1.5886 1.6102

Jul 1.6855 1.7859 1.8405 1.8778 1.9061 1.9907 1.4503 1.5024 1.5276 1.5437 1.5553 1.5876 1.6874 1.7839 1.8346 1.8683 1.8934 1.9653

Aug 1.9601 2.1047 2.1842 2.2388 2.2804 2.4055 1.6440 1.7188 1.7549 1.7779 1.7946 1.8410 1.9034 1.9703 1.9999 2.0177 2.0299 2.0607

Sep 2.0024 2.1245 2.1910 2.2364 2.2709 2.3740 1.7364 1.8054 1.8387 1.8600 1.8754 1.9182 2.0004 2.1016 2.1526 2.1857 2.2099 2.2770

Oct 1.9174 2.0708 2.1555 2.2138 2.2582 2.3925 1.5724 1.6444 1.6791 1.7012 1.7173 1.7619 1.9214 2.0761 2.1602 2.2174 2.2606 2.3879

Nov 1.9379 2.0695 2.1414 2.1908 2.2283 2.3408 1.6393 1.7064 1.7387 1.7594 1.7744 1.8159 1.9229 2.0278 2.0808 2.1153 2.1404 2.2104

Dec 2.0861 2.2143 2.2840 2.3318 2.3679 2.4763 1.7838 1.8490 1.8804 1.9005 1.9150 1.9554 2.0731 2.1790 2.2327 2.2676 2.2932 2.3644
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